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Abstract

This paper presents an uncommon variation of proof by induction. We call it
deferred induction by recursion. To set up our proof, we state (but do not prove)
the Zeta Induction Theorem. We then assume that theorem is true and provide an
elementary proof of the Riemann Hypothesis (showing their equivalence).

1 Introduction

We define (but do not prove) the Zeta Induction Theorem below. Using that theorem, we
provide a simple and (hopefully) interesting proof of the Riemann Hypothesis. Our proof
uses “deferred induction by recursion”. To be clear, we make no claim as to the usefulness
of the Zeta Induction Theorem to the theory of the Riemann Zeta Function.

2 Definitions

In all that follows, the definitions below are assumed:

Definition. For m,n ∈ N, define Am =

m∑
j=1

(
1

2

)j
and Bm,n =

(
1

2

)m+n

Definition. For t ∈ R>0, define ε(t) =
1

8.463 · log(|t|+ 2)

Definition. Fix t ∈ R>0. For s ∈ C, define the following open rectangles:

RR(t) = 1
2 < Re(s) < 1; |Im(s)| < t

RL(t) = 0 < Re(s) < 1
2 ; |Im(s)| < t

Rε(t) = 1− ε(t) < Re(s) < 1; |Im(s)| < t

Rm,n(t) = (Am +Bm,n) < Re(s) < 1; |Im(s)| < t

Definition. ζ(s) is as defined in Riemann[1].

Definition. We define ChooseIndex(Sk, ↑ or ↓,→ limit, k,K, δ) as follows. Sk is a real-
valued sequence that is either monotone increasing (↑) or monotone decreasing (↓),
with limk→∞ Sk = limit. For the given Sk, these facts are clear by inspection and are
not separately proved. Therefore, for the given δ > 0, there is a K ∈ N such that for
all k > K we have: (1) if monotone decreasing, then 0 ≤ (Sk − limit) < δ, and (2) if
monotone increasing, then (limit − δ) < Sk. We assume that the given K is the K
needed for the given δ, and that the given k > K.

1



3 The Zeta Induction Theorem

Theorem 1 (Zeta Induction Theorem). Let s ∈ C; t ∈ R>0. If we assume ζ(s) 6= 0 when
s ∈ Rm,n(t), then we have ζ(s) 6= 0 when s ∈ Rm,n+1(t).

Proof. In this paper we assume (but do not prove) this theorem.

4 Lemma

This lemma pulls together various statements, with proofs that are either well-known or
straightforward. That way, those statements can be used subsequently without detracting
from the flow of the discussion.

Lemma 1. Let s ∈ C \ {1}; fix t ∈ R>0. We have the following:

i If ζ(s) 6= 0 for all s ∈ RR(t), then ζ(s) 6= 0 for all s ∈ RL(t).

ii ζ(s) 6= 0 for s ∈ Rε(t).

iii (Am +Bm,1) = Am+1.

iv There exists an M ∈ N such that m > M ⇒ Rm,1(t) ⊂ Rε(t).

v There exists an N ∈ N such that n > N and s ∈ Rm,1(t)⇒ s ∈ Rm+1,n(t).

Proof.

i From Riemann[1]: For 0 ≤ Re(s) ≤ 1, if ζ(s) = 0, then ζ(1 − s) = 0 (we call them
twin zeros). Now assume ζ(s) = 0 for some s ∈ RL(t)∪RR(t). We consider separately
the real and imaginary parts of our twin zeros. Real Parts: Re(s) + Re(1 − s) = 1.
Set δ = 1

2 −Re(s), Then, Re(s) = (1
2 − δ) and Re(1− s) = ( 1

2 + δ). Imaginary Parts:
|Im(s)| = |Im(1 − s)|. In all cases, we have one of the twin zeros in RL(t) and the
other in RR(t). Thus, with no zeros in RR(t) there can be no zeros in RL(t).

ii From Ford[2]: ζ(β + it) 6= 0 for |t| ≥ 3 and 1− β ≤ 1

8.463 · log(|t|)
.

Ford’s statement still holds if we increase the size of the denominator, so ε(t) was
defined by replacing log(|t|) with log(|t| + 2). For all increasing |t| ≥ 0, it is easily
verified that ε(t) < 0.2 and monotone decreasing. As revised by ε(t), Ford’s statement
extends to all |t| ≥ 0 because, from Brent[3], there are no zeros in the RR(3) region.
If s ∈ Rε(t), we have ε(t) < ε(Im(s)), and therefore ζ(s) 6= 0.

iii As defined: (Am +Bm,1) =

m∑
j=1

(
1

2

)j
+

(
1

2

)m+1

=

m+1∑
j=1

(
1

2

)j
= Am+1.

iv We ChooseIndex(Am+1, ↑,→ 1,m + 1,M, δ = ε(t)). Thus 1 − ε(t) < Am+1. Using
(iii), we have 1− ε(t) < (Am +Bm,1). Hence, Rm,1(t) ⊂ Rε(t).

v Fix s ∈ Rm,1(t) and fix ε = Re(s) − (Am + Bm,1). To set Bm+1,n < ε, we now
ChooseIndex(Bm+1,n, ↓,→ 0, n,N, δ = ε). Using (iii), we have: (Am+1 + Bm+1,n) <
(Am+1 + ε) = ((Am + Bm,1) + ε) = Re(s). But (Am+1 + Bm+1,n) < Re(s) means
s ∈ Rm+1,n(t).
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5 The Riemann Hypothesis

Theorem 2 (Riemann Hypothesis). Let s ∈ C \ {1}, with Re(s) ∈ [0, 1] \{ 12}. Then,
ζ(s) 6= 0.

Proof. From Hadamard[4]: ζ(s) 6= 0 for Re(s) ∈ {0, 1}. So, we limit our proof to Re(s) ∈
(0, 1) \{ 12}. Fix t ∈ R>0. We first show ζ(s) 6= 0 for s ∈ RR(t) ∪RL(t).

Step 1-A (The First Interval). We start by assuming that ζ(s) 6= 0 when s ∈ R1,1(t).
Now set m = 1 and apply the Zeta Induction Theorem. It follows by induction that, for all
n ∈ N, ζ(s) 6= 0 when s ∈ R1,n(t).

Step 1-B (The Right Strip). Fix s ∈ RR(t) and fix ε = (Re(s) − A1) > 0. Now
ChooseIndex(B1,n, ↓,→ 0, n,N, δ = ε). Then A1 = 1

2 < (A1 + B1,n) < (A1 + ε) = Re(s).
But (A1 + B1,n) < Re(s) implies s ∈ R1,n(t), so by Step 1-A we have ζ(s) 6= 0. Hence,
ζ(s) 6= 0 for all s ∈ RR(t).

Step 1-C (The Left Strip). From Lemma 1(i): ζ(s) 6= 0 for s ∈ RL(t).
Step 2 (The Second Interval). One problem remains. We assumed that ζ(s) 6= 0 for

s ∈ R1,1(t). To prove that, we will now assume that ζ(s) 6= 0 for s ∈ R2,1(t). Now
set m = 2 and apply the Zeta Induction Theorem. It follows by induction that, for all
n ∈ N, ζ(s) 6= 0 when s ∈ R2,n(t). We have therefore shown that ζ(s) 6= 0 when s ∈ R1,1(t)
because by Lemma 1(v) there is an n such that s ∈ R1,1(t) implies s ∈ R2,n(t).

Step 3 (Recursion). We can continue our recursive augment as many times as we like.
To prove that ζ(s) 6= 0 when s ∈ Rm,1(t) we need only assume ζ(s) 6= 0 when s ∈ Rm+1,1(t)
and then apply the Zeta Induction Theorem and Lemma 1(v). But our desired result is
eventually established by Lemma 1(ii) and (iv), with no further need for recursion, because
there exists an M such that for m > M,Rm,1(t) ⊂ Rε(t), and we have ζ(s) 6= 0 for s ∈ Rε(t).

Step 4 (Wrapping Up). We have established the theorem for s ∈ RR(t) ∪ RL(t). But t
was arbitrarily chosen, so the result holds for all t ∈ R>0.

6 Discussion

Our “proof” of the Riemann Hypothesis (RH) uses deferred induction by recursion, with
each inductive step depending, recursively, on a subsequent inductive step. An alternate
(but less interesting) approach is also possible. We can recurse in the opposite direction
(without deferred induction). We select m using Lemma 1(iv) and have ζ(s) 6= 0 for s ∈
Rm,1(t) ⊂ Rε(t). By the Zeta Induction Theorem (ZI), ζ(s) 6= 0 for all Rm,n(t). Then,
using Lemma 1(v) we have ζ(s) 6= 0 for s ∈ Rm−1,1(t). Again applying ZI, we recurse until
we reach R1,1(t) and R1,n(t), thereby covering all of RR(t).

ZI is just one short step away from simply assuming RH. So it should come as no surprise
that ZI and RH are equivalent. Proof/disproof of one proves/disproves the other. We showed
ZI implies RH. Clearly, RH implies ZI because ζ(s) 6= 0 for s ∈ all Rm,n+1(t). Both are
disproved only if ζ(s) = 0 for some Re(s) ∈ (0, 1) \ { 12}. That said, proof of ZI almost
certainly requires direct proof of RH.
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