A SIMPLE, DIRECT PROOF OF FERMAT'S LAST THEOREM

PHIL AARON BLOOM; BRAINEMAIL1@GMAIL.COM; V.1

ABSTRACT. An open problem is proving FLT simply for each $n \in \mathbb{N}, n > 2$. Our *direct proof* (not by way of contradiction) of FLT is based on our algebraic identity, denoted, for convenience, as $(r)^n + (s)^n = (t)^n$ with r, s, t > 0 as functions of variables. We infer that $\{(r, s, t)|r, s, t \in \mathbb{N}, (r)^n + (s)^n + (t)^n\} = \{(x, y, z)|x, y, z \in \mathbb{N}, (x)^n + y^n = z^n\}$ for $n \in \mathbb{N}, n > 2$. In addition, we show, for integral values of n > 2, that $\{(r, s, t)|r, s, t \in \mathbb{N}, (r)^n + (s)^n = t^n\} = \emptyset$. Hence, for $n \in \mathbb{N}, n > 2$, it is true that $\{(x, y, z)|x, y, z \in \mathbb{N}, x^n + y^n = z^n\} = \emptyset$.

1. INTRODUCTION

FLT states, for $n \in \mathbb{N}, n > 2, x, y, z \in \mathbb{N}, x, y, z > 0$ that $x^n + y^n = z^n$ does not hold. It is well known that a simple proof of FLT for every $n \in \mathbb{N}, n > 2$ is lacking.

For $n \in \mathbb{N}$: We use *basics* to devise a *direct proof*, not the *expected* BWOC. An *identity* with no rational triples for $n \in \mathbb{N}$, n > 2, since term $(4q^n)^{\frac{1}{n}} \alpha$ of this identity reduces to $2^{\frac{2}{n}} q\alpha$, a term that, for n > 2 is necessarily irrational, is :

(1)
$$\left((4q^n)^{\frac{1}{n}} \alpha \right)^n + \left((p - 2q^n)^{\frac{1}{n}} \alpha \right)^n = \left((p + 2q^n)^{\frac{1}{n}} \alpha \right)^n$$

 $\text{Conditions}: \ n \in \mathbb{N}, p \in \mathbb{R}, \alpha, q \in \mathbb{Q}, \alpha, n, p, q > 0 \text{ such that } p > 2q^n.$

Other identities, not as simple as this one, can also work well in our argument. Denote throughout this paper, for convenience : r for $(4q^n)^{\frac{1}{n}}\alpha$; s for $(p-2q^n)^{\frac{1}{n}}\alpha$; t for $(p+2q^n)^{\frac{1}{n}}\alpha$, with (r,s,t) functions of p,q, such that $r,s,t \in \mathbb{Q}, r,s,t > 0$ for which $r^n + s^n = t^n$ holds. Triple (r,s,t) is, thus, similar to, so, we easily compare it to, (x, y, z) such that $x, y, z \in \mathbb{Q}, x, y, z > 0$ for which $x^n + y^n = z^n$ holds.

Per Sect. 2, below, $q \in \mathbb{Q}$, thus, for n > 2: $\{(r, s, t) | r, s, t \in \mathbb{Q}, r^n + s^n = t^n\} = \emptyset$. For n = 1, 2, Sect. 2 requires that the following be true with r, s, t, x, y, z > 0: $\{(r, s, t) | r, s, t \in \mathbb{N}, r^n + s^n = t^n\} = \{(x, y, z) | x, y, z \in \mathbb{N}, x^n + y^n = z^n\}$; it is true for n = 1, 2, but solely with $q \in \mathbb{Q}, q = \frac{r}{4}, \frac{r}{2}$, respectively; consequently, $\{(r, s, t) | r, s, t \in \mathbb{N}, r^n + s^n = t^n\} = \{x, y, z | x, y, z \in \mathbb{N}, x^n + y^n = z^n\}$ would be false should, instead, $q \in \mathbb{R} - \mathbb{Q}$. Therefore, we must exclude $q \in \mathbb{R} - \mathbb{Q}$ from our proof.

That $\{(r, s, t) | r, s, t \in \mathbb{N}, (r)^n + (s)^n\} + (t)^n\} = \{x, y, z | x, y, z \in \mathbb{N}, x^n + y)^n = (z^n\}$ is a true statement for $n \in \mathbb{N}, n > 2$, with $p \in \mathbb{R}$ and $q \in \mathbb{Q}, r, s, t, x, y, t > 0$, is a fact that we establish in section 2, below.

So, for n > 2: Equation $\{(x, y, z) | x, y, z \in \mathbb{N}, x^n + y^n = z^n\} = \emptyset$ (which is FLT) is true since we have implied, above, that $\{(r, s, t) | r, s, t \in \mathbb{N}, r^n + s^n = t^n\} = \emptyset$.

Date: December 9, 2018.

2. Our Very Simple Direct Proof

Consider for any given $n \in \mathbb{N}$, n > 0, two triples, with $p \in \mathbb{R}$, $q \in \mathbb{Q}$ for (r, s, t): Triple (r, s, t) such that $r, s, t \in \mathbb{Q}$, r, s, t > 0, for which $r^n + s^n = t^n$ holds, and triple (x, y, z) such that $x, y, z \in \mathbb{Q}$, x, y, z > 0 for which $x^n + t^n = z^n$ holds.

Arbitrarily choose a positive rational value of $(p + 2q^n)^{\frac{1}{n}}$, or t/α for which $(r/\alpha)^n + (s/\alpha)^n = (t/\alpha)^n$ holds, such that the corresponding $(p - 2q^n)^{\frac{1}{n}}$, or s/α , and this value of t/α comprise a pair of positive rational values with the same p, q.

With such $(p + 2q^n)^{\frac{1}{n}} \in \mathbb{Q}$, unrestricted $p \in \mathbb{R}$ varies such that such $t/\alpha \in \mathbb{Q}$ takes every value of such $z \in \mathbb{Q}$. Clearly, by definition, such $z \in \mathbb{Q}$ takes every value of such $t/\alpha \in \mathbb{Q}$. Such $(t/\alpha \in \mathbb{Q})(\alpha)$ yields $t \in \mathbb{Q}$, which also takes every value of such $z \in \mathbb{Q}$. And, such $z \in \mathbb{Q}$ evidently takes every value of such $t \in \mathbb{Q}$.

Thus, $\{t|(r, s, t), r, s, t \in \mathbb{Q}, r^n + s^n = t^n\} = \{z|(x, y, z), x, y, z \in \mathbb{Q}, x^n + y^n = z^n\}$ is true, with restriction to $q \in \mathbb{Q}$, with either both sets empty or both sets nonempty.

With restricted $(p - 2q^n)^{\frac{1}{n}} \in \mathbb{Q}$ or $s/\alpha \in \mathbb{Q}$, since α has all positive rational values, α varies such that such $(s/\alpha)(\alpha) \in \mathbb{Q}$ takes every value of such $y \in \mathbb{Q}$. By definition, clearly, such $y \in \mathbb{Q}$ takes every value of such $s \in \mathbb{Q}$.

Hence, $\{s|(r,s,t), r, s, t \in \mathbb{Q}, r^n + s^n = t^n = \{y|(x,y,z), x, y, z \in \mathbb{Q}, x^n + y^n = z^n\}$ is true with either both sets empty or both sets nonempty.

Due to the equivalent form $_^n + _^n = _^n$, such $r \in \mathbb{Q}$ or such $(4q^n)^{\frac{1}{n}} \alpha \in \mathbb{Q}$, is thereby *constrained* to have values for which the following equality of sets holds :

 $\{r|(r,s,t), r, s, t \in \mathbb{Q}, r^n + s^n = t^n\} = \{x|(x,y,z), x, y, z \in \mathbb{Q}, x^n + y^n = z^n\}$ such that either both sets are empty or both sets are nonempty.

So, for n > 0, it is true, with $q \in \mathbb{Q}$, with both sets empty or nonempty, that :

 $\{(r,s,t)|r,s,t\in\mathbb{Q},r^n+s^n=t^n\}=\{(x,y,z)|x,y,z\in\mathbb{Q},x^n+y^n=z^n\}.$

3. Results and Conclusion

For $n \in \mathbb{N}, n > 2$, per Sect. 1,2 : $\{(r, s, t) | r, s, t \in \mathbb{Q}, r^n + s^n = t^n\} = \emptyset$; per section 2 : $\{(r, s, t) | r, s, t \in \mathbb{Q}, r^n + s^n = t^n\} = \{(x, y, z) | x, y, z \in \mathbb{Q}, x^n + y^n = z^n\}.$

Consequently, for $n \in \mathbb{N}, n > 2$: $\{(x, y, z) | x, y, z \in \mathbb{Q}, x^n + y^n = z^n\} = \emptyset$.

Hence, for n > 2: $\{(x, y, z) | x, y, z \in \mathbb{N} \subset Q, x, y, z > 0, x^n + y^n = z^n\} = \emptyset$.

In other words, for $n \in \mathbb{N}$, n > 2, the following is a true statement :

Equation $x^n + y^n = z^n$ does not hold for (x, y, z) with $x, y, z \in \mathbb{N}, x, y, z > 0$. QED.