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In [2] approximations of functions into manifolds were studied. For the
transformation of function values to B-spline coefficients convolution masks were
considered. Some of the proofs required that the convolution mask had a positive
Fourier transform. This property was used to show that the inverse of the
convolution exists and that the spatial dependency decays exponentially. For
splines of degree m the existence of such convolution masks of length m?/2 were
constructively proven. It was posed as an open question if families with shorter
sequences could satisfy this property. For m < 21 it was computationally verified
that the shortest possible sequence that satisfies the polynomial reproduction
property also has a positive Fourier transform. This sequence has length m. It
was conjectured that this holds true for all odd m > 0. In Section 1 of this work
we will prove this fact. In Section 2 we describe how the convolution masks can
be computed.

1 Theory

We start by defining cardinal B-splines
Definition 1. Cardinal B-splines can recursively be defined by

By = 1[_ ] and By, = Bp,_1 % By for allm >1

N[=
N|=

where 1[_1 1] denotes the indicator function on the interval [—%, %] and * de-
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notes the convolution.

Next we consider the polynomial reproduction property
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Z Z Bp(z —1)p(i — j)A; = p(x) for all z € R (1)
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and for all polynomials p of degree < m. As in [2] we will use the functions
Ny, A: C — C defined by

(m—1)/2

S
Nm(z)= Y. Bu()7, A== > Nz (2)

j=—(m=1)/2 j=—

We will now proof an equivalent formulation of the polynomial reproduction
property.

Lemma 1. The polynomial reproduction property (1) is equivalent to
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where pg = 1,pi(z) = (—z)(—x — 1)...(—x — (I = 1)). If the polynomial repro-
duction property (1) holds Expression (8) is equal to

1 1=0
pl(o):{o le{1,...,m).

On the other hand if (3) holds the polynomial reproduction property (1) holds
forx =0and p=yp; for alll € {0,...,m}. As the polynomials py, ..., p,, build
a basis for the space of polynomials of degree < m the polynomial reproduction
property (1) holds for all polynomials p of degree < m at = 0. By replacing x
resp. ¢ by x4+ 1 resp. i+ 1 it follows that the polynomial reproduction property
holds at all integer points. Now consider the function

S
F@)=>"3" Bu(z—i)p(i— j)A;.

i€Z j=—8



Since B/, (z) = Bpm-1(z + %) — Bm—1(z — 1) = 6By—1(z — §) where § is the
discrete difference operator du(x) = u(x + 1) — u(x) it follows inductively that
By(nm)(x) = 0" Bo(x— 7). Since § commutes with the convolution it follows that

S
Fm@) = 3> BI(x—i)p(i — j)A; (9)
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Note that every time ¢ is applied the polynomial degree decreases by 1. Hence
8™p(i — j) and therefore f("™) is constant. It follows that f is a polynomial
and since p coincides with f on all integers that f = p. Hence the polynomial
reproduction property holds for all polynomials of degree < m and allz € R. [

We can now formulate and proof our theorem.

Theorem 1. Let k > 0 be an nonnegative integer. Then there exist a unique
symmetric (i.e. A_; = \;) sequence ()‘j)ﬁsz C R that satisfies the polynomial
reproduction property (1) for m = 2k + 1. Furthermore we have

k
Z )\je2”j“’ >1>0 for allw e R.

j=—Fk

Proof. Since A and B, are symmetric, i.e. A_; = A; and By, (—z) = B,,(x),
both N,,(z) and A(z) can be written as polynomials of degree k in

rT=z+z1-2= ﬂ, ie. Np(z)=p ((’Zl)Q> . A(z)=g¢ ((21)2>

z z z

for polynomials p, ¢ of degree k. Condition (3) is by Lemma 1 equivalent to
p(@)g(a) = 1+, (12)

i.e. that the constant coefficient of p(z)q(x) is one and coefficients of order 1 up
to order k are zero. We first prove uniqueness of ¢ and therefore of (Aj)?zi  CR.
Let g1, g2 be two polynomials of degree k satisfying (12). Then it follows that

p(@)(@1(z) = g2(@)) = "1 (..)

and since p(0) = 1 # 0 that q;(2) — ga(x) = 2*+1(...) and since ¢; and ¢y are
polynomials of degree k that ¢; = go.

The polynomial Nm(z)z(m_l)/Qm! is known as the Eulerian polynomial. By
[1] the Eulerian polynomial and therefore N,, has only negative and simple



real roots. If z; is a root of NN, then z; = z; + z;l —2 < —4 is a root of p.
Furthermore all k roots 1, ...,z of p can be constructed in this way. Therefore
the roots of p are all smaller or equal to —4. Note that for |z| < 4 we have

k oo ;
1 1 z’
) I, (1-2) 1;[1; x

Define g by the truncating this power series at order k + 1, i.e. such that

—— =q(z) + 2.
Then we have

pa)ale) = o) (o)) =1 ),

p(z)
which shows that (12) is satisfied, i.e. the sequence (/\j)?sz corresponding to
q satisfies the polynomial reproduction property.

The statement for the Fourier transform is equivalent to

A(z) > 1forall |z] =1
which is equivalent to

q(z) > 1forall —4 <z <0.

. . i .
Since all roots z1,...,z; of p are negative all terms i—J in the power series of

ﬁ are positive for x € (—4,0). Therefore also all terms of the power series of
ﬁ and therefore also all polynomial terms of g(x) are positive and since the

zero-order term is one we have ¢(x) > 1. The special cases x = —4 and z = 0
follow from continuity. O

2 Construction

In this section, we describe how to construct the coefficients. It is tedious even
for small m to compute the roots of the polynomial p and the power series of 1/p
used in the proof in the previous section. To get the coefficients it is easier to
determine the polynomial coefficients the polynomial ¢ recursively. To compute
the coefficients of the N,,, i.e. the values of the B-splines at integers de Boors
3-point recursion can be used which for our case of uniform grids reads

(25 4 0) Buoaw+ )+ (52— 0) Bualo = )
m

Bp(z) = (13)



2.1 Thecases m=3and m=>5

For m = 3 we have

1 4 1 1
Np(z) = 62_1+6+621:1+6(2+Z_1_2)
X
= ]_ —
p(z) t5
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ST (,) _
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1
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1 1 4 1
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2.2 Code to construct convolution mask for arbitrary m

Below an octave/matlab code for computing the convolution mask.

function lambda = conv_mask(m)

assert(mod(m,2)==1,’m must be an odd positive integer’)
k=(m-1)/2;

%compute B-spline at integer by de Boor three point recursion
b=1;
for j=2:m

x=(j-1)/2*linspace(-1,1,j);



b=(((j+1)/2+x) .*x[b 0]+((j+1)/2-x) .*[0 bI)/j;
end

%hcoefficient wrt z of powers of x=1/z+z-2

powx=cell(l,k);

powx{1}=[1 -2 1];

for j=2:k
powx{j}=conv(powx{1},powx{j-1});

end

%determine recursively coeeficients of p(x)
cp=zeros(1l,k+1);
for j=1:k
cp(j)=b(1)/powx{k+1-j}(end) ;
b=b-b (1) *powx{k+1-j};
%remove first and last coefficient which is zero
b([1 end])=[];
end
cp(k+1)=b(1);

%determine coefficients of q
cg=zeros(1,k+1);

cq(k+1)=1;
for j=k:-1:1

cq(j)=-sum(cq(j+1:end) .*cp(end-1:-1:3j));
end

%determine coefficients of lambda(z)
lambda=cq(end) ;
for j=1:k

lambda=[0 lambda 0]+cq(end-j)*powx{j};
end

end
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