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Abstract. An open problem is proving FLT simply for each n ∈ N, n > 2.

Our proof of FLT is based on our algebraic identity, denoted, for convenience,

as rn+sn = tn with r, s, t > 0 as functions of variables. For n ∈ N, n > 0 : We
relate r, s, t for which rn+sn = tn holds with x, y, z > 0 for which xn+yn = zn

holds. We infer as true by direct argument (not BWOC), for any given n > 2,
that {(x, y, z)|x, y, z ∈ N, xn+yn = zn} =⇒ {(r, s, t)|r, s, t ∈ N, rn+sn = tn}.
In addition, we show, for n > 2, that {(r, s, t)|r, s, t ∈ N, rn + sn = tn} = ∅.

Thus, for n ∈ N, n > 2, it is true that {(x, y, z)|x, y, z ∈ N, xn+yn = zn} = ∅.

1. Introduction

FLT states, for n ∈ N, n > 2, x, y, z ∈ N, x, y, z > 0 that xn + yn = zn does not
hold. It is well known that a simple proof of FLT for every n ∈ N, n > 2 is lacking.

For n ∈ N : We use basics to devise a direct proof, not the expected BWOC.
Per Sect. 3, an identity with very restricted integral triples for n ∈ N, n > 2 is :
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Basic conditions : n ∈ N, n > 0, p ∈ R, p > 0, q ∈ Q, q > 0 such that p > 2qn.
Denote r for (4qn)

1
n ; s for (p−2qn)

1
n , and t for (p+2qn)

1
n throughout the paper.

Therefore, r, s, t ∈ N, r, s, t > 0, r 6= s for which rn + sn = tn holds, is similar to,
thus comparable to x, y, z ∈ N, x, y, z > 0, x 6= y for which xn + yn = zn holds.

We begin, in Sect 2, below, with r, s, t, x, y, z ∈ R to subsequently infer a relation
between included r, s, t ∈ N, r, s, t > 0 and included x, y, z ∈ N, x, y, z > 0.

We argue from an equality of two sets to an equality of the two respective subsets
since an equality of two sets, with both sets nonempty or both sets empty, implies
that the respective two subsets are equal, with both nonempty or both empty.

A consistent argument in Sect. 2 requires, for n = 1, 2, with r, s, t, x, y, z > 0,
that {(r, s, t)|r, s, t ∈ N, rn + sn = tn} = {(x, y, z)|x, y, z ∈ N, xn + yn = zn} be
true; it is clearly true for n = 1, 2, but solely with q ∈ Q, q = r

4 ,
r
2 , respectively;

so, {(r, s, t)|r, s, t ∈ N, rn + sn = tn} = {(x, y, z)|x, y, z ∈ N, xn + yn = zn} would
be false should, instead, q ∈ R−Q. So, we must exclude q ∈ R−Q from our proof.

That {(r, s, t)|r, s, t ∈ N, rn+ sn = tn =⇒ {(x, y, z)|x, y, z ∈ N, xn+yn = zn} is
true is shown, in section 2, below, for n ∈ N, n > 2, x, y, z, r, s, t > 0, p ∈ R, q ∈ Q ;
therefore, equation {(x, y, z)|x, y, z ∈ N, xn + yn = zn} = ∅ (which is FLT ) is true
since we show in section 3, below, that {(r, s, t)|r, s, t ∈ N, rn + sn = tn} = ∅.
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For any given n ∈ N, n > 0 : Letting r, s, t respectively denote (4qn)
1
n , (p−2qn)

1
n ,

and (p+ 2qn)
1
n , with q ∈ Q, p ∈ R, p, q,> 0 for which rn + sn = tn holds, and with

x, y, z such that xn + yn = zn holds, all the sets that we use in Sect. 2, below, are :
Let A be {(r, s, t)|r, s, t ∈ R, r, s, t > 0} : An ∞ of elements for n > 0; for n = 1,

for example {3π, 4π, 7π}, n = 2, e.g., {3π, 4π, 5π}, for n = 3, e.g. {1, 2, 9 1
3 }.

Let B be {(r, s, t)|r · s, t ∈ N, r, s, t > 0 : An ∞ of elements for n > 0; for n = 1,

e.g. {12, 7}, and, for n = 2, e.g. {12, 5}, for n = 3 e.g. {(4−2
√

2)
1
3 ·(4 + 2

√
2)

1
3 , 2}.

Let C be {(r, s, t)|r, s, t ∈ N, r, s, t > 0} : An ∞ of elements for n = 1, 2; for
n = 1, e.g. {3, 4, 7}, and, for n = 2, e.g. {3, 4, 5}; likely no elements for n ≥ 3.

Let D be {(x, y, z)|x, y, z ∈ R, x, y, z > 0} : An ∞ of elements for n > 0; for

n = 1, e.g. {6π, 8π, 14π}, for n = 2, e.g. {6π, 8π, 10π}, for n = 3, e.g. {2, 4, 264
1
3 }.

Let E be {(x, y, z)|x · y, z ∈ N : An ∞ of elements for n > 0; for n = 1, e.g.

{48, 14}; for n = 2, e.g. {48, 10}; for n = 3, e.g. {(32− 16
√

2)
1
3 · (32 + 16

√
2)

1
3 , 2}.

Let F be {(x, y, z)|x, y, z ∈ N, x, y, z > 0} : An ∞ of elements for n = 1, 2; for
n = 1, e.g. {6, 8, 14}, and, for n = 2, e.g. {6, 8, 10} ; likely no elements for n ≥ 3.

Let G be { r·st |(r, s, t) ∈ A} : An ∞ of elements for n > 0; for n = 1, for example

{(12π2)/7π}, and, for n = 2, for example {(12π2)/5π}, for n = 3, e.g. {(2 · 1)/9
1
3 }.

Let H be { r·st |(r, s, t) ∈ B} : An∞ of elements for n > 0; for n = 1, for example

{12/7}, and, for n = 2, e.g. {12/5}, for n = 3, e.g. {((4− 2
√

2)
1
3 · (4 + 2

√
2)

1
3 )/2}.

Let J be { r·st |(r, s, t) ∈ C} : An ∞ of elements for n = 1, 2; for n = 1, for
example {(3 · 4)/7}, and, for n = 2, e.g. {(3 · 4)/5} ; likely no elements for n ≥ 3.

Let K be {x·yz |(x, y, z) ∈ D} : An∞ of elements for n > 0; for n = 1, for example

{(48π2)/14π}, and, for n = 2, e.g. {(48π2)/10π}, for n = 3, e.g. {(4 · 2)/72
1
3 }.

Let L be {x·yz |(x, y, z) ∈ E} : An∞ of elements for n > 0; for n = 1, e.g. {48/14}
and, for n = 2, e.g. {48/10}, for n = 3, e.g. {((32− 16

√
2)

1
3 · (32 + 16

√
2)

1
3 )/2}.

Let M be {x·yz |(x, y, z) ∈ F} : An ∞ of elements for n = 1, 2; for n = 1, for
example {(6 · 8)/14} and, for n = 2, e.g {(6 · 8)/10} ; likely no elements for n ≥ 3.

2. Our Direct Proof Using Sets and Respective Subsets

Proposition 2.1. For any given n ∈ N, n > 0 : H = L, with H,L 6= ∅.

Proof. For any given n ∈ N, n > 0 : (4qn)
1
n (p−2qn)

1
n

(p+2qn)
1
n

∈ G, so, r·s
t ∈ G, and x·y

z ∈ K
are equally restricted, as follows : With any given q ∈ Q, q > 0, unrestricted
p ∈ R, p > 0 varies such that r·s

t ∈ G takes any given x·y
z ∈ K; also, rs/t < r,

xy/z < x. Clearly, K includes G. Thus, for any given n > 0 it is true that
{ r·st ∈ G} = {x·yz ∈ K}. Since we focus on x, y, z, r, s, t ∈ N : Let z, t ∈ N, which
exist for each n > 0, implying { r·st ∈ H ⊂ G} = {x·yz ∈ L ⊂ K} with H,L 6= ∅. �

Proposition 2.2. Existing x, y, z ∈ F are rational multiples of existing r, s, t ∈ C.

Proof. For any given n ∈ Z, n > 0 : Define constant α·α
α with α ∈ Q, α > 0.

Equation r·s
t ∈ H = x·y

z ∈ L yields r·α·s·α
((r·α)n+(s·α)n)

1
n
∈ H = x·y

(xn+yn)
1
n
∈ L for which

{r · α · s · α| r·st ∈ H} = {x · y|x·yz ∈ L}; {t · α|
r·s
t ∈ H} = {z|x·yz ∈ L}.

Hence, {s · α| r·st ∈ H} = {y|x·yz ∈ L}, and {r · α| r·st ∈ H} = {x|x·yz ∈ L}.
So, {r ·α, s ·α| r·st ∈ J ⊂ H} = {x, y‖x·yz ∈M ⊂ L} with J,M 6= ∅ or J,M = ∅.
Consequently, {(r · α, s · α, t · α|r, s, t ∈ C} = {(x, y, z ∈ F} : The Fermat triple

(x, y, z) ∈ F is a rational multiple of (r, s, t) ∈ C with F,C 6= ∅, or F,C = ∅. �
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Thus, for n ∈ N, n > 0 we prove Props. 2.1- 2.2 with p ∈ R, and q ∈ Q.

3. Results and Conclusion

With (4qn)
1
n , (p− 2qn)

1
n , (p+ 2qn)

1
n ∈ Q, or r, s, t ∈ Q, respectively, of Sect. 1 :

Term (4qn)
1
n ∈ Q reduces to 2

2
n q ∈ Q. So, such 2

2
n q ∈ Q and r ∈ Q are identical.

Thus, for n ∈ N, n > 2 : There are no values, with q ∈ Q, for 2
2
n q ∈ Q.

Hence, for n ∈ N, n > 2 : There are no values, with q ∈ Q, for 2
2
n q ∈ N ⊂ Q.

For n ∈ N, n > 2, the fact that such r ∈ N is impossible shows that C = ∅.
[For n ∈ N, n > 2, the fact that such r ∈ N is impossible shows also that

{r · α|r, s, t ∈ A} 6= x|x, y, z ∈ D} : Term x can be integral, e.g., 23 + 33 = (35)
1
3 .

However, we show {r · α|r, s, t ∈ C} = {x|x, y, z ∈ F} to be true, in Sect 2, above.]

Per our proof of proposition 2.2, above, it is true that C =⇒ F .
Consequently, F = ∅. In other words, for n ∈ N, n > 2, the following is true :
Equation xn + yn = zn does not hold for (x, y, z) with x, y, z ∈ N, x, y, z > 0.

QED.


