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ABSTRACT

Understanding the “acceleration” of modern Hubble redshift measurements begins with Schrödinger.
In 1939 he proved that all quantum wave functions coevolve with the curved spacetime of a closed
Friedmann universe. While both photon wavelengths and atomic radii are proportional to the Fried-
mann radius, the wavelengths of photons that an atom emits are proportional to the square of the
radius. This larger shift in atomic emissions changes the current paradigm that redshift implies ex-
pansion. Instead, redshift implies the contraction of a closed Friedmann universe. Hubble redshifts
are observed only when old blueshifted photons are compared to current atomic emissions that have
blueshifted even more. This theoretical prediction is confirmed by modern Hubble redshift measure-
ments. The Pantheon redshift data set of 1048 supernovas was analyzed assuming that atoms change
like Schrödinger predicted. The Hubble constant and deceleration parameter are the only variables.
The fit, Ho = −72.03 ± 0.25 kms−1Mpc−1 and 1/2 < qo < 0.501, has a standard deviation 0.1516
compared to the average data error 0.1418. No modifications to general relativity or to Friedmann’s
1922 solution are necessary to explain accelerating Hubble redshifts. A nearly flat Friedmann universe
accelerating in collapse is enough.
Keywords: cosmology: accelerating hubble redshift — cosmology: dark energy — cosmology: col-

lapsing Friedmann universe —

1. INTRODUCTION

The traditional assumption that Hubble redshifts re-
sult from photon wavelengths increasing with the radius
of an expanding universe fails to explain modern redshift
observations. This failure came from not realizing that
atoms change in the same way that photons do when the
curvature of the universe changes.

Modified redshift equations which include the atomic
changes discovered by Schrödinger (1939) are derived
from the original Friedmann solution. These equations
are used to find the best match between Hubble redshift
observations and the geometry of a closed Friedmann uni-
verse.

These calculations which include atomic as well as pho-
ton changes are confirmed by modern Hubble redshift
observations.

2. FRIEDMANN SOLUTION

Friedmann (1922) published a closed universe solution
to Einstein’s theory of general relativity without a cos-
mological constant. The Friedmann solution rapidly ex-
pands from a singularity, slowing until it reaches a max-
imum size before accelerating back to a singularity.

Friedmann assumed the metric,

ds2 = c2dt2 −a2(t)

[
dr2

(1 − r2)
+ r2

(
dθ2 + sin2θ dφ2

)]
,

(1)
and homogeneous, incoherent matter, conserved in
amount and exerting negligible pressure. His solution
is the cycloid shown in Figure 1.

a =
α

2
(1 − cosψ), c t =

α

2
(ψ − sinψ), (2)
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Figure 1. Friedmann’s solution for a closed universe with α = 1
in equations ( 2).

where α is a constant and 0 ≤ ψ ≤ 2π (Tolman 1934).

3. ATOMS CHANGE WITH FRIEDMANN GEOMETRY

Schrödinger (1939) proved that every quantum wave-
length expands in proportion to the Friedmann radius
a(t). Schrödinger argued that if spacetime is curved as
general relativity requires, then its effects on quantum
processes must not be dismissed without careful investi-
gation. Using the equations of relativistic quantum me-
chanics, Schrödinger found that the plane-wave eigen-
functions characteristic of flat spacetimes are replaced in
the curved spacetime of the closed Friedmann universe
by wave functions with wavelengths that are proportional
to the Friedmann radius. Every eigenfunction changes
wavelength as the radius of the universe changes.
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The quantum systems they describe change as well. In
an expanding universe, quantum systems expand. In a
contracting universe, they contract. The assumption is
often made that small quantum systems are isolated and
that their properties remain constant as the Friedmann
universe evolves. Schrödinger concluded this assumption
is incompatible with relativistic quantum mechanics and
with the curved spacetime of general relativity (Sumner
& Sumner 2000).

These changes in quantum systems may equivalently
be viewed as a logical consequence of the fact that the
energy and momentum of “isolated systems” are not con-
served. Energy and momentum change when the space-
time curvature of the universe changes. There are no
“isolated systems”. While photon energies are propor-
tional to their momentum, electron energies are propor-
tional to the square of their momentum. Schrödinger
(1956, p 58) wrote:

In an expanding space all momenta decrease
. . . for bodies acted on by no other forces than
gravitation . . . This simple law has an even
simpler interpretation in wave mechanics: all
wavelengths, being inversely proportional to
the momenta, simply expand with space.1

In a contracting space, the opposite is true. All mo-
menta increase and all wavelengths, being inversely pro-
portional to the momenta, simply contract with space.

Schrödinger had a deep understanding of both wave
mechanics and general relativity. Like most physicists,
Schrödinger assumed that Hubble redshift meant that
the universe is expanding. This was a hangover from
the pre-relativistic interpretations of redshifts originally
made by Slipher (1917) and Hubble (1929) who ten-
tatively assumed that all galactic redshifts are solely
Doppler effects. It is interesting to speculate how long it
would have taken Schrödinger to correctly interpret Hub-
ble redshift if he had asked himself the question: “Would
the changes in atoms and photons that I found change
my interpretation of Hubble redshift?”

4. HUBBLE REDSHIFT

In the following equations t is the mathematical time
coordinate in Friedmann geometry. The wavelength of a
photon λ emitted at t1 and observed at t1 will be written
λ(t1, t1). The wavelength of a photon λ emitted at t1 and
observed at t2 will be written λ(t1, t2).

The traditional formula for redshift z assumes that
atomic emissions do not evolve, λ(t2, t2) = λ(t1, t1),
but assumes that photons do evolve, λ(t1, t2) =
[a(t2)/a(t1)]λ(t1, t1),

z =
λ(t1, t2) − λ(t1, t1)

λ(t1, t1)
=

a(t2)

a(t1)
− 1. (3)

t2 is the time of observation and t1 is the time of emission.
But atomic emissions do evolve with spacetime geom-

etry, λ(t2, t2) = [a2(t2)/a2(t1)]λ(t1, t1) (Sumner 1994).
A new redshift variable ζ (the Greek letter zeta) is de-
fined to match what is done experimentally,

ζ =
λ(t1, t2) − λ(t2, t2)

λ(t2, t2)
, (4)

1 Pauli (1958, p 220) made the same observation.

ζ =
a(t1)

a(t2)
− 1. (5)

t2 is the time of observation and t1 is the time of emission.
Hubble redshift (ζ > 0) implies a(t1) > a(t2). The

universe was larger in the past, a(t1), than it is now,
a(t2). This puts us somewhere on the collapsing half
of the curve in Figure 1. The logic is simple. Since
Hubble shifts are red (ζ > 0), the Friedmann universe
is collapsing. If Hubble shifts were blue (ζ < 0), the
Friedmann universe would be expanding.

5. ANALYZING HUBBLE REDSHIFTS

The following mathematical analysis of redshift obser-
vations includes the change in atomic emissions in addi-
tion to the change in photons (Sumner & Vityaev 2000).
Astronomers measure the redshift defined by ζ, equation
(5). The following derivation is similar to one made when
atomic evolution is ignored and the universe is assumed
to be expanding. It is modified because ζ not z describes
the observed redshift and some choices in signs are made
differently because the universe is contracting.

The mathematical coordinate distance r to a source
can be shown to be a function of the observed redshift
ζ of the source and the deceleration parameter qo in the
following way.

Setting ds = 0 in the Friedmann metric, equation (1),
gives

c dt =
−a(t) dr

(1 − r2)
1/2

. (6)

The source is located at the spatial coordinates
(r1, 0, 0) with emission at time t1 and the observer is at
(0, 0, 0) with reception at time t2. Integrating equation
(6) gives

c

∫ t2

t1

dt

a(t)
=

∫ r1

0

dr

(1 − r2)
1/2

= sin−1 r1. (7)

Substituting a(t) and dt calculated from equations (2),
gives

r1 = sin(ψ2 − ψ1). (8)

The Hubble constant H and the deceleration parame-
ter q are defined

H(t) =
ȧ(t)

a(t)
,

ä(t)

a(t)
= −q(t)H2(t). (9)

Dots indicate time derivatives. H is negative and q
is greater than 1/2 for a closed, collapsing universe.
Present day values are denoted by Ho and qo.

Solving for ψ2 and ψ1 in terms of ζ and qo and substi-
tuting into equation (8) gives

r1 =
(2qo − 1)

1/2

qo

[
ζ − (1 + ζ)(1 − qo)

qo

]
+

(1 − qo)

qo

{
1 −

[
ζ − (1 + ζ)(1 − qo)

qo

]2}1/2

.

(10)

The luminosity distance DL to the source is (Weinberg
1972, p 441)

DL = r1 a(t2) (1 + ζ), (11)
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where a(t2) is (Narlikar 1983, p 114)

a(t2) =
−c
Ho

1

(2qo − 1)1/2
. (12)

Substituting equations (10) and (12) into (11) gives

DL =
−c
Ho

(1 + ζ)

qo

{[
ζ − (1 + ζ)(1 − qo)

qo

]
+

(1 − qo)

(2qo − 1)1/2

(
1 −

[
ζ − (1 + ζ)(1 − qo)

qo

]2)1/2}
.

(13)

The relationship between distance modulus (the dif-
ference between the apparent magnitude m and absolute
magnitude M of a celestial object) and luminosity dis-
tance, DL, is (Narlikar 1983, p 292)

m−M = 5 log10

(
DL

10 parsecs

)
. (14)

The Hubble constant Ho (negative for the contract-
ing half of the curve) and the deceleration parameter qo
(which must be > 1/2) characterizing a closed Fried-
mann universe are varied to find a best least-squared fits
to Hubble redshift observations of ζ and m−M .

6. SUPERNOVAE REDSHIFTS

The Pantheon redshift data set of 1048 super-
novas (Scolnic 2018) was fit using equations (13) and
(14). The fit for Ho = −72.03 ± 0.25 kms−1Mpc−1 and
1/2 < qo < 0.501 is shown in Figure 2. The average data
error is 0.1418. For these fit parameters the standard
deviation is 0.1516.
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Figure 2. The solid line is the fit to the Pantheon redshift data
with the parameters Ho = −72.03±0.25 kms−1Mpc−1 and 1/2 <
qo < 0.501. The dotted straight line is included to visually clarify
the upward curve (or “acceleration”) of the data and fit. The
average data error is 0.1418. The standard deviation for this fit is
0.1516.

Since this Friedmann universe is closed, qo > 1/2. Ev-
ery search conducted found a lower standard deviation
when qo was closer to 1/2. No lower limit for δ = qo−1/2

was found. The upper limit 0.501 in 1/2 < qo < 0.501,
was chosen because there is little further change in the
quality of fit with smaller qo. Our universe is nearly flat.
This is illustrated in Figure 3.
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Figure 3. Standard deviation for fits at smaller values of δ =
qo − 1/2. The values of Ho on the top axis are the best fits for the
δ values on the bottom axis. No minimum for δ was found.

The absolute magnitude M = −19.308 was used. This
value was determined by varying M to find the best fit
to the Pantheon data. The points in Figure 4 illustrate
the fit sensitivity to M .
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Figure 4. The Absolute Magnitude M = −19.308 used in this
analysis gave the best fit to the Pantheon data.

7. CONCLUSIONS

Schrödinger proved that the wavelength of every quan-
tum wave function is proportional to the radius of a
closed Friedmann universe. In an expanding universe,
photon and atomic wavelengths expand. In a contracting
universe, they contract. The wavelengths of atomic emis-
sions shift more than atomic and photon wavelengths do.
This reverses the interpretation of Hubble redshift. In-
stead of expansion, Hubble redshift implies the contrac-
tion of a closed Friedmann universe. Traditional analy-
ses do not match modern Hubble redshift measurements
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because these crucial changes in atomic emissions were
not recognized. When the atomic emission changes are
included, theory matches accelerating Hubble redshifts
observations. Our universe is collapsing and nearly flat.
No modifications to general relativity or to Friedmann’s
1922 closed solution are necessary. The Pantheon data
set provides compelling experimental confirmation of old
physics and old physicists.
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The Python program curve fit from scipy.optimize was
used with equations (13) and (14) to analyze the Pan-
theon data (Scolnic 2018).

Data: https://dx.doi.org/10.17909/T95Q4X
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