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Abstract

We demonstrate the existence of a broad class of real numbers which are not ele-
ments of any number field: those in the neighborhood of infinity. After considering the
reals and the affinely extended reals, we prove that numbers in the neighborhood of
infinity are ordinary real numbers. We show that real numbers in the neighborhood of
infinity obey the Archimedes property of real numbers. As an application in complex
analysis, we show that the Riemann zeta function has infinitely many non-trivial zeros
off the critical line.

§1 Introduction

It is the popular theme in modern mathematics to define R by an algebraic
approach but here we will define R by a geometric approach based on the
Euclid magnitude [1]. In Euclid’s approach, a real number is the length of a
line segment. Presently and following Euclid, we will not define R through its
algebraic operations as in the axioms of a complete ordered field. Motivating
the current approach, Pugh writes the following in Reference [2].

“The current teaching trend treats the real number system R
as a given—it is defined axiomatically. Ten or so of its properties
are listed, called axioms of a complete ordered field, and the game
becomes: deduce its other properties from the axioms. This is some-
thing of a fraud, considering that the entire structure of analysis is
built on the real number system. For what if a system satisfying the
axioms failed to exist? Then one would be studying the empty set!”

Although the Euclid magnitude was the definition of R throughout most of
the past two millennia, modern mathematicians have chosen to adopt, for the
time being at least, the currently trendy field axioms. Through such axioms,
it is claimed that R is such that the set

R = {R,+,×} ,

satisfies all of the field axioms. Here we will define R as a cut in the real
number line (a line with the label “real number line” attached), and R will
be such that R does not universally satisfy the field axioms. Nothing is lost
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in the present definition, however, because there shall exist R0 ⊂ R such that
the set

R′ = {R0,+,×} ,

does satisfy all of the field axioms. Indeed, R′ shall be exactly identical to
what is usually called the real number field. By taking the more general
approach through a geometric definition of R, we do not lose any of the power
of the field axioms because R contains a subset R0 (called real numbers in
the neighborhood of the origin) which do 100% of the work done by the real
number field when it is defined as in R. Nothing at all is lost in this geometric
definition of R but, as we will show, very much is gained when we define R
geometrically as opposed to through its algebraic operations + and ×. That
which is gained shall be called real numbers in the neighborhood of infinity:
R \R0. As we will show, the field axioms preclude the existence of numbers in
the neighborhood of infinity but the existence of these numbers is very much
implied by the historical a-real-number-is-a-cut-in-an-infinite-line approach to
R. As Pugh states in the above excerpt from Reference [2], our only burden
is to show that there does exist a non-empty set which satisfies the definition.
Since our definition is vastly simpler than the ordered field definition, this
task is accomplished easily. The main hurdle will be to show that numbers in
the neighborhood of infinity satisfy the Archimedes property of real numbers
which we will concede as an axiomatic requirement for any valid definition of
R.

In the next section of this paper, we will give the geometric definition of
x ∈ R as a cut in a number line. In the third section, we will discuss the
affinely extended real number line which is the real line together with its end-
points at infinity. This is the so-called two point compactification of R. In
the fourth section, we give an axiomatic definition for infinity and we never
require at any point that ∞ ∈ R. Infinity is not a real number! After de-
veloping infinity, we define real numbers in the neighborhood of infinity. We
give their properties and show that such numbers, as presently defined, do not
satisfy the axioms of a complete ordered field. It is precisely this property
which makes the geometric definition of R better than the algebraic definition;
the geometric definition contains all the numbers admitted by the algebraic
definition—numbers in the neighborhood of the origin—but also admits an-
other class of numbers in the neighborhood of infinity whose properties are
exciting, interesting, and non-trivial. In the sixth section, we examine the
axiomatized arithmetic operations bestowed upon numbers in the neighbor-
hood of infinity throughout the previous sections. In the seventh section, we
make a direct extension from R to C. In the final section, we will discuss the
Archimedes property of real numbers and show that the Riemann ζ function
has infinitely many non-trivial zeros off the critical line. All of these zeros are
in the neighborhood of infinity.
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§2 Real Numbers

Definition 2.1 The real numbers are defined in interval notation as

R ≡ (−∞,∞) ,

where the interval (−∞,∞) is an infinite line.

Definition 2.2 A cut in a line x ∈ R separates one line into two pieces as

R \ x = (−∞, x) ∪ (x,∞) .

Definition 2.3 A real number x ∈ R is a cut in the real number line.

Remark 2.4 A number is a cut in a line. A line is defined a priori. All
lines can be cut so all lines are number lines. A given line is the real line by
definition. A real number separates the real number line into a set of “larger”
real numbers and a set of “smaller” real numbers.

Definition 2.5 Call real numbers in the neighborhood of the origin x ∈ R0.
Define them such that

R0 ≡ {x | (∃n ∈ N)[−n < x < n]} .

Here we define R0 as the set of all x such that there exists an n ∈ N allowing
us to write −n < x < n.

Definition 2.6 Call real numbers in the neighborhood of infinity x ∈ R∞.
Define them as all real numbers except for real numbers in the neighborhood
of the origin:

R∞ ≡ R \ R0 .

Remark 2.7 The main result of this paper demonstrates that R∞ is not the
empty set.

Definition 2.8 For x ∈ R, we have the property

lim
x→0±

1

x
= diverges , and lim

n→∞

n∑
k=1

k = diverges .
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§3 Affinely Extended Real Numbers

Definition 3.1 Define two affinely extended real numbers ±∞ such that for
x ∈ R

lim
x→0±

1

x
= ±∞ , and lim

n→∞

n∑
k=1

k =∞ .

Definition 3.2 The set of all affinely extended real numbers is

R ≡ R ∪ {±∞} .

Definition 3.3 The affinely extended real numbers are defined in interval
notation as

R ≡ [−∞,∞] .

Definition 3.4 An affinely extended real number x ∈ R is ±∞ or it is a cut
in the affinely extended real number line.

Definition 3.5 In R, ±∞ are such that the limit of any monotonic sequence
of real numbers which diverges in R is equal to ∞ or −∞.

Theorem 3.6 If x ∈ R and x 6= ±∞, then x ∈ R.

Proof. Proof follows from Definition 3.2. l

Axiom 3.7 Infinity is such that

∞−∞ = undefined , and
∞
∞

= undefined .

Axiom 3.8 Infinity does not have the distributive property of multiplication.

§4 Infinity Hat

Definition 4.1 Additive absorption is a property of∞ such that non-zero R0

numbers are additive identities of ±∞. The additive absorptive property is

±∞+ x = x±∞ = ±∞ , for x ∈ R0 \ 0 .

Remark 4.2 The arithmetic operations we will assign to real numbers in the
neighborhood of infinity will require the removal of the zero additive identity
from infinity.
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Definition 4.3 Let the symbol ∞̂ be called “infinity hat” and endow it with
every property of∞ except additive absorption. ±∞̂ are explicitly two differ-
ent infinities such that

−
(
±∞̂

)
= ∓∞̂ .

Axiom 4.4 Infinity and infinity hat both describe the same affinely extended
real number, i.e.: ||∞̂|| =∞.

Remark 4.5 Although the operations of ∞̂ differ from those of ∞, we say
they are the same number because the present treatment identifies unique
numbers with unique points along the extended real number line. The opera-
tions do not contribute to or appear in the definition of the number.

Definition 4.6 If an expression using ∞̂ causes a contradiction via additive
non-absorptivity, then the hat must be removed to alleviate the contradiction.
This property requiring removal of the hat in certain instances is called the
non-contradiction property of ∞̂.

Axiom 4.7 The hat which differentiates infinity hat ∞̂ from canonical infinity
∞ is inserted and removed by choice except in the case where it invokes a
contradiction and must be removed by definition.

Example 4.8 An example of a statement in which the hat does not invoke a
contradiction and may be left in place is

x = ∞̂ − b .

Example 4.9 An example of a statement in which the hat invokes a contra-
diction and may not be left in place is given by two sequences

xn =
n∑
k=1

k , and yn = c0 +
n∑
k=1

k ,

where c0 is some non-zero real number. Since ∞ and ∞̂ are the same number
(Axiom 4.4), we can use Definition 3.1 to write

lim
n→∞

xn =∞ = ∞̂ , and lim
n→∞

yn =∞ = ∞̂ .

We may also write, however,

lim
n→∞

yn = lim
n→∞

c0 + lim
n→∞

xn = c0 + ∞̂ .

This delivers an equality
∞̂ = c0 + ∞̂ ,
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which contradicts the additive non-absorption of ∞̂. At this point, we must
obey the non-contradiction property of ∞̂ (Definition 4.6) by removing the
hat. Then

∞ = c0 +∞ ,

demonstrates the usual additive absorptive property of infinity and there is no
contradiction.

Axiom 4.10 ∞̂ is such that for any non-zero b ∈ R0

±∞̂+ b = b± ∞̂
±∞̂ − b = −b± ∞̂

±∞̂+
(
− b
)

= ±∞̂ − b
±∞̂+ b = ±∞̂ −

(
− b
)

−
(
± ∞̂

)
= ∓∞̂

±∞̂ · b = b · ±∞̂ =

{
±∞̂ if b > 0

∓∞̂ if b < 0

±∞̂
b

=

{
±∞̂ if b > 0

∓∞̂ if b < 0

b

± ∞̂
= 0 .

Axiom 4.11 ∞̂ is such that

±∞̂+ 0 = 0± ∞̂ = ±∞̂ − 0 = undefined

±∞̂ · 0 = 0 · ±∞̂ = undefined

±∞̂
0

= undefined

0

± ∞̂
= 0 .

Remark 4.12 We will revisit the lack of zero as an additive identity element
for ∞̂ in Example 5.12. We will show that it is required to remove the zero ad-
ditive identity from infinity if we want to add the freedom to add and subtract
real numbers in the neighborhood of infinity.

Remark 4.13 When the ∞ symbol appears as ∞̂, we consider the hat to be
an instruction to delay the additive absorption of ∞ indefinitely or until such
a delay causes a contradiction. The instruction to “delay additive absorption”
should be understood to mean that additive absorption is not a property of ∞̂
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but that the additive absorptive property can be implemented trivially after
an ad hoc decision to remove the hat by choice, or after its removal is required
by the non-contradiction property.

Infinity without the hat is afforded with some freedom to do the algebraic
operations of its expressions in different orders, and there is no requirement
in mathematics that every expression must be simplified as much as possible.
Since there is no a priori requirement for us to immediately execute the ad-
ditive absorptive operation in all cases, we add absolutely nothing to infinity
with the hat. Rather, the hat is simply a superior alternative to a declaration,
“Remember not to simplify this expression via the additive absorptive opera-
tion which does not necessarily have to be completed immediately.” Instead,
we will put the hat there as a reminder not to do that operation while the hat
is in place.

We have not added anything to infinity with the hat; the hat is merely
an instruction about how to use the algebraic freedom which already exists
in the order of operations. While we have not added anything to infinity, we
have added something to mathematics. Peeking ahead to Axiom 5.10, an ideal
example of that which is gained through the hat is(

∞̂ − b
)
−
(
∞̂ − a

)
= a− b .

After delaying the absorptive operation on the left, there is no infinity remain-
ing on the right into which we might absorb. Such statements are not possible

without the axioms of R̂ (given in the following section.)

§5 Real Numbers in the Neighborhood of Infinity

Definition 5.1 The set of large real numbers in the neighborhood of infinity
is

R̂ ≡
{
±
(
∞̂ − b

)
| b ∈ R0, b > 0

}
.

Remark 5.2 We call R̂ large numbers in the neighborhood of infinity to dis-
tinguish them from all numbers in the neighborhood of infinity: R∞ ≡ R \R0.

As we show in Reference [3], it is not the case that R∞\ R̂ ≡ ∅.

Axiom 5.3 The ordering of R̂ numbers is

±
(
∞̂ − b

)
= ±

(
∞̂ − a

)
⇐⇒ a = b(

∞̂ − b
)
>
(
∞̂ − a

)
⇐⇒ a > b

−
(
∞̂ − b

)
> −

(
∞̂ − a

)
⇐⇒ a < b(

∞̂ − b
)
> −

(
∞̂ − a

)
∀ b, a ∈ R0(

∞̂ − b
)
> x ∀ b, x ∈ R0
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−
(
∞̂ − b

)
< x ∀ b, x ∈ R0(

∞̂ − b
)
<∞ ∀ b ∈ R0

−
(
∞̂ − b

)
> −∞ ∀ b ∈ R0 .

Theorem 5.4 R̂ is a subset of R.

Proof. Definition 3.2 gives R ≡ [−∞,∞]. By Definition 3.4, an affinely ex-
tended real number x ∈ R is a cut in or endpoint of the affinely extended
real number line. Definition 2.2 requires that a cut separates one line into two
pieces. Observe that

R \ (∞̂ − b) ≡ [−∞, ∞̂ − b) ∪ (∞̂ − b,∞]

R \
(
− ∞̂+ b

)
≡ [−∞,−∞̂+ b) ∪ (−∞̂+ b,∞] .

All x ∈ R̂ conform to the definition of affinely extended real numbers so

R̂ ⊂ R. l

Main Theorem 5.5 R̂ is a subset of R.

Proof. If a number is an affinely extended real number x ∈ R and x 6= ±∞,
then, by Theorem 3.6, we have x ∈ R. Theorem 5.4 proves that

x ∈ R̂ =⇒ x ∈ R .

In the absence of additive absorption

±
(
∞̂ − b

)
6= ±∞̂ = ±∞ .

(Definition 5.1 requires b 6= 0.) This proves the theorem.

Alternatively, by the ordering of Axiom 5.3, we have

R \ (∞̂ − b) ≡ (−∞, ∞̂ − b) ∪ (∞̂ − b,∞) .

All numbers x ∈ R̂ satisfy the definition of x ∈ R through Definitions 2.2 and
2.3. This also proves the theorem. l

Theorem 5.6 R̂ is a subset of R∞.

Proof. We have shown in Main Theorem 5.5 that

R̂ ⊂ R ,
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so we will satisfy the definition of R∞ (Definition 2.6) if we show that

R̂ ∩ R0 ≡ ∅ .

Definition 2.5 requires that elements of R0 satisfy

−n < x < n ,

For proof by contradiction, assume ±
(
∞̂ − b

)
∈ R0. This requires

−n < ±
(
∞̂ − b

)
< n .

Since b ∈ R0, we know it has an additive inverse. Add or subtract b to obtain

−n+ b < ∞̂ < n+ b , and − n− b < −∞̂ < n− b .

We obtain a contradiction as ∞̂ cannot be less than the sum of two R0 numbers
and −∞̂ cannot be greater than the difference of two R0 numbers. All R̂
numbers satisfy the definition of R∞ (Definition 2.6.) l

Remark 5.7 The remainder of this section defines and makes remarks on the
arithmetic operations for R̂ numbers, and we will also treat these operations

in the following section. The purpose in defining operations for R̂ is to supple-
ment the canonical operations for R0 and ∞ ∼ ∞̂. (The canonical operations
of R0 are those given when R′ = {R0,+,×} satisfies the field axioms.) Every

R̂ number can be decomposed and its pieces manipulated separately but the

main purpose in defining special operations for R̂ is to define new operations
for expressions which are undefined under the arithmetic operations of R0 and
∞̂ alone, or whose structure vanishes under additive absorption. Although it is
easy to obtain statements requiring us to remove the hat from ∞̂ through the
non-contradiction property, there is a very broad class of structures where the
hat does not imply any contradiction and this class of structures should
be studied.

Axiom 5.8 The arithmetic operations of R̂ numbers with R0 numbers are

−
(
∞̂ − b

)
= −∞̂+ b

−
(
− ∞̂+ b

)
= ∞̂ − b

±
(
∞̂ − b

)
+ x = x±

(
∞̂ − b

)
=

{
±∞̂ ∓

(
b∓ x

)
if b 6= x

±∞̂ if b = x

±
(
∞̂ − b

)
· x = x · ±

(
∞̂ − b

)
=

{
±
(
∞̂ − xb

)
if x 6= 0

undefined if x = 0
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±
(
∞̂ − b

)
x

=

±∞̂ ∓
b

x
if x 6= 0

undefined if x = 0

x

±
(
∞̂ − b

) = 0 .

Remark 5.9 Although the axiom of closure is not always explicitly included
in the axioms of a complete ordered field, it is usually taken for granted that
number fields are closed under their operations. However, by Axiom 5.8

x > b =⇒
[(
∞̂ − b

)
+ x
]
6∈ R̂ .

Although we have not given the ordering for numbers of the form
(
∞̂+a

)
with

a > 0, it reasonably follows from Axiom 5.3 that such numbers are greater
than infinity. Therefore, with R as presently defined, the set R = {R,+,×}
is not a number field because it is not closed under its operations.

Axiom 5.10 The arithmetic operations of R̂ numbers with R̂ numbers are

±
(
∞̂ − b

)
±
(
∞̂ − a

)
= ±∞̂ ∓

(
a+ b)

±
(
∞̂ − b

)
∓
(
∞̂ − a

)
= ±

(
a− b

)
±
(
∞̂ − b

)(
∞̂ − a

)
= ±∞̂

±
(
∞̂ − b

)
∞̂ − a

= ±1 .

Remark 5.11 Axiom 5.10 states that(
∞̂ − b

)
−
(
∞̂ − a

)
= a− b .

Although this implies the existence of an additive inverse for every R̂ number,
it does not imply an additive inverse for ∞̂ because the case of a = b = 0 is

ruled out by the definition of R̂ (Definition 5.1.)

Example 5.12 Axiom 4.11 states that infinity does not have an additive iden-
tity element. We were not able to demonstrate this requirement in Section 4

because we needed first to define the axioms of R̂ which make it impossible for
∞ or ∞̂ to have zero as an additive identity element. (The additive identity
element of ±∞̂ is ±∞̂ though the multiplicative absorptive property and the
definition of multiplication that 2x = x+x.) This example gives an illustration
of the type of contradictions which are avoided by removing the zero additive
identity element of infinity. Consider the limit

lim
x→∞

(
x2 − x

)
=∞
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lim
x→∞

(
x2 − x

)
= lim

x→∞
x2 − lim

x→∞
x =∞−∞ .

This is a typical example used to demonstrate the lack of an additive inverse
for ∞. If infinity is bestowed with an additive inverse, then we obtain a
contradiction ∞ = 0. The expression ∞−∞, thus, is undefined. If we added
the hats to infinity then we could insert the additive identity on the right side
of ∞ =∞−∞ to write

∞̂ = ∞̂ − ∞̂
= ∞̂ − ∞̂+ 0

= ∞̂ − ∞̂+ 1− 1

=
(
∞̂ − 1

)
−
(
∞̂ − 1

)
= 0 .

We see that unhatted infinity likewise cannot have zero as an additive identity
because we could write

∞ =∞−∞
=∞−∞+

(
1− 1

)
= ∞̂ − ∞̂+ 1− 1

=
(
∞̂ − 1

)
−
(
∞̂ − 1

)
= 0 ,

where we have simply chosen in the second step not to do the additive absorp-
tive operation within the freedom afforded to the order of algebraic operations.
By allowing infinity to have zero as an additive identity element, we induce
the same contradiction which forbids an additive inverse for infinity.

Remark 5.13 The expressions∞ and ∞̂ are perfectly well defined but∞+0

and ∞̂ + 0 are examples of an undefined composition. Since ∞ is not an R̂
number, this property cannot create problems for the algebra of R̂ numbers.
Essentially, we have traded the zero additive identity element of infinity for

the freedom to add and subtract R̂ numbers.

Axiom 5.14 The additive operation is not associative for R̂ + R̂.

Example 5.15 The example demonstrates why R̂ + R̂ cannot have the asso-
ciative property. Through associativity we may easily derive a contradiction
from Axiom 5.10 which gives(

∞̂ − b
)

+
(
∞̂ − a

)
= ∞̂ −

(
b+ a

)
.

To obtain that contradiction, subtract an R̂ number from both sides as[(
∞̂ − b

)
+
(
∞̂ − a

)]
−
(
∞̂ − c

)
= ∞̂ −

(
b+ a

)
−
(
∞̂ − c

)
.
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Assuming the associative property of addition, we may arrange brackets to
write (

∞̂ − b
)

+
[(
∞̂ − a

)
−
(
∞̂ − c

)]
= ∞̂ −

(
b+ a

)
−
(
∞̂ − c

)
∞̂+

[
c−

(
b+ a

)]
= c−

(
b+ a

)
.

Subtracting the R0 part from both sides yields

∞̂ = 0 ,

which is not allowed. Since associativity is required among elements of a
number field, this example further demonstrates that the present definition of
R is not such that R = {R,+,×} satisfies the field axioms in all cases.

Theorem 5.16 It is possible to make cuts in the real line which are numbers
greater than any n ∈ N, i.e.: certain cuts in the real number line are real
numbers in the neighborhood of infinity.

Proof. Suppose there exists a line segment AB. Every line segment can be
bisected by a cut at its midpoint C. We say C is a midpoint of AB if and only
if

lenAC = lenCB , and lenAC + lenCB = lenAB .

Define a chart x on AB such that x ∈ [0, π/2]. Then define a conformal chart
x′ such that

x′ = tan(x) , and x′ ∈ [0,∞]

These bounds on the x′ chart are derived through Definition 3.1 as

lim
θ→π/2

tan(θ) = lim
θ→π/2

sin(θ)

cos(θ)
= lim

x→0
y→1

y

x
= lim

x→0

1

x
=∞ .

We know it is possible to bisect any line segment AB at a midpoint C. If we
add a chart to AB, it cannot affect this fundamental geometric property that
every line segment can be bisected. Adding a chart such that x′(B) =∞ does
not disrupt the fundamental geometric properties of line segment. To prove
the present theorem by contradiction, assume x′(C) is less than some n ∈ N
(where x′(C) refers to the value of x′ at the geometric midpoint of AB.) Then

lenAC < n , and lenCB < n ,

so it follows that
lenAC + lenCB < 2n .

Here we obtain a contradiction because, by the definition of a midpoint, we
have

lenAC + lenCB = lenAB =∞ , but ∞ 6< 2n .
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Therefore, when AB is charted in x′, the magnitude of the cut at the midpoint
C is greater than any natural number. Because len[0,∞] = len(0,∞), it follows
that we can make a cut in the positive branch of the real line at a magnitude
greater than any natural number. l

Remark 5.17 In Theorem 5.16, we have derived a requirement for two lengths
which are equal, less than infinity, and whose sum is equal to infinity. This
requirement is given a dedicated treatment in Reference [3].

Theorem 5.18 An R̂ number does not have a multiplicative inverse.

Proof. Axiom 5.10 gives
∞̂ − b
∞̂ − a

= 1 ,

which allows us to give a simple proof by contradiction. Assume that the
numerator has a multiplicative inverse eb. Multiplying both sides by eb gives

eb
(
∞̂ − b

)
∞̂ − a

= eb =⇒ eb =
1

∞̂ − a
.

By Axiom 5.8, the expression on the left identically zero. However, if eb = 0,

then by Axiom 5.8, the product eb
(
∞̂ − b

)
is undefined. Therefore, x ∈ R̂

cannot have a multiplicative inverse. l

Remark 5.19 In Example 6.4, we will discuss the notion that division cannot
be defined as multiplication by the inverse for numbers which do not have a
multiplicative inverse.

Remark 5.20 In Axiom 5.8, we have preserved the distributive property of
multiplication such that

0 ·
(
∞̂ − b

)
= undefined .

That distributive product necessarily depends on 0 · ∞̂ which is undefined
for a very good reason. However, we might revise Axiom 5.8 such that 0 is

a multiplicative inverse for all x ∈ R̂. If we did, there would still be some

unwanted issues because R̂ includes negative numbers and it is not possible to
give 0 a sign such that its product with a negative number is equal to positive

1. If x ∈ R̂ and 0 · x = 1, then we would expect that 0 ·
(
− x
)

= −1. In that
case, 0 is not the multiplicative inverse of −x.
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§6 Limits

Example 6.1 This example shows we cannot always substitute the limit def-
inition of infinity to directly compute all expressions involving ∞. If we use
Definition 3.1 to write

∞−∞ =

(
lim
x→0

1

x

)
−
(

lim
x→0

1

x

)
= lim

x→0

(
1

x
− 1

x

)
= lim

x→0
0 = 0 ,

then we contradict Axiom 3.7 which gives

∞−∞ = undefined .

A typical example showing why ∞−∞ must be undefined is the limit

l = lim
x→∞

(
3n− n) .

If we compute the limit of a difference, then

lim
x→∞

(
3x− x) = lim

x→∞
2x = 2∞ =∞ ,

but if we compute the difference of limits, which should be equal to the limit
of the difference, then we obtain

lim
x→∞

(
3x− x) = lim

x→∞
3x− lim

x→∞
x = 3∞−∞ =∞−∞ .

If we defined ∞−∞ = 0, then we would obtain a contradiction ∞ = 0 when
we set the limit of a difference equal to the difference of two limits. Similar
demonstrations show why ∞/∞ must be undefined. However, when we have
given in Axiom 5.10 a definition for the expression(

∞̂ − b
)
−
(
∞̂ − a

)
= a− b ,

we avoid all such possible contradictions. To derive a contradiction of the form
usually used to demonstrate the lack of additive and multiplicative inverse for
infinity, we would need to find some functions f(x) and g(x) such that

lim
x→∞

f(x) =∞− b , and lim
x→∞

g(x) =∞− a .

There are no such functions. Even if there were,∞ has the property of additive
absorption which would make a and b vanish. More importantly, even if we
wrote the limit as x approaches ∞̂, there are no such functions such that

lim
x→∞̂

f(x) = ∞̂ − b , and lim
x→∞̂

g(x) = ∞̂ − a .

Conjecture 6.2 Although we are not able to use the limit definition of infinity
to compute∞−∞ and∞/∞ due to the existence of unfixable contradictions,

no such contradictions exist for x ∈ R̂ because there are no limits such that
l ∈ R̂ and lim f(x) = l. Therefore, it is possible to use the limit definition of

infinity to compute the operations of R̂ numbers.
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Theorem 6.3 The quotient of a number x ∈ R0 divided by a number y ∈ R̂
is identically zero (Axiom 5.8.)

Proof. Let z be any non-zero real number such that

x

y
= z .

Since ||x|| < ||y|| (Axiom 5.3), we have ||z|| ≤ 1 which implies z ∈ R0. (Usually
this would imply ||z|| < 1 but presently we must account for the special case of

R̂/R̂ = ±1.) All R0 numbers have a multiplicative inverse. We find, therefore,
that

x

zy
= 1 ⇐⇒ x = zy .

The product zy is given by Axiom 5.8 as

zy = z · ±
(
∞̂ − b

)
= ±

(
∞̂ − zb

)
.

This delivers a contradiction because it requires that x = zy is a real num-
ber in the neighborhood of infinity while we have already defined it to be a
real number in the neighborhood of the origin. Therefore, the only possible
numerical value for x/y is 0.

Alternatively, the limit definition of infinity gives the same result. Observe
that for some n, b ∈ R0 we have

n

∞̂ − b
= lim

x→0

n
1
x
− b

= lim
x→0

nx

1− bx
= 0 . l

Example 6.4 This example treats the R̂/R̂ operation. In Axiom 5.8, we have
given

0 ·
(
∞̂ − b

)
= undefined .

This follows from
0 ·
(
∞̂ − b

)
= 0 · ∞̂ − 0 · b ,

with 0 · ∞̂ being undefined, as per usual. However, in Axiom 5.10 we have
given

∞̂ − b
∞̂ − a

= 1 ,

which can be written as

∞̂ − b
∞̂ − a

=
(
∞̂ − b

) 1

∞̂ − a
=
(
∞̂ − b

)
· 0 .
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Apparently, R̂/R̂ = ±1 contradicts the part of Axiom 5.8 which says such
expressions are undefined. For this, we need to give to special attention to the
÷ operator which is usually defined as multiplication by the inverse. Theorem

5.18 shows that x ∈ R̂ does not have a multiplicative inverse so

∞̂ − b
∞̂ − a

6=
(
∞̂ − b

)(
∞̂ − a

)−1
,

and we need a separate definition for the ÷ operation. In this case, we resort
to the limit

∞̂ − b
∞̂ − a

= lim
x→0

1
x
− b

1
x
− a

= lim
x→0

1− bx
1− ax

= 1 .

This is the result given in Axiom 5.10.

Example 6.5 This example treats the R̂× R̂ operation. If we axiomatize this
operation with limit definition of infinity the we obtain(

∞̂ − b
)(
∞̂ − a

)
= lim

x→0

(
1

x
− b
)(

1

x
− a
)

= lim
x→0

(
1

x2
− b+ a

x
+ ba

)
= lim

x→0

(
1− x

(
b+ a

)
+ x2ba

x2

)
= diverges

=∞ .

This is the value that appears in Axiom 5.10. If we gave any value other
than that supported by the limit definition of infinity, then that would be

contrived and arbitrary because we have used the limit definition for R̂÷ R̂ in
that same axiom. However, we could equally well choose some definition for

R̂×R̂ and then require for consistency that R̂/R̂ be computed in the same way.
Therefore, in this example we will demonstrate the invalidity of a few other

possible definitions for R̂× R̂ to support the limit as the correct computation
to determine the relevant quotient and product. Firstly, Axiom 3.8 states that
∞ does not have the distributive property of multiplication so ∞̂, likewise,

does not have this property. Therefore, we cannot compute R̂ × R̂ with the
FOIL method. If we could do that, then we would obtain (assuming ∞̂2 = ∞̂)(

∞̂ − b
)(
∞̂ − a

)
= ∞̂ − ∞̂ − ∞̂+ ba .

As written, this expression is undefined through ∞̂−∞̂. If we rearranged the
R0 term as

∞̂ − ∞̂ − ∞̂+ 2ba− ba =
(
∞̂ − ba

)
−
(
∞̂ − ba

)
−
(
∞̂ − ba

)
,
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then the non-associativity of addition in R̂ gives a contradiction[(
∞̂ − ba

)
−
(
∞̂ − ba

)]
−
(
∞̂ − ba

)
=
(
∞̂ − ba

)
−
[(
∞̂ − ba

)
+
(
∞̂ − ba

)]
0−

(
∞̂ − ba

)
=
(
∞̂ − ba

)
−
(
∞̂ − 2ba

)
−
(
∞̂ − ba

)
= ba .

The expression on the left is not equal to the expression on the right. Indeed,
if we subtract away the R0 part, then we obtain the familiar contradiction

−∞̂ = 0. As another non-limit for computing R̂× R̂, we should examine the
multiplicative absorptive property of ∞̂. Due to the lack of distributivity, it
is impossible get either of

(
∞̂ − b

)
or
(
∞̂ − a

)
on its own multiplied by ∞̂.

Therefore, the multiplicative absorptive property of ∞̂ is not relevant.

Remark 6.6 Consider R0 × R̂ as in

x
(
∞̂ − b

)
= ∞̂ − xb .

If x is a positive number, then, by Axiom 5.3, the magnitude of the product
decreases as the magnitude of x increases. Therefore, there is some radical

change in behavior as x increases from R0 to R̂ because the product R̂ × R̂
is greater than any x ∈ R̂. This exotic behavior is studied more closely in
Reference [3].

§7 Complex Numbers

Definition 7.1 The set of all complex numbers is

C ≡ {x+ iy | x, y ∈ R, i =
√
−1}

Definition 7.2 The set of all complex numbers in the neighborhood of the
origin is

C0 ≡ {x+ iy | x, y ∈ R0, i =
√
−1}

Axiom 7.3 As ∞ does not absorb −1 in 1D, in 2D (meaning in C) we have
the condition that infinity absorbs neither ±1 nor ±i.

Definition 7.4 The affinely extended complex plane is

C ≡ C ∪ {±∞} ∪ {±i∞} .

Remark 7.5 As the extended real line R has two distinct infinities, the ex-
tended complex plane C has four: {+∞,+i∞,−∞,−i∞}.
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Axiom 7.6 The multiplicative operations for ±∞̂ and ±i ∞̂ with i are

±∞̂ · i = i · ±∞̂ = ±i ∞̂
±i ∞̂ · i = i · ±i ∞̂ = ∓∞̂ .

Remark 7.7 The non-distributive property of ±∞ (Axiom 3.8) was practi-
cally redundant in 1D but for z ∈ C this feature gains significance. If a, b ∈ R0

then there exists a c ∈ R0 such that a + b = c. This allows us to mimic the
distributive property through multiplicative absorption as

∞̂
(
a+ b

)
= c∞̂ = ∞̂ .

To the contrary, if z ∈ C0, then

∞̂
(
x+ iy

)
= undefined 6= sign(x)∞̂+ i sign(y)∞̂.

Axiom 7.8 The multiplicative operations for ±∞̂ with complex numbers z ∈
C0 are

±∞̂ · z = z · ±∞̂ =



±∞̂ if Re(z) > 0 and Im(z) = 0

∓∞̂ if Re(z) < 0 and Im(z) = 0

±i ∞̂ if Im(z) > 0 and Re(z) = 0

∓i ∞̂ if Im(z) < 0 and Re(z) = 0

undefined if Im(z) 6= 0 and Re(z) 6= 0

undefined if z = 0

.

Axiom 7.9 The multiplicative operations for ±i ∞̂ with complex numbers
z ∈ C0 are

±i ∞̂ · z = z · ±i ∞̂ =



±i ∞̂ if Re(z) > 0 and Im(z) = 0

∓i ∞̂ if Re(z) < 0 and Im(z) = 0

∓∞̂ if Im(z) > 0 and Re(z) = 0

±∞̂ if Im(z) < 0 and Re(z) = 0

undefined if Im(z) 6= 0 and Re(z) 6= 0

undefined if z = 0

.

Remark 7.10 The arithmetic operations for complex numbers z ∈ C whose

real and/or imaginary parts are R̂ numbers follow directly from the other
axioms.

§8 The Riemann Hypothesis

Remark 8.1 The Riemann hypothesis dates to Riemann’s 1858 paper [4].
Since the axioms of a complete ordered field date to Dedekind’s 1872 paper
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[5], it would be patently absurd to claim that the Riemann hypothesis is
formulated in terms of the ordered field definition of R. While we cannot
directly show what definition of R Riemann had in mind when formulating his
hypothesis, we can point out that his program of Riemannian geometry is a
direct extension of Euclidean geometry. This qualitatively supports the notion
that Riemann had in mind the cut-in-a-number-line definition of R given by
Euclid in the Elements. When one examines the Elements [1], the very many
diagrams, definitions, and postulates make it exceedingly obvious that Euclid’s
definition of R is exactly the one given here in Definition 2.2

R \ x = (−∞, x) ∪ (x,∞) ,

formulated as the alternative identical statement

x ∈ R , x > 0 =⇒ (0,∞) = (0, x] ∪ (x,∞) .

Riemann—the man himself being the premier mathematical analyst of the
19th century—went to no lengths whatsoever to formalize with rigor the def-
inition of R used by him to formulate his hypothesis. What does this tell us
that a man of the utmost standards of mathematical rigor did not even deem
it worthwhile to mention his definition of R? It tells us, in the opinion of this
writer, that one should reasonably conclude that the specifics of the aspect of
Riemann’s hypothesis relating to the definition of the domain of ζ(z) were not
highly relevant. Rather, the object of relevance would be the behavior ζ(z)
at various z. It is reasonable to assume that when Riemann formulated his
hypothesis, he had in mind that any definition of R consistent with the Euclid
magnitude and also displaying the Archimedes property of real numbers would
be sufficient. The domain of ζ(z), namely C, would be constructed from two
orthogonal copies of R, one of them having the requisite phase factor i. As per

Pugh [2] quoted in Section 1, if we prove that all x ∈ R̂ satisfy the Archimedes
property, then that should be sufficient reason to accept the present definition
of R into applications regarding Riemann’s hypothesis.

For some reason, the modern statement of the Archimedes property has
evolved to include natural numbers in its predicate but this is not at all sup-
ported by the statement of the property as it is given in Euclid’s Elements [1].
The modern statement depending on natural numbers is

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. nx > y .

Numbers in the neighborhood of infinity do not conform the natural number
statement of the Archimedes property but they do absolutely conform the
statement that appears in Euclid’s elements. Regarding the natural number
statement of the property, consider Remark 6.6. Those remarks point out that

for any n ∈ N and any positive x ∈ R̂, we have nx < x. It follows that if

x < y, then nx 6> y and that, therefore, x ∈ R̂ do not exhibit the Archimedes
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property of real numbers. However, we will show in this section that the state-
ment depending on natural numbers has no precedent in the ancient history
of mathematics. Rather, it is only a modern (over-)simplification of the gen-
uine Archimedes property of antiquity. Indeed, without reference to any one
technical statement or another, the main gist of the Archimedes property is
that there is no greatest real number. It is obvious that the present definition
of R satisfies the main gist of the Archimedes property. The round bracket
notation

R ≡ (−∞,∞) ,

directly requires “no greatest element.”
In this section, we will examine the Archimedes property to show that all

x ∈ R̂ do satisfy the property given in Euclid’s Elements and that, therefore,
they are fully qualified for applications to the Riemann hypothesis. Then we
will show that the Riemann ζ function has infinitely many non-trivial zeros
off the critical line in the neighborhood of infinity.

Definition 8.2 The statement of the Archimedes property which appears in
Euclid’s Elements, and which was attributed by Archimedes to his predecessor
Eudoxus, and which is very often taken to be the definitive statement of the
Archimedes property of real numbers, appears as Definition 4 in Book 5 of
Euclid’s Elements [1]. The original Greek is translated as follows.

“Magnitudes are said to have a ratio to one another which can, when
multiplied, exceed one another.”

Remark 8.3 As it appears in Euclid’s Elements, the straightforward mathe-
matical statement of the property should be

∀x, y ∈ R s.t. x < y ∃z ∈ R s.t. zx > y .

There is no mention of multiplication by a positive integer n ∈ N. It is obvious
that this property—the statement of the Archimedes property in which the
multiplier is z ∈ R rather than n ∈ N—holds for all x, y ∈ R as presently
defined. If we have

x = 1 , y = ∞̂ − 1 =⇒ x < y ,

then choosing z = ∞̂ − 0.9 gives zx > y. If we have

x = ∞̂ − 2 , y = ∞̂ − 1 =⇒ x < y ,

then choosing z = 1/3 gives zx > y. It is obvious that the present definition
of R defines a set which obeys the Archimedes property. For some reason,
however, mathematicians often choose to express the property mathematically
as

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. nx > y .
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This is the statement of a property that R does not have in its current incarna-
tion (Definition 2.3) because we needed to choose z 6∈ N for the two cases given
above. However, the statement depending on N is not the Archimedes prop-
erty of real numbers! Nowhere did Euclid mention integers but it is claimed,
apparently, that Euclid’s definition of multiplication should be taken only to
mean multiplication by n ∈ N or, perhaps, that it should be obvious from
the context that Euclid was writing about multiplication by natural numbers.
Indeed, careful (or even cursory) examination of the context in Reference [1]
shows no such thing.

The Archimedes property given here in Definition 8.2 appears as Definition
4 of Book 5 of Euclid’s Elements [1]. We may directly extract from Definitions 1
and 2 of Book 5 that Euclid did not use a definition of multiplication restricted
to n ∈ N. Definition 1 of Book 5 is

“A magnitude is a part of another magnitude, the lesser of the
greater, when it measures the greater.”

Fitzpatrick, the English translator of Euclid’s Elements cited here as Reference
[1], adds the following footnote to this definition.

“In other words, α is said to be a part of β if β = mα.”

This makes it perfectly obvious that Euclid’s multiplication was never re-
stricted to n ∈ N. Euclid was certainly aware that is possible to measure
one length (magnitude) of, say, ten Archimedean length units, and another
length having 25 such length units. This proves that the multiplier in Euclid’s
definitions was never intended to be restricted to N.

However, so that we need not cite the translator’s footnote in the deter-
mination that Euclid had no intention whatsoever to restrict implicitly his
multiplier as n ∈ N, we should also consider Book 5, Definition 2 [1].

“And the greater is a multiple of the lesser whenever it is measured
by the lesser.”

Is a length of 25 units an integer multiple of a length of ten units? Obviously
not. Are we to believe that Euclid meant to forbid the existence of the number
25 once one has discovered the number ten? Obviously not! A magnitude of
25 units is the greater of the lesser magnitude of ten units with multiplier 2.5.
Surely this was known to Euclid!

We finish this remark with Fitzpatrick’s footnote to Book 5, Definition 4
which is the Archimedes property proper. Fitzpatrick’s footnote to,

“Magnitudes are said to have a ratio to one another which can, when
multiplied, exceed one another,”

is
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“In other words, α has a ratio with respect to β if mα > β and
nβ > α, for some m and n.”

Although it is common to use the variables m and n to refer to natural num-
bers, such is not the case in this context. If the multiplier was restricted as
m ∈ N, then it could not be said that four is a part of five, or two a part of
three, and it would follow that, among four and five or two and three, neither
is the greater and neither is the lesser. Clearly this would be an affront to
reason! There is absolutely no historical precedent for any statements of the
Archimedes property dependent on natural numbers. Such statements should
be called “Archimedes properties of the second kind,” or some such thing
like, “the Archimedes property of natural numbers,” to distinguish them from
the Archimedes property of real numbers which famously appears in Euclid’s
Elements [1].

In closing, if we could add a second footnote to Definition 4 of Book 5, it
would be the following.

“The Archimedes property of real numbers states that there is no
largest real number.”

The R̂ proven to be R̂ ⊂ R in Main Theorem 5.5 satisfies the requirement
that real numbers have the Archimedes property. Now that we have properly

motivated the application of R̂ to the Riemann hypothesis, we will present the
application in the remainder of this section.

Theorem 8.4 If b, y0 ∈ R0, if z0 = (∞̂− b) + iy0, and if ζ(z) is the Riemann
ζ function, then ζ(z0) = 1.

Proof. Observe that the Dirichlet sum form of ζ [4] takes z0 as

ζ(z0) =
∑
n=1

1

n(∞̂−b)+iy0

=
∑
n=1

nb

n∞̂

(
cos(y0 lnn)− i sin(y0 lnn)

)
= 1 +

∑
n=2

0

(
cos(y0 lnn)− i sin(y0 lnn)

)
= 1 . l

Theorem 8.5 The Riemann ζ function has non-trivial zeros at certain z ∈ C
outside of the critical strip.

Proof. Riemann’s functional form of ζ [4] is

ζ(z) =
(2π)z

π
sin
(πz

2

)
Γ(1− z)ζ(1− z) .
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Theorem 8.4 gives ζ(∞̂ − b) = 1 when we set y0 = 0 so we will use Riemann’s
equation to prove this theorem by solving for z = −(∞̂ − b) + 1. (This value
for z follows from 1− z = ∞̂ − b.) We have

ζ
[
−(∞̂ − b) + 1

]
= lim

z→−(∞̂−b)+1

(
(2π)z

π
sin
(πz

2

))
lim

z→(∞̂−b)

(
Γ(z)ζ(z)

)
= lim

z→−(∞̂−b)+1

(
2 sin (πz/2)

)
lim

z→(∞̂−b)

(
(2π)−zΓ(z)ζ(z)

)
.

For the limit involving Γ, we will compute the limit as a product of two limits.
We separate terms as

lim
z→(∞̂−b)

(
(2π)−zΓ(z)ζ(z)

)
= lim

z→(∞̂−b)

(
(2π)−zΓ(z)

)
lim

z→(∞̂−b)
ζ(z) .

From Theorem 8.4, we know the limit involving ζ is equal to one. For the
remaining limit, we will insert the identity and again compute it as the product
of two limits. If z approaches (∞̂− b) along the real axis, then it follows from
Axiom 5.10 that

1 =
z − (∞̂ − b)
z − (∞̂ − b)

.

Inserting the identity yields

lim
z→(∞̂−b)

(
(2π)−zΓ(z)

)
= lim

z→(∞̂−b)

(
(2π)−zΓ(z)

z − (∞̂ − b)
z − (∞̂ − b)

)
.

Let

A = Γ(z)

(
z − (∞̂ − b)

)
, and B =

(2π)−z

z − (∞̂ − b)
.

To get the limit of A into workable form, we will use the property Γ(z) =
z−1Γ(z + 1) to derive an expression for Γ[z − (∞̂ − b) + 1]. If we can write
Γ(z) in terms of Γ[z − (∞̂ − b) + 1], then the limit as z approaches (∞̂ − b)
will be very easy to compute. Observe that

Γ
[
z − (∞̂ − b) + 1

]
= Γ

[
z − (∞̂ − b) + 2

](
z − (∞̂ − b) + 1

)−1
.

By recursion we obtain

Γ
[
z − (∞̂ − b) + 1

]
= Γ(z) lim

n→(∞̂−b)

n∏
k=1

(
z − (∞̂ − b) + k

)−1
.

Rearrangement yields

Γ(z) = Γ
[
z − (∞̂ − b) + 1

]
lim

n→(∞̂−b)

n∏
k=1

(
z − (∞̂ − b) + k

)
.
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It follows that

A = Γ
[
z − (∞̂ − b) + 1

]
lim

n→(∞̂−b)

n∏
k=0

(
z − (∞̂ − b) + k

)
.

The limit of A is

lim
z→(∞̂−b)

A = Γ
[
(∞̂ − b)− (∞̂ − b) + 1

]
lim

n→(∞̂−b)

n∏
k=0

(
(∞̂ − b)− (∞̂ − b) + k

)
.

Axiom 5.10 gives (∞̂ − b)− (∞̂ − b) = 0 so

lim
z→(∞̂−b)

A = Γ(1) lim
n→(∞̂−b)

n∏
k=0

k = 0 .

Direct evaluation of the limit of B gives 0/0 so we need to use L’Hôpital’s rule
which gives

lim
z→(∞̂−b)

B
∗
= lim

z→(∞̂−b)


d

dz
(2π)−z

d

dz

(
z − (∞̂ − b)

)


= lim
z→(∞̂−b)

d

dz
e−z ln(2π)

= − ln(2π) e−(∞̂−b) ln(2π)

=
−1

e∞̂
ln(2π) eb ln(2π) = 0

Therefore, we find that the limit of AB is 0. It follows that

ζ
[
−(∞̂ − b) + 1

]
= lim

z→−(∞̂−b)+1
2 sin

(πz
2

)
× 0 = 0 . l

Definition 8.6 The Riemann hypothesis as defined by the Clay Mathematics
Institute [6] is the following.

“The non-trivial zeros of the Riemann ζ function have real parts
equal to one half.”

Definition 8.7 According to the Clay Mathematics Institute [6], the trivial
zeros of ζ are the even negative integers.

Remark 8.8 The zeros demonstrated in Theorem 8.5 are neither on the crit-
ical line Re(z) = 1/2 nor are they the negative even integers. Theorem 8.5,
therefore, is the negation of the Riemann hypothesis.
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