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Abstract. We generalize two sangaku problems involving an arbelos proposed by
Izumiya and Naitō, and show the existence of six non-Archimedean congruent circles.

1. Introduction

In this article we generalize two sangaku problems involving an arbelos proposed
by Izumiya (泉屋徳太郎静政) and Naitō (内藤豊次郎). Let α, β and γ be the three
semicircles with diameters AO, BO and AB, respectively for a point O on the segment
AB constructed on the same side of AB. The area surrounded by the three semicircles
is called arbelos (see Figure 1). The radical axis of α and β is called the axis. Let a
and b be the radii of α and β, respectively, and let δα (resp. δβ) be the incircle of the
curvilinear triangle made by α (resp. β), γ and the axis. The two circles δα and δβ have
common radius rA = ab/(a+ b) and are called the twin circles of Archimedes.
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Figure 1.

Izumiya’s problems appeared in a sangaku in Saitama hung in 1866, which is as follows
[6] (see Figure 2).

Problem 1. If α and β are congruent and the tangent of α from B meets γ in a point C,
show that the inradius of the curvilinear triangle formed by α, γ and the perpendicular
from C to AB equals a/9.
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Naitō’s problem appeared in a sangaku in Fukushima hung in 1983 (the sangaku seems
to be made in modern day times), which is as follows [3] (see Figure 3).

Problem 2. If α and β are congruent, show that the radius of the circle touching the
remaining external common tangent of α and δα and the arc of γ cut by the tangent at
the midpoint equals a/9.

2. Generalization

We now consider the case in which the semicircles α and β are not always congruent.
We use the next proposition (see Figure 4).
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Figure 4.

Proposition 2.1. For a point P on the segment AB, let h be the perpendicular to AB
at P . If δ1 is the circle touching h at P from the side opposite to B and the tangent of β
from A and δ2 is the circle touching α externally γ internally and h from the same side
as δ1, then δ1 and δ2 are congruent.

Proof. The radius of δ2 is proportional to the distance between its center and the radical
axis of α and γ [1, p. 108], while δ2 coincides with β if P = B. Also the radius of δ1 is
proportional to the distance between its center and the point A, and δ1 coincides with β
if P = B. □



THE ARBELOS IN WASAN GEOMETRY, PROBLEMS OF IZUMIYA AND NAITŌ 3
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Figure 5.

Theorem 2.2. Let C be the point of intersection of γ and the tangent of α from B and
let D be the foot of perpendicular from C to AB. The incircle of the curvilinear triangle
made by α, γ and CD is denoted by ε1. Let u be the remaining external common tangent
of α and δα. The circle touching u and the arc of γ cut by u at the midpoint is denoted
by ε2. The incircle of the curvilinear triangle made by γ, δβ and the axis is denoted by
ε3. The circle touching the tangent of β from A and CD at D from the side opposite
to B is denoted by ε4. The smallest circle passing through the point of intersection of β
and BC and touching the axis is denoted by ε5. The smallest circle passing through the
point of intersection of BC and u and touching the line CD is denoted by ε6. Then the
following statements hold.
(i) The six circles ε1, ε2, · · · , ε6 are congruent and have common radius

a2b

(a+ 2b)2
.

(ii) The circle ε1 touches the line t, and the circle ε2 touches γ at C.

Proof. We assume that ri is the radius of εi, d = a+2b, E is the point of intersection of
BC and β, F is the foot of perpendicular from E to the axis, G is the point of tangency
of α and BC, H is the center of α, and BC meets the axis and u in points J and K,
respectively (see Figure 6).

Since the three segments CA, GH and EO are parallel and H is the midpoint of AO,
G is the midpoint of CE. While the line BC is the internal common tangent of α and
δα [2, p. 212]. Therefore G is also the midpoint of JK. Hence |EJ | = |CK|, i.e., the
circles ε5 and ε6 are congruent. Since the triangles BGH, BEO and OFE are similar,
a/d = |OE|/(2b) = |EF |/|OE|. Therefore |OE| = 2ab/d and |EF | = 2a2b/d2. Hence

r5 = a2b/d2 = r6, and |OF | = 4ab
√
(a+ b)b/d2 from the right triangle OFE.

The last equation implies |EF | = a|OF |/(2
√

(a+ b)b). Let x = |BD|. Then |CD| =
ax/(2

√
(a+ b)b) from the similar triangles OFE and BDC. Therefore we have x(2(a+

b)−x) = |CD|2 = a2x2/(4(a+b)b). Solving the equation for x, we get x = 8b(a+b)2/d2.
Therefore |AD| = 2(a+b)−x = 2a2(a+b)/d2. Therefore r4 = b|AD|/|AB| = a2b/d2 = r1
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by Proposition 2.1. Meanwhile ε3 and the incircle of the curvilinear triangle made by α,
γ and t have radius a2b/d2 [5, Theorem 9]. Therefore the last circle coincides with ε1,
i.e., ε1 touches t. While we have also shown that ε1 and ε2 are congruent in [4]. This
proves (i) and the first half part of (ii).

Let ζ be the circle with center C passing through G. We invert the figure in ζ. Then
the circles α and δα are orthogonal to ζ, i.e, they are fixed by the inversion. The line
u, which intersects ζ, is inverted to a circle intersecting ζ touching α and δα passing
through C. Therefore γ is the inverse of u. This implies that the points of intersection of
γ and u lie on ζ. Hence C is the midpoint of the arc of γ cut by u. Therefore ε2 touches
γ at C. This proves the second half part of (ii). □
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Figure 6.

Circles of radius rA are called Archimedean circles [2]. Therefore we now have six
non-Archimedean congruent circles ε1, ε2, · · · , ε6. Exchanging the roles of α and β, we
get another six non-Archimedean congruent circles of radius ab2/(2a + b)2, which are
denoted in Figure 5.

3. The circle associated with a point on γ

For a circle δ touching α externally and γ internally, if P is the point of intersection
of γ and the internal common tangent of δ and α closer to B, we say that δ is associated
with P . As mentioned in the proof of Theorem 2.2, the circle δα is associated with the
point B (see Figure 6). We can also consider that the point circle A is associated with the
point A itself, because the perpendicular to AB at A can be considered as the internal
common tangent of the point circle A and α. Let I be the point of intersection of γ and
the axis. The next theorem gives the circle associated with the point I.

Theorem 3.1. The internal common tangent of α and ε1 passes through I.

Proof. Let ρ be the circle with center I passing through O. We invert the figure in ρ (see
Figure 7). Then α and β are fixed. While t, which intersects ρ, is inverted into the circle
with center I touching α and β intersecting ρ. Therefore γ is the inverse of t. Hence the
figure consisting of α, γ and t is fixed by the inversion. This implies that ε1 is also fixed.
Since α and ε1 are orthogonal to ρ, their point of tangency lies on ρ, and their common
internal tangent passes through I. □
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γ

OB A

α

β

ε1

I

t

ρ

Figure 7.

The proof also shows that the points of intersection of γ and t lies on ρ. Therefore I
is the midpoint of the arc of γ cut by t.
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