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ABSTRACT. An open problem is proving FLT simply for each integral n > 2.
Our proof of FLT is based on our algebraic identity, denoted, for convenience,
as r" + s™ = t". For n > 1 we relate r,s,t > 0, each a different function of
variables comprising r™ + s = t"™, with x,y,z > 0 for which " + y" = 2"
holds. We infer as true by direct argument (not BWOC), for any given n > 2,
that {(z,y, 2)|z,y,z € Z,z™ + y™ = 2"} = {(r,s,t)|r,s,t € Z,7™ 4+ s™ = t"}.
In addition, we show, for n > 2, that {(r, s, t)|r,s,t € Z,r™ + s™ ="} = @.
Thus, for n € Z,n > 2, it is true that {(z,y, 2)|z,y,z € Z, 2" +y" = 2"} = 2.

1. INTRODUCTION

FLT states, for n € Z,n > 2, x,y,z € Z,x,y,z > 1 that " + y” = 2" does not
hold. 1t is well known that a simple proof of FLT for every n € Z,n > 2 is lacking.
Forn € Z,n > 2: Using basics, we devise a direct proof, not the expected BWOC.
Per Sect. 4, an identity with very restricted integral triples for n € Z,n > 2 is :

I\ I\ \n

(1) ((4q”);) + ((pf 2qn)“) = ((p+2qn)?) :
Foralln € Z,n>1: All valuesp € R, p > 0, all ¢ € Q, ¢ > 0 such that p > 2¢".
Denote, for convenience, (4q”)%, (p— Qq”)%, and (p + 2q”)71L, respectively, by
r,s,t € R, r,s,t > 0, such that r is a function of ¢, and, s, ¢ are functions of (p, q),
resulting in (r,s,t) for which ™ + s™ = t"™ holds. The argument in Sect. 3 starts
by relating such r, s,t € R with z,y,z € R, x,y, 2 > 0 for which ™ +y" = z" holds.

We argue from an equality of two sets to an equality of the two respective subsets
since an equality of two sets, with both sets nonempty or both sets empty, implies
that the respective two subsets are equal, with both nonempty or both empty.

A consistent argument in Sect. 3 requires, for n = 1,2, that the statement
{(r,s,t)|r,s,t € Z,r,s,t > 0,r" + s" ="} = {(x,y, 2)|x,y,2 € Z, 2" + y™ = 2"}
be true; it is clearly true for n = 1,2, but solely with ¢ € Q, ¢ = 7, 5, respectively.

Thus, {(r,s,t)|r,s,t € Z,r™ + s™ = t"} = {(z,y,2)|z,y,2 € Z,z™ + y™ = 2"}
forn = 1,2, is false with ¢ € R — Q. So, we must exclude ¢ € R — Q from our proof.

Should {(z,y,2)|z,y,z € Z,z™ + y™ = 2"} = {(r,s,t)|r,s,t € Z,r" + s ="}
be shown true in Sect. 3, below, for n = 3,4,5... with p € R, ¢ € Q, it would
be true for n € Z,n > 2 that {(z,y, 2)|z,y,2 € Z,2™ + y" = 2"} = & since, for
n € Z,n > 2 we show in Sec. 4, below, that {(r,s,t)|r,s,t € Z,r" + s" =t"} = @.
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2. CO-EXISTING SETS AND SUBSETS WITH 7, s,t AS FUNCTIONS OF p € R, q € Q.

Let A be {(r,s,t)|r,s,t € Ryr,s,t>0,t > s, 7, 7™ + s =t"}.

Let B be {(r,s,t)|r,s € R,r-s,t € Z,r - s,t are positive coprime, r™ + s = t"}.
Let C be {(r,s,t)|r,s,t € Z,r,s,t are coprime, r,s,t > 1,t > s, r,r"™ + s = t"}.
Let D be {(z,y,2)|z,y,2 € R,x,y,2 > 0,2 >y, z, 2" + y™ = 2" }.

Let E be {(z,y, 2)|x,y € R,z-y, 2z € Z,x-y, z are positive coprime, ™ +y" = z"}.
Let F be {(x,y, 2)|z,y,z € Z,x,y, z are coprime, x,y,z > 1, 2" +y™ = z"}.
Let Gbe {252 € R,r-5>0,7,5,t>0,(r,s,t) € A, 7" + 8" = t"}.

Let H be {7252 € Q,r-5>0,7,5,t>0,(r,s,t) € A,;r" + 5,7 =1"}.

Let Jbe {5252 € Q,r-5s>1,r,5>0,t > 1,(r,s,t) € B,r" +s" = t"}.

Let K be {Z2]Z2 € R, z,y,2 > 0, (2,y,2) € D, 2™ +y" = 2"}.
Let L be {%|ZJ €Q7$7y72>07(53aya3) ED’mn+yn :Zn}

Let M be {=X|Z c Qz-y > 1,2,y > 0,2 > 1,(z,y,2) € E, 2" +y" = 2"}.

3. Our DIRECT PROOF WITH SETS AND RESPECTIVE, CO-EXISTING SUBSETS

Our big idea is : For any given n € Z,n > 2 with p € R, ¢ € Q, we can prove
a1 a1
the truth of {% € G} = {Z¥ € K} so, we can infer the truth of
p+2qn)n
{(r,s,t)|r,s,t € Z,r"™ + s" = t"} = {(x,y, 2)|z,y,2 € Z,z" + y™ = 2"} despite
{(r,s,t)|r,s,t e Ryr™ + " ="} £ {(z,y,2)|x,y,2 € R,z™ + y™ = 2"} being true.

Proposition 3.1. For any givenn >2 : H=L, with H L # @, or H L = &.

1 1
Proof. With % € G, so, 5* € G, for any given n € Z,n > 2, terms
rs/t € G, xy/z EpK ;re equally restricted : I"+O™ = U™, with I, O, U € R, implies
U > 1,0, so, in particular, rs/t < r, and zy/z < . With any given ¢ € Q,q > 0,
unrestricted p € R,p > 0 varies such that = € G takes any given =¥ € K.

Thus, G includes K. Set K includes G since 2™ +y™ = 2", with (z,y, z) for which
x,y,z € R, is the most general such triple-nth-power form. Hence, for any given
n > 2 it is true that {&* € G} = {Z2 € K}. So, {" ¢ HC G} ={%#Y € LC K}
with H, L # @, or H,L = @, with &> € Q, =¥ € Q each a ratio of two integers. [

Proposition 3.2. For any givenn > 2:{r-s,t|(r,s,t) € B} = {z-y, z|(z,y,2) € E}.

Proof. For any given n > 2 : Prop. 3.1 implies {"* € JC H} = {*¥ € M C L}
with J,M # @, or JM = @&, So, {r - s|(r,s,t) € B} = {x-y|(z,y,2) € E} and
{t|(r,s,t) € B} = {z|(z,y,2) € E} are true, per coprimity; thus, we can infer that
{r-s,t|(r,s,t) € B} = {z-y, 2|(x,y,2) € E}istruewith B,E # &,or B,E=9. 0O
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Proposition 3.3. : For any given n € Z,n > 2, solution (r,s,t) € B as a function
of v, w is identical to solution (x,y,z) € E as a function of the same values of v, w.

Proof. For any given value of n € Z,n > 2, purely for convenience in calculation :
Denote r - s € Z as v, and denote t € Z as w such that =% € J = = holds.
Denote x-y € Z as v and denote z € Z as w per Prop. 3.2, with the same values

of v,w as with r - s € Z, t € Z, respectively) such that =¥ € M = 2 holds.

Solving ¢t = w and r - s = v simultaneously with ™ + s™ = ¢" results in :
(r™)?2 — (r™)(w™) + o™ = 0 and (s")? — (s")(w"™) + " = 0.

1 1
The solution in B is r = (wnii W) "s= (“’n; W) "t=w.

Solving z = w and z - y = v simultaneously with =™ + y™ = 2™ results in the
similar equations : (z")? — (2")(w") +v"™ = 0 and (y")? — (y")(w™) + v" = 0.
1 1
The solution in E is x = (“’nii ”“;"W) Ty = (W) "Lrz=w. O
Proposition 3.4. For any givenn >2 : C =F, with C,F # @, or C,F = &.

Proof. Per Prop. 3.3, for any given n € Z,n > 2, with B,F # @ or B,E = @:
{r|(r,s,t) € B} = {z|(x,y,2) € E}, and {s|(r,s,t) € B} = {y|(x,y,2) € E}.
Hence, for any given n € Z,n > 2: {r|(r,s,t) € C C B} = {z|(z,y,2) € F C E},
and {s|(r,s,t) € C C B} = {y|(z,y,2) € F C E}; in addition, also with C, F # &
or C, F = @, thus, {t|(r,s,t) € C C B} ={z|((z,y,2) € F C E}. So, for any given
ne€Zmn>2:{(rst)eCt={(z,y,2) € F}, with C,F #@ or C,F = @. O

For n € Z,n > 2 we succeed in proving Props. 3.1- 3.4 with p € R, and g € Q.

Hence, for n € Z,n > 2, with p € R,q € Q, we apply integral multipliers to
both sides of the verified equality (r,s,t) € C = (z,y,2) € F to produce the true
statement {(r,s,t)|r,s,t € Z,r"™ + s" =t"} = {(z,y, 2)|x,y, 2z € Z,x™ + y™ = 2" }.

4. RESuLTS AND CONCLUSION

With (Zlq")%7 (p— Qq")%, (p+ 2q")% € R, or r, s,t € R, respectively, of Sect. 1 :
Term (4q”)% € R reduces to Q%q € R. So, such 2%q € R and r € R are identical.
Thus, for n € Z,n > 2 : There are no values, with ¢ € Q, for 2%q eQcCR.
Hence, for n € Z,n > 2 : There are no values, with g € Q, for Q%q eZ CQ.

Forn € Z,n > 2, with ¢ € Q,p € R : The fact that 2%q € Z is impossible shows
the truth of {(r, s,t)|r,s,t € R,r"+s™ =1t"} # {(x,y,2)|z,y,2 € R,a"+y" = 2" }.

More importantly, for n € Z,n > 2, with ¢ € Q,p € R : The fact that 2%q S/
or r € Z are (each) impossible demonstrates the truth of the statement :

Forn € Z,n > 2: r" 4 s" =™ does not hold for (r,s,t) such that r,s,t € Z.

Forn € Z,n > 2, with ¢ € Q, p € R, per our proof of Prop. 3.4, above, the follow-
ing is true : {(z,y,2)|z,y,2 € Z,a" +y™ = 2"} = {(r,s,V)|r,s,t € Z,r™ + 8™ =t"}.

Consequently, a necessarily true conclusion is, as follows :

Forn € Z,n > 2, equation 2™ +y™ = 2™ does not hold for (z,y, z) with z,y, z € Z.

QED



