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Abstract

We introduce a zero-dimensional analogue of the Lagrangian density,
formed from integrals of scalar product terms over null cones. We demon-
strate that application of the variational principle to this zero-dimensional
object yields the familiar equations of motion of fundamental fermions
and bosons. The (covariant) derivatives of the conventional theory do not
make an explicit appearance, being subsumed into Lorenz gauge trans-
formations in which charge appears on the same footing as bosonic field
intensity. Whereas the conventional lagrangian is largely agnostic as to
the underlying group structure of the particle fields, our treatment finds
its most natural expression in SO(2N) GUTs, more especially because
the null cone geometry upon which it is based is itself generated by the
spinorial dimensions of SO(4).

1 Space-time anti-derivatives

Consider a complex spinor Λ =
(
λ1 + iλ2, λ3 + iλ4

)
with a U(1) degenerate

mapping onto the past null cone with vertex at the origin of x:

xµ = Λ∗σµΛ

dΛ =

4∏
i=1

dλi = 2πδ(t2 − r2)d4x = 2π
d3r

r

It can be shown that, for all k2 6= 0∫ 0

−∞
e−ikνx

ν

dΛ =
1

k2
(1)

and ∫ 0

−∞
xµe
−ikνxνdΛ =

2ikµ
k4

(2)

The product of two Λ cones maps onto (xµx
µ > 0) space-time with a U(1)L ×

SU(2)× U(1)R degeneracy:

xµ = aµ + bµ = (Λ∗a,Λ
∗
b)[γµ ⊗ 1](Λa,Λb)
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∫∫
e−ikνx

ν

dΛadΛb =
1

k4
(3)

dΛadΛb = 4π2d4x

So, for an arbitrary field f :

f = ∂ν∂
ν

∫
fdΛ =

1

2
∂µ∂ν∂

ν

∫
fxµdΛ = (∂ν∂

ν)2

∫∫
fdΛadΛb (4)

2 Clifford algebra of particles

As pointed out by Wilczek and Zee[1], the fermions of one family can be as-
signed to a complex spinor representation of SO(10) and the leptons of one
family to an SO(6) subgroup. |ε1, ε2, ε3〉, εi = ±1. The spinor representation
of SO(6) contains 8 states: |ε1, ε2, ε3〉, εi = ±1. By adding a further (4th) rank
to the Clifford algebra (i.e. SO(8) ), we can incorporate (2×) spin as an addi-
tional quantum number (not acted upon by the † charge conjugation operator).
Representing the SO(8) vacuum by |0〉 (≡ |0, 0, 0, 0〉) with the orthonormality
property:

〈0| τa × τb × τc × σd |0〉 = δ0aδ0bδ0cδ0d

..where we have used σj rather than 1
2τj in the 4th rank so as make a clarifying

distinction between charge and spin spaces.
We have fermions: 

êR↑ |0〉 = |+1,+1,−1,+1〉
ν̂L↑ |0〉 = |−1,+1,−1,+1〉
êL↑ |0〉 = |+1,−1,−1,+1〉
ν̂R↑ |0〉 = |−1,−1,−1,+1〉

(5)

anti-fermions: 
ê†R↑ |0〉 = |−1,−1,+1,+1〉
ν̂†L↑ |0〉 = |+1,−1,+1,+1〉
ê†L↑ |0〉 = |−1,+1,+1,+1〉
ν̂†R↑ |0〉 = |+1,+1,+1,+1〉

and bosons:
Ŵ±j = τ∓ × τ± × 1× σj
Ŵ3
j = Ŵ+

j Ŵ
−
j − Ŵ

−
j Ŵ

+
j = 1

2 (1× τ3 × 1× σj)− 1
2 (τ3 × 1× 1× σj)

B̂j = (1× 1× τ3 × σj)− 1
2 (τ3 × 1× 1× σj)− 1

2 (1× τ3 × 1× σj)
Φ̂± = 1× τ± × 1× 1

(6)

..where j = {0, 1, 2, 3}
These 18 boson operators transform the (anti-)leptons amongst themselves, for
example:

Ŵ−3 ν̂L↓ = −êL↓ , Φ̂êR↑ = êL↑

.. and more generally create and destroy units of charge and z-spin, for example:

Ŵ+
3 |0〉 = |−2,+2, 0, 0〉 , Ŵ3

− |0〉 = |0, 0, 0,−2〉 , Φ̂ |0〉 = |0,−2, 0, 0〉
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The hypercharge, isospin and electric charge are:
Y =< B̂0 >=< 1× 1× τ3 × 1 > − 1

2 < 1× τ3 × 1× 1 > − 1
2 < τ3 × 1× 1× 1 >= ε3 − 1

2 (ε1 + ε2)

T3 =< Ŵ3
0 >= 1

4 < 1× τ3 × 1× 1 > − 1
4 < τ3 × 1× 1× 1 >= 1

4 (ε2 − ε1)

Q ≡ 1
2Y + T3 = 1

2 < 1× 1× τ3 × 1 > − 1
2 < τ3 × 1× 1× 1 >= 1

2 (ε3 − ε1)

In the following, the fermion spin index ↑,↓ is implicit and we will distinguish
the space-time fields of the bosons from their quanta, summed over j, thus:

W±(x) = w±j (x) · Ŵ±j
W3(x) = w3

j (x) · Ŵ3
j

B(x) = bj(x) · B̂j
Φ±(x) = φ±(x) · Φ̂±

(7)

3 Propagators and interactions

We will now demonstrate explicitly how all empirically verified propagators
and interactions of the Standard Model can be derived from a certain zero-
dimensional scalar functional (Q) without recourse to any of the derivative op-
erators appearing in the conventional Lagrangian density L. As one would
expect, the field amplitudes of the leptons (e, ν) and Higgs field have dimension
− 3

2 and −1 respectively. The boson field amplitudesW,B however have dimen-
sion 0 rather than the -1 of the conventional vector gauge fields (to which they
are related in a manner to be shown). Another difference from the Lagrangian
approach is that most of the various scalar products are integrated over one or
two null cones - so as to form zero dimensional Lorentz scalars - before invocation
of the principle that Q be invariant w.r.t. variations in each of its constituent
fields.

For reasons of brevity and clarity, this treatment is restricted to one family of
leptons, but the extension to SU(3)C , quarks and family mixing is fairly trivial
and obvious.

3.1 Leptons

If neutrino mass is neglected1 there are just 5 possible zero-dimensional Lorentz
scalar products involving lepton operators of one family, no gauge bosons and
no more than two cone integrations viz:

Qf ≡
∫
xα
[
ν†LσανL + e†LσαeL + e†Rσ̃αeR

]
dΛ

+ ye

∫∫ [
e†LΦ+eR + e†RΦ−eL

]
dΛadΛb (8)

Qf is clearly isomorphic to

Lf = ν†Lσα∂ανL + e†Lσα∂αeL + e†Rσ̃α∂αeR + ye[e
†
LφeR + e†RφeL] (9)

1Addition of MGUTν
†
RνR and yν [ν

†
LΦ+νR + ν†RΦ−νL] terms to (8), leads tomνL � 1eV

via the type-I see-saw mechanism
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.. of the conventional formulation. Using (2):

∂Qf
∂ν†L

= 0 =⇒
∫
xασανLdΛ = 0 =⇒ iσα∂

ανL = 0

.. which describes a freely propagating massless neutrino. Similarly,

∂Qf
∂e†L

= 0 =⇒
∫
xασαeLdΛ− ye

∫∫
Φ+

0 eRdΛadΛb

=⇒ iσα∂
αeL − yeΦ+

0 eR = 0

Similarly,
∂Qf
∂e†R

= 0 =⇒ iσ̃α∂
αeR − yeΦ−0 eL = 0

.. from which we conclude that (8) describes an electron propagating with mass
me = ye|Φ0|

3.1.1 Coupling of bosons to fermions

We posit that the spin-1 boson fields (B,W) can be represented collectively
by a single local transformation of the SO(8) charge space, eΘ, that does not
change Q. We further posit that the SU(2) and U(1) subgroups have differing
low-energy effective coupling constants g and g′ respectively.

In the subspace spanned by


νL
eL
νR
eR

, according to (5), (6) and (7) we have

Θ ≡
(

ΘL 0
0 ΘR

)
≡ 1

2


gW3 − g′B gW+ 0 0
gW− −gW3 − g′B 0 0

0 0 0 0
0 0 0 −2g′B


and, anticipating a non-zero v.e.v. v for the Higgs field:

Φ+
0 =

1√
2

[v + h(x)]


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Φ0 =
1√
2

[v + h(x)]


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


..where the Yukawa coupling constants (yf ) are particular to each species of
fermion and make their appearance in a extra factor like:

y =


0 0 0 0
0 ye 0 0
1 0 0 0
0 1 0 ye


We define transformed fermion fields:

ψL ≡ eΘL

(
νL
eL

)
, ψ†L ≡

(
ν†L e†L

)
e−ΘL ψR ≡ eΘR

(
νR
eR

)
, ψ†R ≡

(
ν†R e†R

)
e−ΘR
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and rewrite (8) in terms of these transformed fields (ψL, ψR), which, together
with Θ and Φ0, are taken as the independent variables for the purposes of the
variational principle2:

Q′f ≡
∫
xα
[
ψ†Le

ΘLσαe
−ΘLψL + ψ†Re

ΘR σ̃αe
−ΘRψR

]
dΛ

+ ye

∫∫
[ψ†Le

ΘLΦ+e−ΘRψR + ψ†Re
ΘRΦ−0 e

−ΘLψL]dΛadΛb (10)

Proceeding as before:

∂Q′f
∂ψ†R

= 0 =⇒
∫
xαeΘRσαe

−ΘRψRdΛ + ye

∫∫
eΘRΦ−e−ΘLψLdΛadΛb = 0

=⇒ eΘR
[
iσ̃α
←→
∂ αeR + yeΦ

−
0 eL

]
= 0

=⇒ σ̃α[i∂α − g′Bα]eR + yeΦ
−
0 eL = 0

.. where the conventional gauge vector field components Bα are related to the
dimensionless amplitudes bj by:

B0 = i∂jbj Bj = iεjkl∂kbl − i∂0bj (11)

=⇒ ∂µBµ = i∂0∂jbj + iεjkl∂
j∂kbl − i∂0∂

jbj ≡ 0 (12)

Similarly,

∂Q′f
∂ψ†L

= 0 =⇒
∫
xαeΘLσαe

−ΘLψLdΛ + ye

∫∫
eΘLΦ+

0 e
−ΘRψRdΛadΛb = 0

=⇒ eΘL

[(
iσα
←→
∂ α 0

0 iσα
←→
∂ α

)(
νL
eL

)
+ yeΦ

+
0

(
0
eR

)]
= 0

=⇒

(
σα[i∂α + g

2W
3
α −

g′

2 Bα] g
2W

+
α

g
2W

−
α σα[i∂α − g

2W
3
α −

g′

2 Bα]

)(
νL
eL

)
+yeΦ

+
0

(
0
eR

)
= 0

.. where, as in (11), the conventional gauge vector field components Wα are
related to the dimensionless amplitudes wj by:

W
{+,−,3}
0 = i∂jw

{+,−,3}
j W

{+,−,3}
j = iεjkl∂kw

{+,−,3}
l − i∂0w

{+,−,3}
j (13)

=⇒ ∂µW {+,−,3}µ ≡ 0 (14)

So the transformation of variables entailed in going from (8) to (10) yields the
SU(2)L × U(1) Dirac equation in the presence of vector fields Bµ,Wµ. This
is clearly analogous to what happens when we impose invariance of the con-
ventional leptonic Lagrangian (9) under local gauge transformations, with the
important difference that with Qf , there is no choice of gauge possible in the
resulting equations of motion: the derivative vector fields obey the Lorenz gauge
condition (12,14) by construction.

2The reader can readily verify that Q′f = Qf
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3.2 Higgs

We now consider terms involving just the Higgs field:

QH ≡
∫
〈0| e−ΘΦ−0 Φ+

0 e
Θ |0〉 dΛ+

∫∫
〈0| e−Θ

[
µ2Φ−0 Φ+

0 +λ(Φ−0 Φ+
0 )2

]
eΘ |0〉 dΛadΛb

Q′f also depends upon Φ0, so the relevant variational constraint is

∂[QH +Q′f ]

∂Φ−0
= 0 =⇒ Φ+

0 = −
∫ [

µ2Φ+
0 + 2λΦ+

0 Φ−0 Φ+
0 + yee

†
ReL]

]
dΛ (15)

The RHS is essentially infinite unless Φ+
0 makes small excursions around a non-

zero vacuum expectation value such that Φ+
0 = 1√

2
(h(x) + v)Φ̂+

0 , v =
√
−µ2/λ.

We then have
∂µ∂

µh = 2µ2h− λ(3vh2 + h3)− yee†ReL

..which describes a scalar particle with mass MH =
√

2λv and couplings to the
leptons and itself.

3.2.1 Boson mass eigenstates

The final contributions to Q that we will consider in this paper are pure gauge
boson terms

QB = 〈0| B2 +W−W+ +W3W3 |0〉 =

3∑
j=0

[
bjbj + w+

j w
−
j + w3

jw
3
j

]
∂[QB +QH ]

∂w−j
= 0

=⇒ w+
j = g

∫
〈0| e−Θ

{
Ŵ+
j ,Φ

−
0 Φ+

0

}
−
eΘ |0〉 dΛ

−
∫∫
〈0| e−Θ

{
Ŵ+
j , [µ

2Φ−0 Φ+
0 + λ(Φ−0 Φ+

0 )2]
}
−
eΘ |0〉 dΛadΛb

= g2

∫
w+
j v

2dΛ + .... (16)

=⇒ MW = gv

The mass eigenstates

Z ≡ 1√
g2 + g′2

(gW3 − g′B) A ≡ 1√
g2 + g′2

(g′W3 + gB) (17)

have

MZ = v

√
g2 + g′2 MA = 0

The complete eletroweak leptonic scalar is

Q = Q′f +QH +QB
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