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The aim of this work is, first, to set the basis for a formal model of
science, then, it is to show that the laws of physics are its theorems.
Necessarily, all theories that are the logical product of science are theo-
rems of our model. As this includes physics, our model is, therefore, its
logical foundation.

Our model is an axiomatic realization of the participatory uni-
verse envisioned by John Archibald Wheeler3, in which the observer’s 3 John A Wheeler. Information, physics,

quantum: The search for links. Complex-
ity, entropy, and the physics of information,
8, 1990

practice of science is associated with proving reality. As our model
is constructive of the mathematical structure isomorphic to nature, it
deprecates Karl Popper’s definition of science based on falsifiability.

The formal practice of science consists of constructing a message
(in the sense of Shannon’s theory of information) of experiments (the
elements of the message) constrained by the requirement that the
elements are verifiable by the statistical priors of the message. In this
context, we define the priors as Nature and we qualify the message
as scientific. Nature is thus understood as a general proof checker for
experiments.

We show that the construction of a scientific message bounds nature
(the priors) to a cosmology entirely emergent from the entropy of the
scientific message. Finally, we conclude that the participatory-universe
is emergent from the ideal practice of science.
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1 Introduction

1.1 Experimental facts, not axioms, have priority

We intuitively understand scientific inquiry as a methodology to
improve our understanding of the objective world. According to
falsifiability, the evidence is to be collected with the intent to fal-
sify hypotheses. Through an iterative process, ever more validated
physical theories are produced, tested, and falsified. Confidence in a
scientific theory is increased by actively attempting to falsify it (and
failing to do so). The end goal of scientific inquiry is a final theory
which would presumably explain all known and future experimental
facts.

In practice, the inquiry process is usually divided into an exper-
imental part and a theoretical part. Experimentalists gather experi-
mental data, patterns are noticed within this data, and theoreticians
formalize these patterns within the model of mathematics.

Whilst those involved understand the world through the practice
of science, the theories so produced are, however, unaware of the
process which created them. Indeed, each such formal theory is
defined first and foremost as a set of axioms. Then, its theorems are
the indubitable consequence of its axioms. Although falsifying a
theory ought to be a scientist’s primary motivation, this possibility of
future falsification is, however, not derivable from the axioms of the
theory alleged to be a correct description of reality. As we will argue,
this error is fatal.

This typical type of formal construction does not correspond to
how the world is scientifically understood to be. First and foremost,
scientists understand that experimental facts have priority and thus
they overwrite any hypothesized set of axioms. Consequently, in the
framework of scientific inquiry and in practice, axioms are dispos-
able, mutable, and interchangeable. Therefore, to be formally scien-
tific, physical theories ought to be constructed from a fact-to-theorem
logical direction. In this context, it helps to visualize an arrow of "sci-
entific logic": It traverses the logical space, but its origin is always
the empirical data and it points towards the theorems. Logically, we
can interpret the empirical data as the axioms from which everything
scientifically provable follows.

Here, consistent with the practice of science, we present a frame-
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work whose theorems are theories provable from axiomatic experi-
mental data. Ergo, the framework is a formal model of science. The
primary step will be to reverse the usual formalization of a typical
physical theory. Instead of describing the theory (with axioms) and
solving for a description of the facts (listing the theorems), we will
�rst describe the facts, then solve for the theories that explain them.

1.2 The facts imply the theory

This strategy is key as it reverses the usual implication of a theory T
with respect to set of experimental facts F. To better see the differ-
ence, let's compare it to a typical physical theory.

Typically in theoretical physics, T is hypothesized from experi-
mental data and then tested. The axioms of T are presented as the
primary actors of the theory, and they command the most attention.
In most cases, the axioms directly represent the laws or symmetries
of nature and are inspired from empirical data.

Using mathematics, the axioms of T can be unpacked into theo-
rems. If all theorems of the theory are found to be an element of F,
then the theory is effective, and it has not been falsi�ed. However,
if a mismatch is found, T is falsi�ed and must be replaced with an
alternative.

Due to this formulation, physical theories so produced will erro-
neously proclaim, on paper, that the facts are a consequence of the
theory. Indeed, formulated as such, the facts are obtained by unpack-
ing T into its theorems. This typical construction will semantically
claim the following:

T =) F (The theory implies the facts) (1)

The knowledge that the origin of T actually lies within F is under-
stood in the minds of those who hypothesized T (as the consequence
of scienti�c inquiry) but is absent from the formal description of T.
Constructed as such, T is fundamental, and F is a mere consequence
of it. Thus, T is unaware of its scienti�c origin.

This implication is reversed for the model presented in this work.
Indeed, in this new model, the fundamental actors are now the el-
ements of F, and the formal theory T that explains F is implied by
F. Thus, the relation is reversed, and the model semantically claims,
correctly, that it is instead the facts that implies the theory:

F =) T (The facts imply the theory) ( 2)

Backed by the results presented throughout this work, we will
argue that the incorrect implication (i.e., the theory implies the facts)



on the logical foundation of physics (draft 2 ) 5

is the primary error in the way T is typically constructed. Once the
relationship is reversed, solving for T is surprisingly simple. In our
model, rather than guessing T via iterative falsi�ability, T and its
properties will be obtained as theorems of the model.

2 Desiderata for a formal model of science

To provide historical context, we review a number of desiderata
that have either been suggested in the literature, and new ones that
we would like to have in a formal model of science. This section
introduces the key concepts used to produce our model and it eases
entry to the next section where we list the axioms of the model.

Desideratum 1. A formal model of science is necessarily more fundamental
than any theory produced by science. Such a model is therefore the logical
foundation of physics.

Let's explain why this is the case. First, we recall that a theory
that is able to prove (or disprove) the axioms of another theory is
considered more fundamental than the latter. In the case where the
axioms are proven, the latter theory is said to be a theorem of the
former.

In the case of scienti�c theories, the existence of a formal model
of science (such as the one presented here) precludes their status as
axiomatic theories and instead necessitate that they be theorems of
our model. Indeed, this is unavoidable; a formal model of science
implies that all theories that are the product of science be a theorem
of it. Failure to be the case, this would mean that the formal model of
science is simply insuf�ciently expressive.

Desideratum 2. Since a formal model of science is more fundamental than
any alternative physical theories, its starting points (axioms) should be
elementary and, more importantly, free of physical baggage.

Physical baggage, in the sense of (Tegmark [2014]) is an explicit
reference to a physical entity within the axioms of the theory. For
example, references to the mass, to time or to space, in classical
mechanics, are its physical baggage. As these are referenced in the
axioms, the theory is unable to explain the origin of such. Thus, by
virtue of being the most general scienti�c theory, the formal model of
science must be completely free of physical baggage.

It is through the practice of science generally that we are lead to
believe in an objective reality, where multiple observers appear to
share the same information about the world. Thus, we would like,
using the model, to prove the emergence of objective reality.
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Desideratum 3. A formal model of science should explain how the practice
of science is able to bring about a provable objective reality, strictly using the
tools of science. Concepts such as well-de�ned and reproducible experiments
will be key in that regards.

It goes without saying that there are subtleties with such an ap-
proach. We will now introduce a series of hints to guide us towards
the construction of the appropriate model. The �rst hint connects
the practice of science to the emergence of an objective reality, in the
sense given by John Archibald Wheeler.

2.1 Hint 1: John Archibald Wheeler

Here, we will directly quote John Archibald Wheeler and give an
interpretation of his participatory universe hypothesis within the
context of our work. We will argue that an axiomatic realization of
John Archibald Wheeler's participatory universe hypothesis is a
formal model of science.

We summarize John Archibald Wheeler's participatory universe
hypothesis as follows. First, for any experiments, regardless of its
simplicity or complexity, the registration of counts (in the form
binary yes-or-no alternatives, the bit) is taken as a common book-
keeping tool unifying the practice of science. Further to that, John
Archibald Wheeler suggests (in the aphorism "it from bit" (Wheeler
[1979, 1990])) that what we consider to be the "it" is simply one out
of many possible mixture of theoretical glue that binds the "bits" to-
gether. The "it" is, well, hypothetical, thus what is truly important is
the bit. He states;

"It from bit symbolizes the idea that every item of the physical world
has at bottom — at a very deep bottom, in most instances — an im-
material source and explanation; that what we call reality arises in the
last analysis from the posing of yes-no questions and the registering
of equipment-evoked responses; in short, that all things physical are
information-theoretic in origin and this is a participatory universe"

Here, John Archibald Wheeler explicitly implies that the bit is the
anchor. The bit comes into being in the �nal act, so to speak, and
then constraints the possible "it"s, whose theoretical formulation
must be consistent with all bits generated thus far. Furthermore, he
mentions that the bit is registered following an equipment-evoked
response.

To further illustrate, John A. Wheeler gives example of the theme
of it from bit. One of which is the photon.

"With polarizer over the distant source and analyzer of polarization
over the photodetector under watch, we ask the yes or no question,



on the logical foundation of physics (draft 2 ) 7

"Did the counter register a click during the speci�ed second?" If yes,
we often say, "A photon did it." We know perfectly well that the photon
existed neither before the emission nor after the detection. However,
we also have to recognize that any talk of the photon "existing" during
the intermediate period is only a blown-up version of the raw fact, a
count."

With this example John A. Wheeler restricts ontology to epistemol-
ogy. For him, it makes little sense to speak of the photon existing (or
not existing) until a detector registers a count. But he goes further
and suggests that even after the registration of a count, deducing that
the photon existed in between the counts is a "blown-up version of
the raw fact, a count". Here, John A. Wheeler implies that the counts
are what is real, not the theory that explains the counts. The theory
is one hypothesis among many alternative and is, at best, a mathe-
matical tool to make some sense of the counts, which by themselves
de�ne the world irrespective of the theory.

This completes my summary of John A. Wheeler's participatory
universe hypothesis. For the reader interested in more details, I
would recommend reading 4 and 5. So what is the missing part? 4 John A Wheeler. Information, physics,

quantum: The search for links. Complex-
ity, entropy, and the physics of information,
8, 1990
5 John Archibald Wheeler. Frontiers of
time. In Problems in the Foundations of
Physics. 1979

Why was John A. Wheeler not able to recover the laws of physics,
as he wanted from this method? Well, lets investigate. In Frontiers
of time, John A. Wheeler lays out an attempt to derive some form
of physical behavior/law from the study of experimentally-derived
bits, but his approach suffers from introducing physical baggage to
get it started. For instance, on page 150, he reasons that time should
emerge out of entropy. That is actually quite good. But then, he ar-
gues that because the universe goes from Big Bang, to Big Stop, to
Big Crunch, the statistics of entropy must be time symmetric. There-
fore, the only acceptable statistics to describe entropy are those that
he calls "double-ended statistics" which works in both directions
(pages150-155). The argument has of course an obvious fatal error;
if time is derived from the bits, then so should the cosmos — why
would one not be allowed to refer to time a-priori (it must be derived
from the bits!) but be allowed to refer to the cosmos' hypothetical
future time-reversal (it enforces the properties of the bits a-priori!).
The eventual correct approach will only make sense if all of it follows
from the bits. John Wheeler does understand this to be a problem,
and in his defense he does present "double-ended statistics" only as
a speculative example of what might be done. In fact, some 11 years
later he corrects his approach.

In Information, physics, quantum: The Search For Links, he provides
general guidance on how to rectify this. It is there that he intro-
duces the core idea that the bits are the result of the registering of
equipment-evoked responses. With this, John A. Wheeler discards
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the idea of referring to the cosmos at all to enforce any kind of prop-
erties on the bits, and instead refers to equipment evoked responses
exclusively. With this he is a lot closer to the real answer than before.
After-all, evidence for both time and the cosmos are derived from the
information provided to us by experimental devices (including bio-
logical senses). Although he spent considerable time developing the
idea of the bits and their signi�cance, he however, and to my knowl-
edge, did not further developed the idea of the equipment-evoked
response and how this ties, precisely, with the bits.

So why is associating bits to an equipment-evoke response es-
sential — what's so bad about stand-alone bits? To understand this,
we have to �rst recognize that the bits only have meaning if they
are associated to some logical structure and that bits without it are
meaningless. Lets see why with the following example:

Let's say that I were to provide you with a list of bits. Let's say I
give you 111010110001001110101010101. How valuable is this infor-
mation? Probably not much —can you guess why not? As a hint,
imagine if I were to tell you that these bits represent the winning
numbers of the next lottery draw. Then, all of sudden and although
the sequence of bits stays the same, the bits are much more valuable.

Alternatively, I could have said that these bits are the results of
random spin measurements. The bits once again stays the same,
but their meaning is now completely different. Thus, some form of
logical structure must be associated with any bits that we acquire,
otherwise they are without context or sense. This is why the pairing
of experimental results (in the form of bits) and the experimental
setup (under which the bits are acquired), are both equally crucial to
the description. Thus,

Desideratum 4. A formal model of science should be able to give context
to each bits of information that can be acquired about the World. Consistent
with the practice of science, this should be done by de�ning a well-de�ned
experiment (e.g. a protocol) for each bit which ascribes a meaning to it.

To make the idea precise, we must now specify what we mean
by a "well-de�ned experiment" while understanding that the main
dif�culty will be to do so in a manner free of physical baggage.
I believe this was the primary roadblock encountered by John A.
Wheeler: formalizing equipment-evoked response seems to require
a physical description of said equipment, and as this would contain
physical baggage, then the fundamentality of the theory would be
compromised. The next hint will tell us how to do it without physical
baggage.
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2.2 Hint 2: Gregory Chaitin

As stated, John A. Wheeler's participatory universe hypothesis re-
quires two parts to be made precise. The �rst part relates to the bits
which counts the clicks on the detector as yes-no alternatives, and the
second part relates to �eshing out a precise description of the exper-
imental setups under which counts can be registered. Indeed, it is
useless to register counts if one does not understand the setup under
which these counts occur. An experiment can only be replayed, and
understood, given a full description of both parts: counts and setup.

In the case where we want our model to be fundamental, we must
�nd a way to describe arbitrary experiments using no physical bag-
gage. This is one of the main dif�culty and it is at this point that
Gregory Chaitin's ideas of a method that I paraphrase as "describ-
ing mathematics as an assortment of halting experiments" enters the
picture.

Gregory Chaitin summarizes his work on the halting probability
(Chaitin [ 1975]) in the book Meta Math! (Chaitin [ 2004]). In it, he ar-
gues that the existence of a proof that W is algorithmically random
implies that the set of all mathematical truths is not reducible to a
�nitely axiomatic system, and then he further reinforces this result
quantitatively. Since mathematics is founded on �nitely axiomatic
systems, the result certainly causes one to pause. First let us intro-
duce what Omega is. Consider the following sum:

W = å
p halts

2�j pj (3)

Here, jpj denotes the length of p, a computer program. The sum
represents the probability that a random program will halt on a uni-
versal Turing machine. The Chaitin's construction (a.k.a. W, halting
probability, Chaitin's constant) is de�ned for a universal Turing ma-
chine as a sum over its domain (the set of programs that halts for it)
where the term 2 �j pj acts as a special probability distribution which
guarantees that the value of the sum, W, is between 0 and 1 (via the
Kraft inequality over a pre�x-free code). Knowing W is enough to
know the programs that halt and those that do not for the universal
Turing machine it is de�ned for. Since the halting problem is unsolv-
able, W must therefore be non-computable. In fact, W's connection
to the halting problem guarantees that it is algorithmically random,
normal and incompressible.

It is possible to calculate some small (always �nite) quantity of bits
of W. As such, Calude et al. [2002] calculated the �rst 64 bits of WU

for some universal Turing machine U as:
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WU = 0.0000001000000100000110...2 (4)

Running the calculation on a handful of bits is certainly possible,
however any �nitely axiomatic systems will eventually run out of
steam and hit a wall. Calculating the digits of p , for instance, will
not hit this kind of limitation. For p , the axioms of arithmetic are
suf�ciently powerful to compute as many bits as we wish to calcu-
late, limited only by the physical resources of the computers at our
disposal. To understand why this is not the case for W, we have to
realize that solving W requires solving problems of arbitrarily higher
complexity, the complexity of which always eventually outclasses
the power of any �nitely axiomatic system. The following result of
Gregory helps clarify the situation.

Further in the book, Gregory presents the strongest incomplete-
ness theorem he claims to have produced in his career. He states:

"A �nitely axiomatic system (FAS) can only determine as many bits of
W as its complexity.

As we showed in Chapter V, there is (another) constant c such that a
formal axiomatic system FAS with program-size complexity H (FAS)
can never determine more than H (FAS) + c bits of the value for W.

These are theorems of the form “The 39th bit of W is 0” or “The 64th
bit of W is 1”. (This assumes that the FAS only enables you to prove
such theorems if they are true.)"

The result is a signi�cant improvement upon the incompleteness
theorems of Gödel and Turing, primarily because it quanti�es the
number of bits n + c that are required to prove a certain quantity n of
bits of halting information.

To better understand what Gregory is saying with this theorem,
we must understand Kolmogorov complexity. The Kolmogorov com-
plexity of a binary string s is the length of the shortest program p
which outputs s for some universal Turing machine. We say that the
shortest program p is an elegant program for s.

With this, Gregory claims the following. 1. Any �nitely axiomatic
system FAS can be encoded as a strings. 2. The shortest program
p which outputs this string s is the elegant representation of the
theory. 3. Any �nitely axiomatic system cannot prove more bits of
W than the length of its elegant representation (plus a constant c
dependant upon the choice of programming language, but otherwise
�nite). Finally, he concludes that the impossibility of proving more
than some �nite quantity of bits of W places a quanti�able limit of
the logical completeness of any FAS. In other words, the shorter the
elegant representation of a theory is, the less "powerful" it can be (at
least in regards to proving the bits of Omega).
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What does Omega tell us?
****Explain that omega allows us to solve the halting probable.
Gregory dedicated a considerable amount of time to consider the

implication of his theorem. What does it mean for mathematics?
Gregory concludes the following:

"I therefore believe that we cannot stick with a single �nitely axiomatic
system, as Hilbert wanted, we've got to keep adding new axioms, new
rules of inference, or some other kind of new mathematical information
to the foundations of our theory. And where can we get new stuff that
cannot be deduced from what we already know? Well, I'm not sure,
but I think that it may come from the same place that physicists get
their new equations: based on inspiration, imagination and on — in the
case of math, computer, not laboratory-experiments."

Finally, Gregory Chaitin further suggests:

"So this is a “quasi-empirical” view of how to do mathematics, which
is a term coined by Lakatos in an article in Thomas Tymoczko's inter-
esting collection New Directions in the Philosophy of Mathematics.
And this is closely connected with the idea of so-called “experimental
mathematics”, which uses computational evidence rather than con-
ventional proof to “establish” new truths. This research methodology,
whose bene�ts are argued for in a two-volume work by Borwein, Bai-
ley and Girgensohn, may not only sometimes be extremely convenient,
as they argue, but in fact it may sometimes even be absolutely nec-
essary in order for mathematics to be able to progress in spite of the
incompleteness phenomenon..."

At this point Gregory focuses his attention away from axioms and
instead to focus on the bits of W as a general measuring device for
the creative content of arbitrary �nitely axiomatic systems. Gregory
asks:

[Is] W concentrated creativity? [Is] each bit of W [equal to] one bit
of creativity? Can human intellectual progress be measured by the
number of bits of W that we know, or are currently capable of knowing,
as a function of time?

Then Gregory intuits that a more creative mathematical theory
ought to expand its axiomatic basis. He further states:

To develop a model of mathematics that is biological, that is, that
evolves and develops, that's dynamic, not static. Perhaps a time-
dependent formal axiomatic system?

The intuition of Gregory appears to be that a suf�ciently complex
system (mathematics, nature, life, etc) might require a progressively
richer algorithmic landscape to be properly described. However,
since all �nitely axiomatic system can only prove n bits of W (�nitely
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many), they all hit an algorithmic plateau at some point and are thus
unsuitable to complete the task.

Here, we will borrow Gregory's intuition but we will �ip it. If
Gregory is right, and that the properties of W are conductive to a sci-
enti�c approach to mathematics, perhaps the appropriate insight for
our purposes is in the reverse; we instead seek to useW, its proper-
ties and insights, to formalize the practice of science using mathemat-
ics.

Mathematics is traditionally understood in the logical direction
that axioms implies theorems. We suggest that science ought to be
de�ned, formally, in the reverse direction: theorems implies axioms,
and that this can be made precise with the halting probability W. In
this framework, we assume that we are provided with a universal
Turing machine, that we are allowed to run programs on it, and
that we use the halting behaviour of said programs to increase our
knowledge in regards to the system (i.e., to formulate a theory of
halting experiments).

Using the halting probability makes it is therefore possible to
construct a mathematical structure which is de�ned by an assortment
of halting experiments whose results are encoded (in a maximally
compressed manner) as the bits ofW. The axioms of this structure
would no longer be the primary focus of the theory, instead, the
assortment of halting-experiments and its properties becomes the
focus. Indeed, in this construction, the axioms would refer to a choice
of Turing-complete programming language, and the theorems of
interest would be provable up to a constant c which does depend
upon the axioms, but otherwise have little to no impact.

This reversal should be reminiscent of the introduction to this
paper in which we argued against the axiom-to-fact formulation of
physics, in favor of a fact-to-axioms approach, consistent with the
actual practice of science.

Desideratum 5. The formal model of science should be heavily inspired
by Chaitin's construction. Each concept required for the de�nition and
estimation ofW, should be mapped to an analogous scienti�c concept. The
model therefore borrows the mathematical rigor of the halting probability,
and its properties, to de�ne the practice of science.

In this context, the practice of science consists of estimating W by
executing arbitrary programs, within some priors, on a universal
Turing machine and to note those that halt. At some point we might
stop and we would obtain a falsi�able (but not provable) estimation
of W.

We might now wonder what connection to the physical world this
purely mathematical structure has. For this, we need our next hint.
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2.3 Hint 3: Alan Turing

A function u is universal iff for all functions f , there exists an input
esuch that for all inputs x, u(e, x) = f (x). Expressed as a �rst order
logic sentence:

8 f 9e[8x[u(e, x) = f (x)]] (5)

This de�nition of universality was given by (Rogers and Rogers
[1967]) and it is a generalization to the concept of the universal Tur-
ing machine introduced by (Turing [ 1937]). A theory which can con-
structively prove the existence of such u is Turing complete.

Desideratum 6. To convince us that the practice of science is closed on the
informational content of the World, experiments must be Turing complete.

The concept of universality is epistemologically interesting. It is
the reason why halting experiments and physical experiments are
equivalent in some informational sense. Indeed, because of univer-
sality, physical experiments can prove any halting experiments and
vice-versa. Our ability to construct a physical computer, for instance,
allows us to verify the proof of many theorems (ex., the four color
theorem), but it also allows us to simulate a physical system. In prac-
tice the computer is memory limited, but in principle, there are no
memory thresholds beyond which we expect universality to fail in
nature. Logic is thus expected to hold universally.

To guarantee that physical experiments are isomorphic to halting
experiments, we must strengthen the concept of reproducibilitywith
the concept of replayabilitythat we will introduce here. In this context,
we are referring to algorithmic replayability: a machine with no
intuition, training or knowledge beyond simple bitwise operations
must be able to exactly replay each experiments that are carried out.

All experiments which are reproducible are replayable, but the
reverse is not true. Indeed, there exists irreproducible experiments,
which are nonetheless replayable. Replayability, unlike reproducibil-
ity, is consistent with the de�nition of the Turing machine, both in-
terpreted as a halting experiment, and as a physical experiment and
even in the presence of random data. The requirement of replayabil-
ity forces us to restructure the way we formulate scienti�c questions.
Let us investigate the differences with an example.

In the context of reproduciblity, it is common to ask "What results
will this experiment produce?". We may even try to predict what
those results are going to be from some theory, before carrying out
the experiment. However, by formulating our questions in this man-
ner we are inviting the discovery of non-reproducible experiments.
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For instance, under the exact same setup, we may �nd that we mea-
sure the spin of an electron to be up, or down. In this instance, the
results we obtained are different, yet the setup is identical. We would
infer, correctly, that whatever we cannot exactly reproduce under the
same experimental setup is evidence of intrinsic randomness (e.g.
quantum randomness).

This approach may seem reasonable, but every time I personally
employed it, my elementary school teacher would not approve (or at
least would mark me down). Indeed, we all remember the scienti�c
method from elementary school which consists of �rst posing an
hypothesis and then verifying that this hypothesis either holds, or
doesn't. As we rise through the echelons of academia, we all too
often start to think that we know better and we progressively neglect
this �rst step. Why bother formulating a formal hypothesis, if we can
just point the laser at the thing and see what it does immediately —
am I right? Unfortunately with replayability, this is a luxury we no
longer have.

In the context of replayability, questions formulated in this manner
are un-acceptable. All scienti�c questions must be reformulated as
per this structure: "Are these results consistent with this experimental
setup?". This question may appear similar as the �rst one, but it has a
subtle difference. In this latter question, one must have the results in
hand before one can even ask the question.

With questions structured as such, the job of the theoretical sci-
entist is slightly altered. We no longer expect the theoretical sci-
entist to predict what the results of a given experiment will be in
advance using some theory T, but instead to verify that some re-
sults are consistent with some experiment within some theory T.
In this formulation, the "bits" comes before the "it" even at the very
fundamental level of how we ask and answer questions about na-
ture. This difference may appear minor and indeed it is mute in the
case of reproducible experiments: predicting the results of repro-
ducible experiments is the same as verifying the consistency of these
results with said experiments. But as we will see in a moment, for
non-reproducible experiments, the difference is vital.

Desideratum 7. The standard of speci�cation of an experiment is that of
replayability. It strengthen the common scienti�c standard of reproducibility,
by requiring that all experiment verify a precise hypothesis.

As such, an experiment is de�ned consistently in reference to a
Turing machine:

Desideratum 8. An experiment is a protocol (e.g. a Turing machine) which
takes an hypothesis as an input (e.g. a binary string). If it halts, we say that
the protocol veri�es the hypothesis, or that it doesn't otherwise.
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With these ideas, the possibility of logical veri�cation is extended
to non-reproducible experiments. Let us compare the two cases ex-
plicitly.

• Reproducible: In this case, we would ask "what are the results of
�ve electron spin measurements under a Stern–Gerlach setup?".
If we tried it out experimentally, we may �nd f + ,+ ,� ,� ,�g on
the �rst try, and f� ,� ,� ,� ,+ g on the second. Our conclusion
will be that the results are random (non-reproducible). We may
devise a theory able to predict the probability distribution of the
results (e.g. quantum theory), but we cannot predict, by compu-
tation, the results before they are tried out experimentally. In this
case, no Turing machine can always give the right answer to these
questions.

• Replayable: In this case, we would ask "Are the results f + ,+ ,� ,� ,�g
consistent with the measurements of electron spin under a Stern–Gerlach
setup?". One can provide the correct answer (yes) with little men-
tal effort. We can change the values of the measurements and
re-ask the question : "Are the results f� ,� ,� ,� ,+ g consistent with
the measurements of electron spin under a Stern–Gerlach setup?",
and answer yes again. In this case, there does exist a Turing ma-
chine that always provides the correct answer. If said Turing ma-
chine halts on multiple inputs, then this could be construed as
indicative of randomness — thus, this method is at least as good
as the previous one. But how is it better?

With this upgrade, all scienti�c questions can now be veri�ed
by an effective mathematical process even those regarding non-
reproducible experiments. Therefore, the claim of an isomorphism,
justi�ed by universality, between halting and physical experiments
can now be taken seriously within the standard of replayability. In
fact, with this standard, we will be able to prove very satisfying the-
orems in regards to the notoriously stubborn quantum measurement
problem. Another consequence will be that we now have to describe
the universe as a participatory-universe, and our explanatory model
will have to be consistent with the requirement that participation
precedes explanation.

With this hint, the argument that we put forward is that:

1. Mathematics, formulated as an assortment of halting experiments,
and

2. Physics, formulated as an assortment of physical experiments,

are isomorphic in some fundamental epistemological sense. Our
appeal to computational universality is a valid proof of such within
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the standard of replayability, but it is non-constructive. It is with our
next two hints that we will see how to make the proof constructive of
the laws of physics.

2.4 Hint 4: Ludwig Wittgenstein

In the Tractatus Logico-Philosophicus(1927), Ludwig Wittgenstein lists
in a total of seven somewhat enigmatic propositions regarding what
he considers are the proper de�nitions of the world, its properties
and the consequences of such. The aim of the Tractatus is, in a nut-
shell, to imply that there is a limit to sensible thoughts (e.g., a limit to
the subject of formal language) and that this limit is, in some sense,
the limits of the world. His proof relies on constructing an isomor-
phism between language, thought and the world. Then as stated by
(Biletzki and Matar [ 2018]), "since language, thought and the world,
are all isomorphic, any attempt to say in logic (i.e., in language) “this
and this there is in the world, that there is not” is doomed to be a
failure, since it would mean that logic has got outside the limits of
the world, i.e. of itself."

We will study Ludwig Wittgenstein's work in the narrow con-
text in which it is applicable for a paper primarily concerned with
physics. Our �rst interest will be on how he constructed the iso-
morphism that he used to support his thesis. Indeed, we would ad-
vise that anyone who attempts to produce a mathematical structure
isomorphic to the physical world ought to pay close attention to
Wittgenstein's work. Finally, we will explain how this leads to onto-
logical censorship.

The propositions listed by Wittgenstein are sub-divided into hun-
dreds of sub-propositions with the intend of clarifying or adding to
the main proposition. It is within these sub-propositions that we �nd
the appropriate de�nitions to construct said isomorphism.

Before we begin, I should warn the reader to expect a permissive
description of Wittgenstein's work. Speci�cally, I should state that I
have derived the de�nitions necessary for the isomorphism indepen-
dently of the Tractatus, and only post-facto realized the similarities.
Thus my goal here is to show that my de�nitions have been antic-
ipated, to provide an analogous take on the subject and to use the
Tractatus as a "clari�cation tool" for my own de�nitions. As a result,
we will employ a modernized terminology to discuss Wittgenstein's
work which is more appropriate in the context of physics.

To scope the discussion, let us propose two hypothesis roughly
summarizing Wittgenstein's work and conclusions, using more mod-
ern terminology, and discuss them in more detail. For the �rst hy-
pothesis, we present a strong and a weak version.
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1. An epistemological closure hypothesis:

(a) (weak) Two universal structures are epistemologically equiva-
lent. This includes, the World, mathematics, science (as de�ned
in this work), Turing-complete languages, etc.

(b) (strong) The practice of science is closed on the informational
content of the World.

For the weak version of the hypothesis, the practice of science de-
�ned by Karl Popper (i.e., falsi�ability) is appropriate. In a nutshell;
inspired by experimentation, we guess a mathematical structure that
we believe to be isomorphic to the physical world, then we attempt
to falsify it. If the structure is falsi�ed, we �nd a new one. Rinse and
repeat until cosmological heat death.

For the strong version of the hypothesis, we are provided with a
methodology to construct the appropriate mathematical structure.
Said methodology is simply the practice of science formalized as a
model of mathematics. This latter version is suggestive of a participa-
tory universe in which science proves the real world as it is practiced.
The completion of this practice produces a universal mathematical
structure isomorphic to the World. The concept of falsi�ability is not
applicable in this case as the method is constructive of the appropri-
ate isomorphic mathematical structure (i.e., there is no longer a need
to guess it).

We now give the second hypothesis. It clari�es the limits of the
�rst one (both versions).

2. An ontological censorship hypothesis: The ontology of the World
cannot be revealed by language, or mathematics (or even science).

The practice of science, formalized in our model, imposes only
that whatever the "substrate of reality" is, it be Turing complete. This
imposition requires the practice to be universal, and since universal-
ity is epistemologically complete, we are confronted with ontological
ambiguity. For instance, one could successfully make the case that
reality is a language, or that reality is a computer simulation, or a
universal mathematical structure, or even a complex illusion in one's
mind. Indeed, there are in�nitely many candidate Turing-complete
structures which would be up to the task. As the practice of science
is unable to decide which of these structure is the actual one, the
ontology of the World is thus censored, ergo, the ontological censor-
ship hypothesis. The choice of ontological theory, provided that the
theory is Turing complete, is thus an aesthetic and we will call them
interpretations.

For the purposes of introducing additional desiderata, let us now
recall the relevant sub-propositions of the Tractatus that Wittgenstein
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used to construct the isomorphism between the World and language.
Please note that as the terminology of the Tractatus is somewhat
dated and inappropriate for physics we will be adopt a very permis-
sive interpretation of the sub-propositions. Our intention here is to
show that the de�nitions we will soon adopt for our formal model
of science have been anticipated before, and to increase the clarity by
introducing them from more than one perspective.

Speci�cally, in proposition 1, Wittgenstein states:

"

1. The world is all that is the case.

1.1. The world is the totality of facts, not of things.

1.1.1. The world is determined by the facts, and by their being all
the facts.

1.1.2. For the totality of facts determines what is the case, and also
whatever is not the case.

1.1.3. The facts in logical space are the world.

1.2. The world divides into facts.

1.2.1. Each item can be the case or not the case while everything else
remains the same.

[...]

"

According to Wittgenstein, the atomic component of the world is
not atoms, nor quarks, nor even superstrings, but facts. According
to Wittgenstein, we can understand reality with four main ideas: ( 1)
facts, (2) what is the case, (3) the state of affairs and (4) substance.

1. First, we consider the set of all possible facts. But not all facts
are actual. For instance, it is a fact that "if a unicorn falls off a
cliff and gravity exists, it will splatter on the ground". However,
this fact is not actual because one or more of the conditions of
the proposition are not met in real life (i.e., gravity exists, but for
whatever reasons, there are no unicorns). If one fact is actual, then
possibly in�nitely many proposition which refers to this fact are
also implied. Thus, a complicated web of propositions can emerge
immediately from a single fact becoming actual.

(a) Because all facts are conditional, then some facts are actual
(they are the case) and other facts are not.

(b) The state of affairs is de�ned as the set of all facts that are ac-
tual.

2. Secondly, Wittgenstein observes that nothing in logic would dictate
which fact is actual (a proposition is a fact iff it is conditional, but
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what sets the conditions?) and which fact isn't, thus he postulates
that the actuality of a fact is random (i.e. not dictated by logic).

3. Thirdly, we reason that the world appears somewhat stable —in
the sense that it is not just white noise over the random permuta-
tion of actual facts. The sun will hypothetically rise tomorrow with
high degree of con�dence despite the randomness of the actuality
of facts. If the actuality of facts is random, why is there this ap-
pearance of stability? To resolve this, Wittgenstein introduces the
notion of substance. For Wittgenstein, substance is what persist
independently of a change of actual facts.

4. Finally, Wittgenstein concludes that the substance is what nature
is, and facts are how we picture nature as.

Wittgenstein dedicates over two hundred sub-propositions for the
purposes of explicitly de�ning a proposition that can be considered
a proper fact, and to discuss their properties. His main concern is
to show that propositions are suf�ciently general to account for all
possible states of the world. His secondary concern is to guarantee
that each propositions only includes references to a state of the world
(and no subjective references for instance). In modern terminology,
his concept of a proposition is simply a formal computer program
which halts on certain input (e.g., the conditions of the proposition
are met), or otherwise does not halt (e.g., the conditions are not met).
Recall that the Tractatus was published in 1927, ten years before Alan
Turing and four years before Godel's incompleteness theorems.

To illustrate, let us recall the example of the unicorn that we have
just used. We have taken many shortcuts with this example. For
this proposition to truly be a fact in the sense of Wittgenstein, it
would require a lot more precision. To imply splattering, the ma-
terial strength, the structure of whatever the unicorn is made of and
the dynamics of such matter has to be embedded with the proposi-
tion. The proposition must necessarily follow from the conditions
should they be true. It must be infallible. This is why de�ning such
propositions as a computer program is so convenient. Indeed, com-
puter programs must be readable by some universal Turing machine
and thus, the behavior of the program is fully speci�ed and only de-
pends upon the input, which in this context is taken as the conditions
of the proposition.

In our model, a program that halts, or a physical experiment that
holds, is what we consider a fact to be. Since this is universal, it is ap-
propriate to call it a fact in the Wittgenstein's sense. Thus, consistent
with Wittgenstein's ideas,

Desideratum 9. A formal model of science should de�ne the World as the
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set of all facts.

and

Desideratum 10. A formal model of science should de�ne a fact as an (1)
experiment holding or terminating (in the physical interpretation) and as a
(2) program halting (in the mathematical interpretation).

In regards to nature (called substance in the Tractatus),

Desideratum 11. A formal model of science should de�ne nature using a
terminology (and properties) applicable to all Turing complete structures.

With proposition 2.24, Wittgenstein de�nes nature as what subsists
independently of the facts of the world. A better way to formulate
this (in the sense that it is more conductive to formalization) is to
claim that facts implies a certain nature. For instance, we say that
experiments implies a nature (with certain resources) to verify the ex-
periment. Whatever resources must be consumed to cause an experi-
ment to terminate are added to the nature in which the experiment is
veri�ed. For instance, a large set of dif�cult experiments, thus imply
a correspondingly large nature.

Desideratum 12. Each fact implies a nature required for its veri�cation.

Thus, the nature is the "substance" that veri�es the contextual-
ization of each bit of information about the World as an assortment
of replayable experiments. Nature, here acts as a proof checker for
physical experiments. Now that we have a modest idea of how the
model we will recover the idea of a substance, we will now specif-
ically discuss how the laws of physics are emergent from it. Is the
random statistics of actual facts suf�cient to bound nature to the laws
of physics? For this, we need our next hint.

2.5 Hint 5: Claude Elwood Shannon

The Shannon entropy (Shannon [1948]) is interpreted in the context
of receiving a messagex (usually a binary string) out of a set of pos-
sible messagesM. If the message is expected to be selected under
some probability distribution p(x), then the entropy of the statistical
ensemble corresponds to the information gained by receiving one
message from the set. The entropy of a set of messageM is de�ned
as:

H = � å
x2 M

p(x) ln p(x) (6)

The Shannon entropy provides us a way to make Wittgenstein's
world mathematically precise. Indeed, to start off:



on the logical foundation of physics (draft 2 ) 21

Desideratum 13. The set of facts that are actual can be interpreted, in the
Shannon sense, as an information-bearing "message/string" about the actual
World whose facts are randomly selected from the set of all possible facts.

Let us expand on this more with two examples.

1. For the �rst example, let us de�ne the set of all possible World as
containing a single element. Then there is only one possible world;
the one which is actual. We can perhaps imagine a model in which
a creator wills one and only one world into existence, such that
nothing is left to chance.

Intuitively, we understand that this interpretation is minimally
informative. But why is that the case? According to Shannon's
entropy, the actual world, interpreted as a message selected from
the set of all possible facts, is in fact the only possible world. Thus,
the entropy of the ensemble is 0, and knowing it versus what is
possible is a message carrying exactly zero bits of information.

2. At the other end of the spectrum, we instead suppose that the
set of possible facts is epistemologically complete in the sense
given in the previous hint. As the facts of the actual world are
randomly selected from this set, the "message" is thus maximally
informative. Indeed, to make the "message" more informative,
one would have to increase the size of the set it is constructed
from; that is make the set more epistemologically complete than
it already is. As the set is already complete, this is an impossible
task. Thus, the message is maximally informative.

The �nal part necessary for the laws of nature to emerge is to up-
grade the "generic" message about the world to a scienti�c message.
To achieve this, �rst, we impose that each element of a scienti�c mes-
sage beprovably replayable. Failure to meet this requirement, we
would say that the message is non-scienti�c, as the unveri�ed ele-
ments it contains could fail veri�cation (i.e. fail to halt). We can ful�ll
this requirement by taking nature, here understood as a general proof
checker for physical experiments, as the prior. In this context, nature
is a logical prior required for the computational veri�cation of all
elements of the scienti�c message.

It will be in this scenario that we will �nd the laws of nature emer-
gent from the model. With these de�nitions, we can then complete
John A. Wheeler's dream, and show that

Desideratum 14. The universe is a side-effect entirely emergent from
constructing a maximally informative scienti�c message about the world.

That is it; the world which we experience is formally connected to
how we prove it to be, and the "it" is entirely emergent from the "bit".
This result can be shown using no physical baggage of any kind.
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The reader who recalls his or her introductory classes to statistical
physics will no doubt recognize this description as a simple system
of statistical physics (in disguise). The nature required to verify the
replayability of the elements of the message (i.e., by running each
associated programs to termination once), is taken as the priors of the
message. Finally, maximizing the entropy within these priors yields
the laws of nature as an equation of state. We are now ready to enter
the more technical parts of the paper and make the idea precise.

Part I

Formal model of science

3 Technical introduction

3.1 Statistical physics

We will provide a brief recap of statistical physics. In statistical
physics, we are interested in the distribution that maximizes entropy,

S = � kB å
x2 X

p(x) ln p(x) (7)

subject to the �xed macroscopic quantities. The solution for this is
the Gibbs ensemble. Typical thermodynamic quantities are:

quantity name units type

T = 1/ (kBb) temperature K intensive (8)

E energy J extensive (9)

p = g/ b pressure J/ m3 intensive (10)

V volume m3 extensive (11)

m= d/ b chemical potential J/ kg intensive (12)

N number of particles kg extensive (13)

Taking these quantities as examples, the partition function be-
comes:

Gibbs ensemble

Z = å
x2 X

e� bE(x)� gV (x)� dN (x) (14)

The probability of occupation of a micro-state is:
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Gibbs measure

p(x) =
1
Z

e� bE(x)� gV (x)� dN (x) (15)

The average values and their variance for the quantities are:

E = å
x2 X

p(x)E(x) E =
� ¶ ln Z

¶b
(DE)2 =

¶2 ln Z
¶b2 (16)

V = å
x2 X

p(x)V (x) V =
� ¶ ln Z

¶g
(DV )2 =

¶2 ln Z
¶g2 (17)

N = å
x2 X

p(x)N (x) N =
� ¶ ln Z

¶d
(DN )2 =

¶2 ln Z
¶d2 (18)

The laws of thermodynamics can be recovered by taking the fol-
lowing derivatives

¶S

¶E

�
�
�
�
V,N

=
1
T

¶S

¶V

�
�
�
�
E,N

=
p
T

¶S

¶N

�
�
�
�
E,V

= �
m
T

(19)

, which can be summarized as

dE = TdS� pdV + mdN (20)

This is known as the equation of states of the thermodynamic
system. The entropy can be recovered from the partition function and
is given by:

S = kB
�
ln Z + bE + gV + dN

�
(21)

3.2 Algorithmic thermodynamics

Many authors (Bennett et al. [ 1998], Chaitin [ 1975], Fredkin and Tof-
foli [ 1982], Kolmogorov [ 1965], Zvonkin and Levin [ 1970], Solomonoff
[1964], Szilard [1964], Tadaki [ 2002, 2008]) have discussed the simi-
larity between physical entropy S = � kB å pi ln pi and the entropy
in information theory S = � å pi log2 pi . Furthermore, the similarity
between the halting probability W and the Gibbs ensemble of sta-
tistical physics has also been studied (Li and Vitanyi [ 2008], Calude
and Stay [2006], Baez and Stay [2012], Tadaki [ 2002]). Tadaki sug-
gests to augment W with a multiplication constant D, which acts as a
decompression term on W.

Chaitin construction Tadaki ensemble ( 22)

W = å
q2halts

2�j qj ! WD = å
q2halts

2� D jqj (23)
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With this change, the Gibbs ensemble compares to the Tadaki
ensemble as follows;

Gibbs ensemble Tadaki ensemble

Z = å
x2 X

e� bE(x) WD = å
q2halts

2� D jqj (24)

Interpreted as a Gibbs ensemble, the Tadaki construction forms
a statistical ensemble where each program corresponds to one of
its micro-state. The Tadaki ensemble admits a single quantity; the
pre�x code length jqj conjugated with D. As a result, it describes the
partition function of a system, which maximizes the entropy subject
to the constraint that the average length of the codes is some constant
jqj;

jqj = å
q2halts

jqj2�j qj from 16 (25)

The entropy of the Tadaki ensemble corresponds to the average
length of pre�x-free codes available to encode programs.

S = kB

�
ln W+ D jqj ln 2

�
from 21 (26)

The constant ln 2 comes from the base2 of the halting probability
function instead of base eof the Gibbs ensemble.

John C. Baez and Mike Stay (Baez and Stay [2012]) take the anal-
ogy further by suggesting an interpretation of algorithmic informa-
tion theory based on thermodynamics, where the characteristics of
programs are considered to be thermodynamic quantities. Starting
from Gregory Chaitin's W number, the Chaitin construction

W = å
q2halts

2�j qj (27)

is extended with algorithmic quantities to obtain

Gibbs ensemble Baez-Stay ensemble (28)

Z = å
x2 X

e� bE(x)� gV (x)� mN (x) W0 = å
q2halts

2� bE(q)� gV (q)� dN (q) (29)

Noting the similarity between the Gibbs ensemble of statistical
physics (14) and (29), these authors suggest an interpretation where
E is the expected value of the logarithm of the program's runtime,
V is the expected value of the length of the program, and N is the
expected value of the program's output. Furthermore, they interpret
the conjugate variables as (quoted verbatim from their paper);
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"

1. T = 1/ b is the algorithmic temperature(analogous to temperature).
Roughly speaking, this counts how many times you must double
the runtime in order to double the number of programs in the
ensemble while holding their mean length and output �xed.

2. p = g/ b is the algorithmic pressure(analogous to pressure). This
measures the trade-off between runtime and length. Roughly speak-
ing, it counts how much you need to decrease the mean length to
increase the mean log runtime by a speci�ed amount while holding
the number of programs in the ensemble and their mean output
�xed.

3. m = � d/ b is the algorithmic potential(analogous to chemical po-
tential). Roughly speaking, this counts how much the mean log
runtime increases when you increase the mean output while hold-
ing the number of programs in the ensemble and their mean length
�xed.

"

–John C. Baez and Mike Stay

From equation (29), they derive analogs of Maxwell's relations and
consider thermodynamic cycles, such as the Carnot cycle or Stoddard
cycle. For this, they introduce the concepts of algorithmic heatand
algorithmic work. Other authors have suggested other alternative
mappings in other but related contexts (Li and Vitanyi [ 2008], Tadaki
[2008]).

3.3 Feasible Mathematics

In an previous article (Harvey-Tremblay [ 2017]), I suggested a frame-
work for feasible mathematics based on algorithmic thermodynamics.
What is feasible mathematics?

Feasible mathematics is an alternative take on the familiar notions
computational complexity theory (CT) such that it better connects to
nature. Let us �rst recall what CT is. CT is the study of the inherent
dif�culty of computational problems; as such, CT classi�es prob-
lems by the increase in dif�culty associated with an increase in input
size. For example, a binary search algorithm will have a dif�culty
of O( log n), and thus it has a logarithmic complexity. Indeed, the
number of steps required to �nd an item from n sorted items grows
proportionally to the logarithm of n.

Why bother with an alternative take on the subject? CT does not
correctly distinguish between all indicators of complexity. As an
example, the dif�culty between, say, an exponential problem with
a small multiplication constant O(2n) � 0.001 and a polynomial
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problem with a large multiplication constant O(n2) � 1099999999is
bizarrely classi�ed. As far as CT is concerned, the latter problem is
much simpler than the �rst as it only grows in n2 versus 2n. How-
ever, in practice, the latter might never be solved because there might
not be enough resources in the observable universe to do so (even for
n = 1). Therefore, although this idea is of course very interesting,
something is missing from CT to truly connect it to nature. This is
where feasible mathematics comes in.

Some research has been done in the area of feasible numbers (per-
haps a distant cousin of feasible mathematics). The most promising
work in this �eld may be Vladimir Yu. Sazonov's paper on feasible
numbers (Sazonov [1995]). He suggest that feasible numbers are in-
tuitively a set of numbers F which satis�es 0 2 F, F + 1 � F and
21000 /2 F. Then, he investigates various constructions which he
claims allow the consistent treatment of such sets by imposing var-
ious restrictions on the expression of proofs. For example; limiting
the quantity of symbols allowed in a proof, and/or requiring the en-
coding for numbers to be in unary, etc. Using these restrictions, he
claims to have a system which guarantees that all steps of the proof
are feasible (below a certain complexity bound).

The framework for feasible mathematics introduced here takes
a different approach. It recognize that 2 1000 is a large number but
nonetheless, it can be compressed to a short representation. Thus,
it accepts that theorems featuring this number can be proven even
in the context of limited resources. Feasible mathematics proposes a
method to treat feasibility as a limit applicable to proof complexity
based on limited available computing resources, as opposed to by
axiomatically restricting the language the proof is expressed in.

Feasible mathematics is de�ned using various "meta-indicators"
of complexity that can be associated with any proofs independently
from the power of expression of the language of the proof. By bound-
ing proofs based on such indicators, the proof landscape available to
a mathematician with limited resources is reduced (made feasible)
whilst the expressive power of the language of the proofs remains
untouched. As a result, we believe that a representation of mathe-
matical feasibility based on limited computing resources more accu-
rately describe the practical notion of feasibility. As the framework
of feasible mathematics is applicable to an arbitrary set of formal
axioms, we introduce a distinction between feasible mathematicsand
universal mathematics. Universal mathematics is made feasible when,
intuitively, the proof landscape of the mathematician is bounded by
computational limits. In this sense, all practical work in mathematics
is feasible. The main result of the framework is a relation de�ning the
boundary between feasible and universal mathematics for some given
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set of computing resources.
The domain of feasible mathematics is de�ned as an extension to

the halting probability W of computer science. Using a similar con-
struction, we de�ne a probability Z that represents the probability
that a random program will halt within some available computing
resources. These resources can be time, memory, clock speed, etc.Z
does for feasible mathematics what W does for "universal mathemat-
ics". Interestingly, when the computing limits are made to vanish, Z
will converge to W, and thus universal mathematics will be recovered
in the regime of unbounded computing resources.

To make this concrete, let us introduce the following scenario
as the typical problem of the �eld. Suppose a research group with
access to a supercomputer. Alice has been granted a �xed amount of
computing resources to use on the supercomputer. She has further
been instructed to run a program qA . With no prior knowledge of qA ,
what is the probability that the program will halt within the allocated
resources?

To make feasible mathematics precise, we will consider mathemat-
ical proofs as computer programs that are executed on a universal
Turing machine. We will then construct a statistical ensemble able
to de�ne the boundary between feasible mathematics and universal
mathematics. As a �rst example, we introduce into WD the quantity
t(q) (the program-runtime) along with its conjugate P (lets call it the
halting-power in anticipation of the physical isomorphism we will
later present) and we obtain the construction Z.

Z = å
q2halts

2� Pt(q)� Fx(q) (30)

where

Z 2 R � 0 numerical value of the sum ( 31)

t(q) : q ! N number of operations required for q to halt (32)

P 2 R conjugate to t(q) in units of (operations) � 1 (33)

x(q) : q ! N number of bits of the size of q (34)

F 2 R conjugate to x(q) in units of (bits) � 1 (35)

The corresponding probability measure is:

p(q, P, F) =
1
Z

2� Pt(q)� Fx(q) (36)

It maximizes the entropy subject to the following constraints:

t = å
p2halts

p(q, P, F)t(q) average program-runtime t (37)

x = å
q2halts

p(q, P, F)x(q) average program-size x (38)
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Each Lagrange multiplier of the partition function Z is a com-
puting resource (in this case: P and F) that must be provided by the
supercomputer to �x their respective conjugated mean quantities ( t
and x). The resources are interpreted as follows:

Resource Variable Conjugate Function

halting-power P program-runtime t(q) (39)

halting-force F program-size x(q) (40)

• The halting-power counts how many times the mean program-
runtime must be doubled in order to double the entropy of the
ensemble while holding the mean program-size �xed.

• The halting-force counts how many times the mean program-size
must be doubled in order to double the entropy of the ensemble
while holding the mean program-runtime �xed.

In the supercomputer analogy, the halting-power can be under-
stood as �xing to the mean time at which programs are made to
terminate, and the halting-force as �xing the density of halting pro-
grams versus non-halting programs within the ensemble.

There exists alternative constructions of Z such that other re-
sources are �xed by the supercomputer.

Halting-action to program-frequency formulation:

Z0 = å
q2halts

2� S f(q)� Fx(q) (41)

To formulate this relation, we must introduce the program-frequency
f (q) as the inverse of the runtime t(q), thus f (q) := 1/ t(q). This for-
mulation �xes a mean frequency f by having the supercomputer
provide a constant halting-action to the system:

Resource Variable Conjugate Function

halting-action S program-frequency f (q) (42)

halting-force F program-size x(q) (43)

• The halting-action counts how may times the mean program-
frequency must be doubled in order to double the entropy of the
ensemble while holding the mean program-size �xed.

Halting-time to program-power formulation:

Z00= å
q2halts

2� tP(q)� Fx(q) (44)
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This formulation �xes a mean program-power P by having the
supercomputer provide a constant halting-time to the system:

Resource Variable Conjugate Function

halting-time t program-power P(q) (45)

halting-force F program-size x(q) (46)

• The halting-time counts how many times the mean program-
power must be doubled in order to double the entropy in the
ensemble while holding the mean program-size �xed.

This formulation describes a system where all programs halt at
the same time. To guarantee this behavior, the supercomputer must
adjust the computation power on a per program basis P(q).

Time-cutoff formulation:

Z000= å
q2halts;t(q)� k

2� Fx(q) (47)

The sum Z000is done only on programs that halt within a time
cutoff k. Thus, Z000contains no "non-halting information" and is com-
putable. W is recovered in the limit when k ! ¥ .

Size-cutoff formulation:

Z0000= å
q2halts;jqj� k

2� Fx(q) (48)

The sum Z0000is performed only on programs with sizes less or
equal to k. W is recovered in the limit when k ! ¥ . Z0000represents
the �rst n bits W up to the cutoff k.

Computational-complexity formulation:

Z0000= å
q2halts;O(q)= log n

2� Fx(q) (49)

The sum only includes programs which provably halts on log n
complexity. (Well this part is slightly embarrassing: I never said fea-
sible mathematics makes computational complexity theory simpler,
just that it can recover it as a special case.)

Interpretation via supercomputing reservoirs:
In the context of feasible mathematics, we interpret the supercom-

puter as taking a similar role to the role taken by the various baths
in thermodynamics (heat bath, particle bath, etc). For example, in
thermodynamics we would say that a system which can exchange
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energy with its environment is in contact with a heat bath. Its tem-
perature will be constant but its total energy would �uctuate as it is
exchanged with the bath. By analogy, in feasible mathematics, we
would imagine that a computation occurs in a supercomputer which
schedule priority, assigns memory, etc. so has to maintain various
mean program quantities �xed during the calculation.

The typical Gibbs ensemble in physics is Z(b) = å i e� bEi . It's
average energy is given by E = � ¶ln Z/ ¶b whose �uctuations are
given by (DE)2 = ¶2ln Z/ ¶b2. From these relations, the ensemble
can be informally illustrated as a system in contact with a thermal
reservoir. In this case, both the system and the reservoir have the
same temperature and they can exchange energy. The reservoir is
considered large enough that the �uctuations of the smaller system
are negligible to its description —mathematically, it has in�nite heat
capacity. Thus, the reservoir abstractly represents an in�nitely deep
pool of energy at a given, constant temperature.

In the context of feasible mathematics, supercomputers are in-
terpretable using a similar analogy. The role of the heat baths are
replaced with compute baths. Each exchange with the compute baths
will produce resources that are then available for the purposes of
advancing the computation. The intensity of the exchanges are cal-
ibrated by the Lagrange multipliers of the ensemble. For instance,
instead of a heat bath, we a runtime-bath and a tape-bath (associ-
ated with the tape of a UTM). The intensity of the exchanges between
the system and the runtime-bath are calibrated by halting-power,
and those with the tape-bath are calibrated by the halting-force. The
reservoirs have mathematically in�nite runtime and tape capacities,
and thus acts as in�nitely deep pools of computing resources. Com-
puting is made possible by the interaction of the reservoirs with the
system, and the boundary of the feasibility landscape is calibrated by
the halting-power and the halting-force provided to the system by the
supercomputer.
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4 Axioms of science

4.1 Foundation

De�nition 1 (Experiment) . An experiment p is a well-de�ned
protocol TM (formalized as a Turing machine) and an hypothesis h.
An experiment holds iff TM(h) is de�ned . In this case TM(h)
produces the result r and TM(h) = r. Otherwise, the experiment
fails and TM(h) is unde�ned . Speci�cally,

TM (h) =

8
<

:
r [p holds]

@ [p fails]
(50)

De�nition 2 (World) . The worldW is the set of all experiments
that holds.

8p[p holds =) p 2 W ] (51)

A formal theory is usually de�ned as set of �rst order sentences
and its domain as the set of all sentences it is able to prove. How-
ever, this de�nition is not suf�ciently reproducible for our purposes.
Indeed, given a formal theory, there usually exists arbitrarily many
different ways of proving a theorem. To eliminate this ambiguous
behavior, we thus instead de�ne a formal theory as follows.

De�nition 3 (Theory). Suppose a set T of sentencesf s1, s2, ...g.
ThenT is a theory for T iff it is a Turing machine that halts on s iff
s 2 T.

8s[T (s) halts () s 2 T] (52)

As the Turing machine is deterministic, each sentence of T admits
a single proof, realized by causing T to halt on it when taken as
input. In this case, we say that T proves p iff T (p) halts.

4.2 Properties of scienti�c theories

From these initial de�nitions, we can list properties of theories
(where p is an experiment).
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De�nition 4 (Effective). A theoryT is effective inW iff:

9p[(T ` p) ^ (p 2 W )] (53)

De�nition 5 (Falsi�ed) . A theoryT is falsi�ed in W iff:

9p[(T ` p) ^ : (p 2 W )] (54)

De�nition 6 (Complete). A theoryT is complete inW iff:

8p[(p 2 W ) =) (T ` p)] (55)

De�nition 7 (Sound). A theoryT is sound inW iff:

8p[(T ` p) =) (p 2 W )] (56)

4.3 Participation

De�nition 8 (Participation) . A setP is a participation set iff all of
its elements are experiments and its carnality is less than in�nity:

8p[p 2 P =) p 2 W ] (57)

jP j < ¥ (58)

4.4 Observer

We introduce the notion of an observer as a primitive notion. A prim-
itive notion is a concept that is not formal but is nonetheless used
in a formal theory. Logically, a theory has to start somewhere in a
language. For instance, let's take set theory which formally has two
primitive notions: "element of" and "set". As Mary Tiles says in The
Philosophy of Set Theory; "[The] 'de�nition' of 'set' is less a de�nition
than an attempt at explication of something which is being given the
status of a primitive, unde�ned, term". Furthermore, quoting Felix
Hausdorff; "A set is formed by the grouping together of single ob-
jects into a whole. A set is a plurality thought of as a unit.". Finally,
Bertrand Russell considered these notions in general and called them
"inde�nables of mathematics".
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The most fundamental concept of any rigorous theory must al-
ways be a primitive notion, or such theory is necessarily circular.
Here, our primitive notion is that of an observer. An observer is un-
derstood by its relationship with the de�nitions and laws that we
introduce and derive from the framework.

Primitive Notion 1 (Observer). Denoted by the symbolO.

Axiom 1 (Participatory-observer) . All observers are associated a
participation set. To represent the relationship, we de�ne a predicate
P. P is true iffP is the participation ofO in W . Then,

8O[9P [P(O,P)]] (59)

Axiom 2 (Existence of the observer). We brutely claim the
existence ofO.

9O (60)

4.5 Practice of science

De�nition 9 (Scienti�c message). A scienti�c message is a
message, in the sense of Shannon's information theory, constructed
under the principle of maximum entropy out of elements ofW , and
under priors (computing resources) suf�cient to verify (run to
completion) the content (the elements) of the message. All elements
of a scienti�c message are provably replayable within the priors.

De�nition 10 (Nature) . We call the prior of a scienti�c message,
Nature. The natureN implied by a theoryT is de�ned for an
experiment p as the set of computing resources, in the sense of
feasible mathematics, required to prove p inT . We suppose a
function g, de�ned as

g : p,T ! N (61)

The function g takes p andT as inputs then returns the computing
resources required forT to prove p.
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• In Theorem 1, we prove the existence of such a function g.

• A participation set P, when interpreted as a scienti�c message, is
said to be maximally informative (in the sense of Shannon's theory
of information).

De�nition 11 (Laws of nature) . A function f (N ,P) = 0, called
an equation of the state of nature, is a law of nature iff it is
emergent, in the sense of statistical physics, from an ensemble of
feasible mathematics with domainW and for allP veri�able in N .

The laws of nature are participatory-invariant:

De�nition 12 (Participatory-invariance) .
Participatory-invariance is the most fundamental symmetry of
nature. The laws of nature are participatory-invariant.
Participatory-invariance embodies the idea that the observer can
participate* (e.g., make changes in nature) but certain properties will
not change by any act of participation. These properties are
inviolable from the perspective of an observerO who will interpret
them as laws of nature. Participatory-invariance explains why we
obtain emergent laws in this framework.
*Participation does not need to assume that the observer has
free-will, or intentions. It is merely a mathematical relationship
(de�nition 8) betweenO and a set of experiments associated with it
by the predicate P. "Making a change in nature" in this context
simply refers to replacing the participation set associated withO
with another different participation set. Whatever remains invariant
under all permutations of setP veri�able in N are whatO perceives
as inviolable laws.

4.6 Meta-theory

To discuss the subject matter and formulate proofs, we will adopt a
suf�ciently expressive, Turing complete, formal language. Naturally,
we adopt set theory for the task at hand.

Axiom 3. We adopt the axioms of �rst-order logic with equality and
the axioms of ZF set theory.
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5 Theses

Thesis 1 (Central Thesis). A participation setP, when interpreted
as a scienti�c message, is a mathematical structure isomorphic to the
(real) physical nature, and the laws of nature are the laws of physics.

Thesis 2 (Secondary Thesis). The de�nition of nature survives the
"Cartesian argument", and is therefore presented as a theory of
reality. Nature is that which is required for the practice of science
(verifying experiments), and thus its existence cannot be refuted by
such.

6 Foundational theorems of science

Theorem 1. There exists a function g that returns the running time and
the input size of p iff p is provable inT .

Proof. Non-constructively, we imagine a function g, which can simu-
late any Turing machine (i.e. it embeds a universal Turing machine).
g takes as input a program p and a theory T . It then uses the utm
to run p on T . For each operations done by the utm, g increments
a counter by one. Once and if the execution terminates, the func-
tion returns the value of the counter along with the size of the in-
put jpj. The resources are then the running time t(p) (the value of
the counter) and the input-size r(p) required to bring p to termina-
tion.

Theorem 2 (Main Result) . Here, we interpret the participation setP
associated with an observerO, as a message about the actual WorldW.
Consistent with the practice of science, we require that all elements p in
P are veri�ed in natureN, the priors. In this case, we call the message, a
scienti�c message. We note here thatN is not necessarily a physical prior,
but rather a logical prior required to proof check the physical experiments,
elements of the message. Interpreted as such,P is a mathematically feasible
ensemble ofW, andN are the computing resources required from the veri�-
cation of the elements ofP. Making the ensemble precise with function g in
(theorem1), yields the main result. Let us derive it now, then in Part II we
will investigate how the laws of physics are emergent.



on the logical foundation of physics (draft 2 ) 36

The participatory-invariant ensemble of experiments for a
nature N de�ned for the priors t and r is:

Z = å
p2W

exp ( l t t(p) � l r r(p)) (62)

and its equation of state is:

dS= � l tkBdt + l rkBdr (63)

Preliminaries. For consistency with the units of physics, we use the
Boltzmann de�nition of entropy (similar to Shannon's de�nition but
with an extra constant kB), and we use the natural unit of information
e (the nat), instead of the bit.

We de�ne an experiment p, in the sense of statistical physics, by
its "microscopic" properties as it relates to the priors N . The simplest
ensemble of feasible mathematics requires two terms; a �rst term
acting on the length of programs to make the sum convergent, and a
second acting on the running time, to make the ensemble computable
in �nite time. More complicated ensembles are possible, but they
would be less informative.

Let W be the set of experiments. We de�ne the functions r(p)
and t(p) as mapping each experiments p 2 W to its microscopic
properties as:

Program length: r : W ! N � 0 [number of bits ] (64)

Program running-time: t : W ! N � 0 [number of operations ] (65)

In the context of statistical physics, and feasible mathematics, the
microscopic properties of experiments r(p) and t(p) related, in the
partition function, to the macroscopic average priors r and t.

Proof. Under the principle of maximum entropy, we seek the proba-
bility distribution r : W ! f q 2 R j0 � q � 1g and å p2W r (p) = 1
which maximizes the entropy S:

S = � kB å
p2W

r (p) ln r (p) (66)

and subject to the priors t and r
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t = å
p2W

r (p)t(p) (67)

r = å
p2W

r (p)r(p) (68)

We maximize the entropy using the well-known method of the
Lagrange multipliers.

L =

0

@� kB å
p2W

r (p) ln r (p)

1

A + l 0

0

@ å
p2W

r (p) � 1

1

A

+ l t

0

@ å
p2W

r (p)t(p) � t

1

A + l r

0

@ å
p2W

r (p)r(p) � r

1

A (69)

Maximizing L with respect to r (p) is done by taking its derivative
and posing it equal to zero:

¶L
¶r (p)

= � kB ln r (p) � kB + l 0 + l t t(p) + l r r(p) = 0 (70)

Solving for r (p) we obtain:

r (p) = exp
�

kB + l 0 + l t t(p) + l r r(p)
kB

�
(71)

From the constraint 1 = å p2W r (p), we can �nd the value for l 0:

1 = å
p2W

r (p) (72)

= å
p2W

exp
�

� kB + l 0 + l t t(p) + l r r(p)
kB

�
(73)

= exp
�

� kB + l 0

kB

�

å
p2W

exp ( l t t(p) + l r r(p)) (74)

We de�ne the partition function Z to be

Z := å
p2W

exp ( l t t(p) + l r r(p)) (75)

Then, we rewrite r (p) using Z, we pose l t := 1/ t0 and l r :=
� 1/ r0 and we obtain the probability distribution:
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r (p) =
1
Z

exp
�

1
t0

t(p) �
1
r0

r(p)
�

(76)

where 1/ t0 and � 1/ r0 are the Lagrange multipliers (a justi�cation
for the choice of signs will be provided after the results in section ??).
Finally, we obtain the equation of state:

dS= �
kB

t0
dt +

kB

r0
dr (77)

De�nition 13 (Domain of epistemology) . This work adopts the episte-
mological theory of Infallibilism. As such we consider philosopher Richard
L. Kirkham's suggestion that to qualify as knowledge, the justi�cation of a
belief must necessitate its truth (Gettier [1963], Kirkham [1984]). Consis-
tent with this suggestion, we formally de�ne the domain of epistemology as
the set of all halting programs (de�ned as the domain of a universal Turing
machine u).

Then,

Theorem 3. Given enough resources, the practice of science is, in the
limit, epistemologically complete. To prove this, we show that the partition
function Z converges towardsWD , the Tadaki ensemble, whent ! ¥ .

lim
t! ¥

Z ! WD (78)

Proof. First, we rewrite WD as:

WD = å
p2W

2� h(p)� Dr (p) where h(p) :=

8
<

:
0 p halts

¥ otherwise
(79)

Second, we note that the runtime t(p) of a program p will be �nite
if it halts and in�nite otherwise.

t(p) =

8
<

:
t i 2 N � 0 p halts

¥ otherwise
(80)

Then taking the limit of Z,

lim
t0! ¥

1
t0

t(p) =

8
<

:
0 p halts

¥ otherwise
(81)
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This is the de�nition of h(p). Therefore,

lim
t0! ¥

1
t0

t(p) ! h(p) (82)

Thus,

lim
t0! ¥

Z ! WD (83)

Theorem 4. Z monotonically converges towardsWD as the available
resources are increased.

Proof. Without loss of generality, let us now expand Z explicitly
with an example. Assume a system comprised of three experiments
with program length jp1j = 1, jp2j = 2 and jp3j = 3 and with the
running times t1 = 5, t2 = ¥ and t3 = 5. In this example, p1 and p2

hold and p3 does not. For the purposes of simplicity, we can assume
that all other experiments do not hold. In this case, the system is
not universal but let us nonetheless use it as a simpli�ed numerical
example. The sum Z, in base 2, becomes;

Z( l t ) = 2� 1+ 5l t + 2� 2+ ¥ l t + 2� 3+ 5l t (84)

We will now produce a series of numerical calculations with pro-
gressively smaller values of l t and we will look at the evolution of
the error rate x( l t ) = W � Z( l t ). For this system, W = 0.1010b.

(� l t ) Z( l t ) x( l t ) error

¥ 0 W max (85)

1 0.000000101...b 0.10011011b � 2� 1 (86)

0.1 0.011100010...b 0.00101110...b � 2� 3 (87)

0.01 0.100110101...b 0.00000010...b � 2� 6 (88)

0.001 0.011100010...b 0.00000000...b � 2� 9 (89)

...
...

...
...

0 W 0 none (90)

As we can see, increasing the halting-power (P := 1/ l t ) causes
the value Z to monotonically converges towards W. The error rate
decreases as more valid bits ofW are obtained.
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Theorem 5. An observer knowing the �rst n bits of Z will be able to de-
cide at most2n programs within the computing resources de�ned by the
priors N . Z de�nes a feasible boundary on the domain of a universal Turing
machine.

Proof. We consider a numerical value for Z whose �rst k bits corre-
spond to the bits of W. We look at two cases: 1) For the �rst k bits, Z
can decide 2n programs for n bits (same as with W). 2) For the bits
after k, the situation is as follows: To recover the feasible programs
beyond k, an observer can execute programs on a universal Turing
machine in dovetail. As they halt, the observer adds their contribu-
tion to Z. Once the value of Z is recovered, then all programs taking
longer to halt are beyond the feasible bound, regardless of whether
they ultimately halt or not. The number of programs feasibly halting
within the priors by the second case is at most 2n.

With theorem ( 3), (4) and (5), we conclude that the practice of sci-
ence increases knowledge as it is practiced, and in the limit recovers
all infallible knowledge.

Part II

Central Thesis: Entropic

emergence of the cosmos
In a participatory-universe, the cosmos is a side-effect entirely emer-
gent from the construction of a maximally informative scienti�c mes-
sage about the world, veri�able within nature.

7 Preliminaries

For the central thesis, our primary aim is to show that our model
maps to the physical world. Our strategy to do so will be borrowed
from introductory statistical physics. We will adopt the same line
of reasoning which allows the Lagrange multiplier b of statistical
physics to be connected to the notion of a physical temperature. As
you may recall, in introductory statistical physics:

1. The Gibbs ensemble is �rst derived from statistical arguments as
the ensemble which maximizes the entropy subject to �xed energy
quantities. The process introduces a multiplication constant known
as the Lagrange multiplier and is designated by b.
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2. From the Gibbs ensemble, a relation between b, energy and en-
tropy is obtained: bdE = dS.

3. Then, it is shown that this relation recovers a well-known and
empirically-uncontested law; such that the two are exact replicas
if and only if b is de�ned using the temperature T. In this case,
S = ln W is used to connect b to T via b = 1/ (kBT).

4. Thus, we conclude that the Gibbs ensemble is a description of a
physical system involving energy, entropy, and temperature.

We adopt the same line of reasoning here. As such our goal is
to derive as many laws of physics as we can from Z to support the
thesis. Speci�cally, with these results in hand, we will conclude that
the system can consistently be interpreted as a description of the
cosmos.

7.1 Entropic emergence of laws

Statistical physics is a theory regarding the emergence of macroscopic
laws from some microscopic description. The laws emergence under
an appropriate equilibrium condition; usually taken to be the tem-
perature of the system. The typical case is molecules of air in a gas at
uniform temperature and pressure. In this case an entropic pressure
(with units N/ m2) emerges, and it is de�ned as follows:

TdS= pdV (91)

Another case is that of an entropic force. The entropic force (with
units N) is de�ned as

TdS= Fdr (92)

and it is experienced by any system whose entropy vary over the
distance r. A well-known example is the contraction of a polymer in
a warm bath.

Finally, we mention the area case and its conjugate, the entropic
surface tension (units N/ m), de�ned as follows:

TdS= kdA (93)

As an example, it is responsible for water droplets to be spherical.
The variation of entropy over the area pushes the system towards its
highest entropy state. This push is experienced as a surface tension in
the area case.
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It became apparent that a deep connection existed between cos-
mology, at least for event horizons, and thermodynamics staring in
around 1973with the results of (Bekenstein [ 1973, 1980], Hawking
[1974], Gibbons and Hawking [ 1977]), later in 1995with the results of
(Jacobson [1995]), and also in 2011with the result of (Verlinde [ 2011]).

7.2 Insight 1: Jacob Bekenstein

Attributing an entropy to events separated by a horizon in order to
connect to thermodynamics has been done since at least1973by J.D.
Bekenstein (Bekenstein [1973]). For instance, from G. W. Gibbons and
S. W. Hawking's 1977article (Gibbons and Hawking [ 1977]), I quote:

"An observer in these models will have an event horizon whose area
can be interpreted as the entropy or lack of information of the observer
about the regions which he cannot see."

Bekenstein suggested that black holes should have an entropy
proportional to their area. The results was made precise with the
results of Hawking, yielding what is called the Bekenstein-Hawking
entropy applicable to a black hole of area A,

S = kB
A

4L2
p

(94)

Bekenstein also suggested laws of black hole thermodynamics,
analogous to the conventional laws of thermodynamics. They are:

0. The zeroth law:

(a) Thermodynamics: The temperature is constant throughout a
system at thermodynamic equilibrium.

(b) Black hole: The surface gravity is constant throughout the hori-
zon of a stationary black hole.

1. The �rst law: The emergent conservation law for each frameworks
are:

(a) Thermodynamics:

dE = TdS (95)

where E is the average Energy, and T is the temperature.

(b) Black hole:

dE =
c2

8p G

�
c4

GM

�
dA + WdJ+ F dQ (96)

where W is the angular velocity (not to be confused with Gre-
gory's constant), J is the average angular momentum, F is the
electrostatic potential and Q is the average electric charge.
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2. The second law:

(a) Thermodynamics:

dS
dt

� 0 (97)

(b) Black hole:

dA
dt

� 0 (98)

3. The third law:

(a) Thermodynamics: The entropy of a system at temperature
0[Kelvin ] is a constant C.

(b) Black hole: The surface gravity of a vanishing black hole is a
constant k.

The �rst and the second laws of black hole thermodynamics were
superseded by the discovery of black hole entropy and Hawking
radiation, respectively. In section 11, we reuse Bekenstein's approach
and provide four laws of cosmological thermodynamics as suggested
by our model.

7.3 Insight 2: Ted Jacobson

In Jacobson [1995], Ted Jacobson derived the Einstein �eld equations
as an equation of state from a system of statistical physics. Under-
standing the connection between event horizons, entropy and ther-
modynamics is essential to these type of proof. Jacobson justi�es the
applicability of statistical physics to events horizons as follows:

"In thermodynamics, heat is energy that �ows between degrees of free-
dom that are not macroscopically observable. In spacetime dynamics,
we shall de�ne heat as energy that �ows across a causal horizon. It can
be felt via the gravitational �eld it generates, but its particular form or
nature is unobservable from outside the horizon. For the purposes of
this de�nition it is not necessary that the horizon be a black hole event
horizon. It can be simply the boundary of the past of any set O (for
“observer”). This sort of horizon is a null hypersurface (not necessarily
smooth) and, assuming cosmic censorship, it is composed of generators
which are null geodesic segments emanating backwards in time from
the set O. We can consider a kind of local gravitational thermodynam-
ics associated with such causal horizons, where the “system” is the
degrees of freedom beyond the horizon. The outside world is separated
from the system not by a diathermic wall, but by a causality barrier."

We will provide a detailed summary of his derivation of the Ein-
stein �eld equations from the relation TdS= kdA in section (8.9).
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7.4 Insight 3: Erik Verlinde

Erik Verlinde (in Verlinde [ 2011]) proposes a entropic derivation
of the laws of inertia, classical gravity and general relativity. He
compares the emergent of such laws to that of an entropic force such
as a polymer in a warm bath. They key to making each of these laws
emerge is in �nding an appropriate temperature.

In the case of the law of inertia (relevant in this work), he selects
the Unruh temperature, as it relates the temperature of the vacuum
measured by an accelerated observer.

7.5 Insight 4: Seth Lloyd

In (Lloyd [ 2002]), Seth Lloyd sets up to calculate the total number
of bits available for computation in the universe, as well as the total
number of operations that could have occurred since the universe's
beginning. In both cases, he obtains the number 10122, consistent
with the Bekenstein-Hawking entropy of a holographic surface the
size of the particle horizon of the current observable universe, and
it is the number recovered by (Susskind [ 1995]). Finally, Seth Lloyd
suggest one possible interpretation to be as follows:

"If one chooses to regard the universe as performing a computation,
these numbers give the numbers of ops and bits in that computation."

8 Results

Any observer who interprets its participation P as a maximally infor-
mative scienti�c message about the world W , veri�able in nature N ,
will �nd its participation to be bounded by the following laws and
results.

8.1 Tempo-dynamic equilibrium

As the �rst result, we consider the type of equilibrium at play in the
system.

Any system of statistical physics operates under some equilibrium
condition. When the priors are the average energy E, the Lagrange
multiplier is the temperature t and the system is said to be at thermo-
dynamic equilibrium.

Although very popular for statistical physics, a system need not
be at thermodynamic equilibrium to make use of the facilities of the
framework. Indeed, the explicit derivation of the Gibbs ensemble for
this system (Theorem 2 — main result) clearly shows that such can
legitimately be constructed without the introduction of an emergent
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temperature (as a Lagrange multiplier) associated with thermody-
namic equilibrium.

The equation of state of our system holds outside of thermody-
namic equilibrium, and therefore neither impose a constant temper-
ature on the cosmos, nor requires one to be applicable. Another type
of equilibrium is indeed required on 1/ t0 and � 1/ r0, as they are
Lagrange multipliers. We will call this equilibrium "tempo-dynamic
equilibrium". In this case, the Lagrange multipliers 1/ t0 and � 1/ r0

would be the "tempo-ture" of the system.
Ensuring that the scienti�c message is maximally informative

requires the system to keep up with the tempo during its construc-
tion. If any parts of the system violates the tempo (exceeds it or falls
behind), the equilibrium fails and the macroscopic laws of nature
would break down.

8.2 Tempo-dynamic quantities

Consistent with the standard interpretation of statistical physics,
physical quantities that are extensive are conjugated with an in-
tensive quantity. For instance the volume V in statistical physics is
extensive and combining the volume of two sub-systems increases
the volume by the sum V1 + V2 = V (extensive), but the pressure is
not added: p1 = p2 = p (intensive). Experimentally, two systems with
different pressures p1 6= p2 can be joined together, but this breaks the
equilibrium until the pressures equalize.

Likewise, a process which requires t1 operations followed by a
process requiring t2 operations require a total of t1 + t2 = t opera-
tions (extensive) while its conjugate 1/ t0 is intensive (i.e. it is a con-
stant Lagrange multiplier). The same applies to the program-length:
a process reading a program of r1 bits and a program of r2, reads a
total of r1 + r2 = r bits (extensive) whereas its conjugate 1/ r0, as it is
a Lagrange multiplier, remains the same (intensive). These quantities
are summarized in the Table (1).

Symbol Name Units Type

r(q) program-length [bit ] extensive
1/ r0 conjugate to program-length 1/ [bit ] intensive
r average program-length [bit ] macroscopic

t(q) program-running-time [operation ] extensive
1/ t0 conjugate to program-running-time 1/ [operation ] intensive
t average running-time [operation ] macroscopic

Table 1: The tempo-dynamic quantities
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8.3 Tempo-dynamic cycles

Figure 1: A tempo-dynamic cycle traces
a triangle along the average program
length and running-time.

It is customary in statistical physics to study systems using ther-
modynamic cycles. Here, using the equation of state (77), we will,
in �gure ( 1), investigate the behavior of the tempo-dynamic cycle
involving the average program-length and the average program-
running-time. The transitions along the cycle are:

1. isentropic process: While transiting from O to B and by keeping
the entropy constant (dS = 0), the system follows the tempo :
c := dr/ dt = r0/ t0.

2. isotemporal process: While transiting from B to A and by keeping
the average program-running-time constant ( dt = 0), the system
decreases its entropy : dS/ dr = kB/ r0.

3. isospatial process:While transiting from A to O and by keeping
the average program-length constant (dr = 0), the system increases
its entropy : dS/ dt = � kB/ t0.

8.4 Fermi-Dirac statistics of experiments

Each elements of a maximally informative scienti�c message must be
unique because redundancy is uninformative. Indeed, verifying the
same experiment twice would waste the resources the second time
around and would not contribute to epistemology. This is relevant
when we analyze the occupancy statistics of the elements of P within
Z.

To keep the message maximally informative, we thus consider
that a participatory experiment (a microstate) can be realized at most
once (whatever happens to Schrödinger's cat, for sure, it doesn't
die twice), and thus we will use Fermi-Dirac statistics to study the
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occupancy distribution of these microstates. In the case of (77), its
Fermi-Dirac distribution under the assumption that m= 0 is:

n(q, t0, r0) =
1

exp
�

1
t0

t(q) � 1
r0

r(q)
�

+ 1
(99)

To better understand this equation, it helps to �rst illustrate the
Fermi-Dirac statistics of both r(q) and t(q) in isolation. Therefore,
consider these Fermi-Dirac distributions applicable to r(q) and t(q),
respectively. In each case, one of the two quantities has been made
constant for the purposes of simpli�cation. The two distributions
(100) and (101) are illustrated in Figure 2a and 2b, respectively. The
equations are:

n(q, x0) =
1

exp
�

tr � 1
r0

r(q)
�

+ 1
(100)

n(q, t0) =
1

exp
�

1
t0

t(q) � r t

�
+ 1

(101)

We note the familiar curve of the Fermi-Dirac occupancy statis-
tics, but note that the sign is �ipped for the second case (Figure 2b)
along the r t axis. We are now ready to investigate the Fermi-Dirac
distribution given in ( 99) and illustrated in Figure 3.

Figure 2: a) Fermi-Dirac statistics
(equation 100) over the occupancy
rate of participatory experiments in
relation to r, while holding tr constant.
The curve is of the familiar shape and
direction as the well-known distribution
applicable to energy levels. The slope
at tr is correlated to the value of r0
which is analogous to kBT in the case of
energy levels. b) Fermi-Dirac statistics
(equation 101) over the occupancy rate
of participatory experiments in relation
to t, while holding r t constant. The
curve is similar to that of the previous
case, but it is mirrored at the r t line.

Description:
The Fermi-Dirac statistics (FD) of this system describes the oc-

cupancy rate of experiments awaiting participation. Constructing a
participatory set P consistent with FD thus imply keeping track of
ongoing but unrealized experiments, then removing them from the
set as they are realized and �nally, using the entropy freed up by re-
moving elements to add new ones. This bookkeeping activity results
in a complex behavior that we will now describe in more details.
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Figure 3: Fermi-Dirac statistics over
the occupancy rate of participatory
experiments (equation 99 and with
m = 0). Red means a probability of
realization of 100%, whereas blue
means 0% (and with "rainbow" colors
for intermediate values). a) The slices
t1 and t2 have the same shape as Figure
2a. The slicesx1 and x2 have the same
shape as Figure2b. As nature N goes
from N0 to N1 to N2, there is a shift in
occupation from t to r. The slope of the
line from N1 to N2 is the tempo. b) The
image on the right is a perspective view
of the image on the left.

In Figure 3a, at point N0, an observer sees an occupancy rate of
experiments on the t axis to be 100%, and on ther axis to be of 0%.
As the observer constructs a message toN1, a shift in the occupation
probability occurs from the t to the r axis. To illustrate, we can imag-
ine a waterfall of experiments that, in accordance with the tempo,
recedes into nature as the scienti�c message is constructed. As the
waterfall recedes, experiments are depleted from t and instead �ood
r.

We note two points at which the occupancy rate sharply drops to
zero and beyond which the scienti�c message contains no elements.
We may call these the horizons of the message. The �rst occurs at
the edge of the system r and grows with the tempo. It is centered on
line tr on Figure 2a. The second one occurs on thet variable and it is
centered on line r t on Figure 2b. As the message is constructed, the
latter recedes with the waterfall towards the positive direction of the t
axis, and the former grows in the positive direction of the r axis.

8.5 Arrow of time

Our goal here is to prove the direction the waterfall recedes in.
Let us �rst investigate the production of entropy over t in (77). To

do so, we divide each side of (77) by dt then multiply it by r0/ kB. We
obtain:
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