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Abstract

A new formula for the energy density of electrostatic field is derived.
Based on the conservation of energy and momentum, the classical equa-
tions of motion of an electron, which is considered as a point particle, are
then obtained by establishing a delay coordinate system. The resulting
equations are exact but not covariant. Finally we calculate the self-energy
of a free electron in quantum electrodynamics using a new cut-off proce-
dure.

1 The Energy of Electrostatic Field

In many books about classical electrodynamics[1] , the electrostatic energy den-
sity

u =
1

8π
E2 (1)

is derived from

W =
1

2

n∑
i=1

qiV (ri) (2)

(1) can not be correct since one will get an infinite result after integrating it
while (2) is always finite. Obviously (1) contains the potential energy shared
by charges as well as the field energy owed by charges themselves which re-
mains constant in electrostatic. (2) is just the former. The latter shall not be
counted in the deduction of (1). Hence we will give a new derivation about the
electrostatic energy density.

We rewrite (2) as

W =
1

2

n∑
i=1

qiV/ii (3)
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where V/ii is the total potential at ri produced by all the charges except the
charge i. The second subscript of V/ii means ‘at ri’. In order to use integral
afterwards we write qi as

qi = ρi∆Vi = qiδ(ri)∆Vi
where ∆Vi is a small volume at point ri. Substitute this equation into (3) we
obtain

W =
1

2

n∑
i=1

qiδ(ri)∆ViV/ii (4)

According to Gauss’s law we have at ri

∇ ·E = 4πρi = 4πqiδ(ri)

We use Eij to denote the field strength at rj produced by qi. Then the electric
field strength E at ri can be split into two parts∗

E = Eii + E/ii

Where the two parts satisfy respectively

∇ ·Eii = 4πqiδ(ri) (5)

and

∇ ·E/ii = ∇ ·E1i+∇ ·E2i+ · · ·+∇ ·Ei−1,i +∇ ·Ei+1,i +∇ ·Eni= 0 (6)

The reason for (6) is that except the charge qi all the other charges are not at
ri, i.e.

∇ ·Eki = 0, for k 6= i

Thus we can retain the term ∇ · E/ii or abandon it. Retaining it means we are
calculating the action V/ii of on E/ii, which is exactly the self-action. Therefore
we abandon it. Plugging (5) into (4) we get

W =
1

8π

n∑
i=1

∇ ·EiiV/ii∆Vi (7)

As mentioned previously, the divergence of Eij vanishes everywhere except at
ri. We can add the term below to every term of the sum on the rhs of (7)

∞∑
j=1,j 6=i

∇ ·EijV/ij∆Vj

Consequently

∗The meaning of the subscripts of E/ii is the same as that of V/ii. Similarly, Eii denotes
the field strength at ri produced only by qi.
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W =
1

8π

n∑
i=1

∇ ·EiiV/ii∆Vi +

∞∑
j=1,j 6=i

∇ ·EijV/ij∆Vj


=

1

8π

n∑
i=1

∞∑
j=1

∇ ·EijV/ij∆Vj

=
1

8π

n∑
i=1

∫
V
∇ ·EiV/idV

In the last step we have thrown away the second index of Eij and V/ij since we
are integrating them in a volume V . V shall be big enough to include all the
charges. After applying an integration by parts we obtain

W =
1

8π

n∑
i=1

(
−
∫
V
Ei · ∇V/idV +

∮
S

V/iEi · dS
)

(8)

If we choose the volume V to be the whole space, the second integral in the
bracket of (8) would vanish. Due to

∇V/i = −E/i

(8) becomes

W =
1

8π

n∑
i=1

∫
Ei ·E/idV (9)

Consider a system of two point charges, we have

E/1 = E2, E/2 = E1

(9) gives

W =
1

4π

∫
E1 ·E2dV (10)

(3) being always finite guarantees the same holds for (9). The form of (9) implies
that the energy of electrostatic fields origins from ‘interaction’ between charged
particles. One can verify easily (10) for two point charges[2].

2 The Classical Equations of Motion of an Elec-
tron

The success of eliminating the self-action of a point charge in last section mo-
tivates us to go further. If we continue to apply the method to general elec-
tromagnetic phenomena in which electrons are usually in motion, however, we
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would still obtain only the energy of ‘interaction’. As it is known, when an elec-
tron is accelerated its own field will ‘twist’, which implies the field has indeed
changed. In addition, electromagnetic radiation always takes away some energy
and momentum from the electron. Therefore reaction of the field exerting on
the electron shall exist. It is expected then we would encounter some infinity
in view of (1). But we shall keep in mind that only the change of the energy
and the momentum of the field, which corresponds to the reaction, is mean-
ingful to us. In other words, the motion of the electron interacting with the
electromagnetic field may be learned by calculating the change of the latter.

We want to obtain an equation of motion with manifest Lorentz covariance.
To this end, it is suitable to adopt the covariant form of electrodynamics∗. The
equations for the electron interacting with electromagnetic fields are

dpµmech
dt

= −1

c

∫
Fµνtot jνd

3x (11)

∂µF
µν
tot = −4π

c
jν (12)

where pµmech is the mechanical energy-momentum vector of the electron and Fµνtot
is the total field strength tensor. According to the principle of superposition,
the latter can be split into two terms, namely, those of external fields and that
of the field of the electron itself:

Fµνtot = Fµνsel + Fµνext (13)

There aren’t any other charged particles except the electron in the space we
consider. Therefore,

∂µF
µν
ext = 0

In view of (12) we obtain then a equation

∂µF
µν
sel = −4π

c
jν (14)

Using the four-potential we write Fµνsel as

Fµνsel =
∂Aνsel
∂xµ

−
∂Aµsel
∂xν

(15)

In Lorentz gauge (14) now becomes

�Aµsel = −4π

c
jµ (16)

Let χµ(τ) be the world-line function of the electron which we regard it as a
point charge. The current density is then

jµ(x) = ec

∫ ∞
−∞

δ(x− χ(τ))vµ(τ)dτ

∗We use gµν = diag{−1, 1, 1, 1} in this section.
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In order to use some delay quantities to express the solution of (16), we introduce
a vector uµ which satisfies

uµuµ = 1, uµvµ = 0

The potential to be solved at xµ is produced by the electron when it was at χµ.
If we let

Rµ = xµ − χµ (17)

The delay relation is then

RµRµ = 0

We also introduce an invariant

ρ = −R
µvµ
c

(17) now can be written

Rµ = ρ(uµ +
vµ

c
) (18)

We find that the solution of (16) is[3]

Aµsel(x) =
e

c

vµ

ρ

The field strength tensor can be calculated from (15). The result is[4]

Fµνsel =
e

cρ2
(vµuν−vνuµ)+

e

c2ρ
[
1

c
(aµvν−aνvµ)+uν(aµ+

auv
µ

c
)−uµ(aν+

auv
ν

c
)]

(19)
where au is defined by

au = aµuµ

We are interested in the symmetric tensor which is given by

Θµν
tot =

1

16π
gµν(Ftot)αβ(Ftot)

αβ +
1

4π
(Ftot)

µα(Ftot)α
ν

Substituting (13) into it yields

Θµν
tot = Θµν

sel + Θµν
ext + Θµν

crs

where

Θµν
crs =

1

8π
gµν(Fsel)αβ(Fext)

αβ +
1

4π
[(Fext)

µα(Fsel)α
ν

+(Fext)
να(Fsel)α

µ
] (20)
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We call Θµν
crs the ‘cross’ term. It is composed of the field variables of the electron

and the external field variables while Θµν
sel contains only the former and Θµν

ext

the latter. From (19) it can be shown that

Θµν
sel =

e2

4πρ4
(uµuν − vµvν

c2
− 1

2
gµν)︸ ︷︷ ︸

Θµνv

+
e2

2πc2ρ3
(au

RµRν

ρ2
− au

v(µRν)

cρ
− a(µRν)

ρ
)︸ ︷︷ ︸

Θµνva

+
e2

4πc4ρ2
(au

2 − aλaλ)
RµRν

ρ2︸ ︷︷ ︸
Θµνa

=Θµν
v + Θµν

va + Θµν
a

(21)

The divergence of the total symmetric tensor is

∂µΘµν
tot = −1

c
Fµνtot jν

We integrate the two sides of the above equation in a four-dimensional volume
V of which we choose the time coordinate varies from 0 to t0. Due to (11) it
follows that ∫

V

d4x∂µΘµν
tot =

∫ t0

0

cdt
dpνmech

dt
(22)

According to Gauss’s theorem, the lhs of the above equation can be rewritten
as ∫

V

d4x∂µΘµν
tot =

∫
Σ

dSε(n)nµΘµν
tot

where nµ is the tangent vector of the three-dimensional area element dS. ε(n)
is +1 when dS is space-like and −1 when dS is time-like. Suppose that the
relation between the coordinate time t and the proper time τ of the electron is

t = t(τ)

We set

t(0) = 0, t(τ0) = t0

Differentiate both sides of (22) with respect to τ0 we obtain

d

dτ0

∫
Σ

dSε(n)nµ
Θµν
tot

c
=
dpvmech
dτ0

(23)

We choose that the volume V contains only the electron being studied. Hence,

∂µΘµν
ext = 0
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Thus we do not need to consider the external term in (22). Consequnetly, (23)
becomes

d

dτ0

∫
Σ

dSε(n)nµ
1

c
(Θµν

sel + Θµν
crs) =

dpvmech
dτ0

(24)

We assume that the electron was moving uniformly with velocity v0 until it
begins to accelerate at t = 0 under the action of the external field, as shown
below∗. The shape of volume V can be chosen arbitrarily without affecting our
result of calculation as long as the electron is located in V . We choose it to be
a rectangle so that the calculation would be simple. As exhibited in the figure,
the furthest points at which the electromagnetic signals arrive at t0 are labeled
by P

′
and P

′
. With the exception of the segment PP

′
, we denote with Σ

′
the

remainder of the boundary Σ. The electromagnetic fields on Σ
′

are all produced
by the uniform motion of the electron, of which we use Θµν

v0 to represent the
symmetric tensor. When evaluating the integral on the lhs of (24), we don’t

Figure 1: the world-line of the electron in two dimensional space-time.

need to calculate directly that involving Θµν
v0 . If the electron continues to move

uniformly after t = 0 with the absence of external fields, we have from (23)

d

dτ0

∫
Σ

dSε(n)nµ
1

c
Θµν
v0 =

d

dτ0
(

∫ P

P ′
dSε(n)nµ

1

c
Θµν
v0 +

∫
Σ′
dSε(n)nµ

1

c
Θµν
v0 ) = 0

(25)
or

d

dτ0

∫
Σ′
dSε(n)nµ

1

c
Θµν
v0 = − d

dτ0

∫ P

P ′
dSε(n)nµ

1

c
Θµν
v0

According to (21) and the above equation, the first term on the lhs of (24)
is

∗For the sake of brevity, we drew the diagram in only two dimensions.
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d

dτ0

∫
Σ

dSε(n)nµ
1

c
Θµν
sel

=
d

dτ0
[

∫ P

P ′
dSε(n)nµ

1

c
(Θµν

a + Θµν
va + Θµν

v ) +

∫
Σ′
dSε(n)nµ

1

c
Θµν
v0 ]

=
d

dτ0

∫ P

P ′
dSε(n)nµ

1

c
(Θµν

a + Θµν
va + Θµν

v −Θµν
v0 )

(24) becomes then

d

dτ0

∫
Σ

dSε(n)nµ
1

c
Θµν
crs+

d

dτ0

∫ P

P ′
dSε(n)nµ

1

c
(Θµν

a +Θµν
va+Θµν

v −Θµν
v0 ) =

dpvmech
dτ0
(26)

To get an equation of motion of the electron, what we need to do next is to
calculate the integrals on the lhs of the above equation. The calculation has
been exhibited in Appendix A. The result is(See (A.10))

dpmech
dτ

+
d

dτ

(
2

3

e2γβ

ca0

)
= γ

(
eE +

v ×B

c

)
− 2

3

e2

c5
aλaλγv (27a)

dEmech
cdτ

+
d

dτ

(
1

2

e2γ
(
1 + 1

3β
2
)

ca0

)
= γ

ev ·E
c
− 2

3

e2

c4
aλaλγ (27b)

where a0 is the radius of cut-off. Note that this equation is exact without any
approximation.

3 The Self-Action of a Free Electron in Quan-
tum Electrodynamics

We immediately recognize the terms in the brackets on the LHS of (27) if we
write down the energy and the momentum according to (A.5) and (A.6) of the
field of a point charge moving uniformly

pfield =
2

3

e2γβ

ca0
, Efield =

1

2

e2γ(1 + 1
3β

2)

a0
(28)

For comparison, the electrostatic energy of a point charge is e2/2a0. Therefore,
the terms in the brackets on the LHS of (27), which do not form a 4-vector,
correspond to the electromagnetic mass of an electron. The LHS of (22) is
generally a 4-vector unless the symmetric tensor Θµν

tot has singularities, which is
our case in virtue of (21). An interesting aspect of our result (27) is that the
radiation reaction

2

3

e2

c5
aλa

λvµ
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exactly constitutes a 4-vector, although Θµν
a has a quadratic singularity ρ−2.

This is due to the quadratic zero of the volume element of integral (See (A.4)).
But this zero can not cancel the divergent in Θµν

v and Θµν
va . It has been a

problem up to now[5] that the electromagnetic mass being not covariant. It is
very interesting that if the electron moves with velocity c, the energy and the
momentum of the field would form a 4-vector in view of (28).

To solve the problem many attempts have be made[2]. One of them, for
example, was brought forward by Born and Infeld. They modified the Maxwell
equations in the region of small distance away from an electron to reduce the
infinity of the fields to a finite value. But we are not in the situation yet in
which we have to propose hypotheses. Because it has been proved in quan-
tum electrodynamics that the effect of the self-action of a free electron can be
included in the observed mass[6]. However, it seems that the meaning of this
procedure-renormalization, hasn’t been clarified thoroughly, especially the link
between it and the classical theory.

The self-energy of a free electron can be calculated by using the perturbation
theory. What the change of the wave-function the self-action leads to is just
a factor e−i∆ET . The first-order of the change is given by[7](ūu = 1, gµν =
{1,−1,−1,−1})

lim
T→∞

−i∆ET =
1

N
e2

∫ ∫
d4xd4yψ̄(x)(−iγµ)iSF (x−y)(−iγν)iDµν

F (x− y)ψ(y)

(29)
where N is a normalization factor. It equals to δ3(0) if continuum normalization
is applied to ψ(x). After integrating over one of the coordinate variables, we
get

∆E = e2i

∫
d4xψ̄(x)γµSF (x− y)γνD

µν
F (x− y)ψ(y)

It reads in momentum space

∆E = −4πe2i
m

E

∫
d4k

(2π)
4 ūγ

µ 1

/p− /k −m
γµu

1

k2
(30)

This integral divergences. One can regulate it using Pauli-Villars’ procedure
or Feynman’s method. Here we will use a simpler regularization. We first
transform the Minkowski space of the integral to Euclidean space by a Wick
rotation[9]. Then we impose a cut-off on it at a large momentum.

To illustrate our method, let us calculate first∫
d4k

(2π)
4

1

k2 + iε− L

we make a substitution: k0 → ik0, so that

k2 = −(k2
0 + k2) = −k2

E (31)
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kE is obviously a Lorentz invariant. Therefore,

∫
d4k

(2π)
4

1

k2 + iε− L
=
−i

(2π)
4

∫
d4kE

1

k2
E + L

=
−i

(2π)
4

∫
dΩ4

∫ ∞
0

dkE
k3
E

k2
E + L

=
−i
8π2

(
λ2

2
− L

2
log

λ2 + L

L
)

Here in the last step we have cut off the integral at λ. Replacing the integration
variable k with k − p gives∫

d4k

(2π)
4

1

k2 − 2p · k −∆
=
−i
8π2

(
λ2

2
− ∆ + p2

2
log

λ2 + ∆ + p2

∆ + p2
)

Differentiating both sides of the above equation with respect to ∆ and pα re-
spectively yields

∫
d4k

(2π)
4

1

(k2 − 2p · k −∆)
2 =

i

8π2

[
1

2
log

λ2 + ∆ + p2

∆ + p2
− λ2

2(λ2 + ∆ + p2)

]
∫

d4k

(2π)
4

kα

(k2 − 2p · k −∆)
2 =

i

16π2

[
pα log

λ2 + ∆ + p2

∆ + p2
− λ2pα
λ2 + ∆ + p2

]
With the help of these integrals and Feynman parameters, we are now able to
calculate (30):

∆E =
m

E

e2

2π
· 3m log

λ

m
Or

∆m =
e2

2π
· 3m log

λ

m
This additional mass would lead to additional momentum and energy which are
of course relativistically covariant∗. The self-action of a free electron in quantum
electrodynamics differs greatly with that in classical theory. The difference can
be classified into three aspects: spin, vacuum fluctuations and the electrons in
negative energy states in vacuum[8].

What if when the electron is accelerated? (27) are far from being the ap-
propriate equations of motion. The actual situation is definitely not that the
electron can be treated as a point particle. But we have done our best without
the aid of hypothesises. Continuing to seek an answer in the classical regime of
electromagnetic dynamics is hopeless and unwise.

∗Note that the way we prove the covariance is not the same as that we used in previous
discussion about classical electrodynamics. What the perturbation theory of quantum me-
chanics concerns is the change of the energies of free eigenstates when their momentums are
fixed.
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Appendix A

We first establish a coordinate system for the four-dimensional space-time. It
is convenient to employ the delay quantities as the coordinates. From (17) and
(18), we obtain

xµ = χµ(τ) + ρ(uµ +
vµ

c
) (A.1)

Consider the case where the electron is moving along the x axis of our reference
frame. We set

χµ(τ) = (ct(τ), x(τ), 0, 0) (A.2)

vµ = (γc, γv, 0, 0) (A.3)

Note that the speed v is a unknown function of τ and so is γ. ρ and uµ is R
and (0, R̂) respectively in the frame where the electron is instantaneously rest.
R̂ is the unit delay vector. More precisely,

(uµ)Rest = (0, cos θ, sin θ cosϕ, sin θsinϕ)

We can infer then uµ is in our reference system

uµ = (γβ cos θ, γ cos θ, sin θ cosϕ, sin θsinϕ)

According to (A.1), (A.2), (A.3)and the above equation, every point xµ in the
space-time now can be determined by using ρ, τ , θ and ϕ. Thus the coordinate
system has been established as we want.

The segment PP
′

in Figure 1 is actually a three-dimensional sphere in our
space-time. To label the points of this part, one needs only 3 coordinates. In
fact, the 0th component of (A.1) is

ct = ct(τ) + ργβ cos θ + ργ

where t is fixed and equal to t0 on PP
′
. Therefore we can eliminate from the

above equation a coordinate such as ρ which would be given by

ρ =
ct0 − ct(τ)

γ(1 + β cos θ)

The points of PP
′

are now labeled by τ , θ and ϕ. After some cumbersome
calculation we find the Jacob’s determinant from the space components of (A.1)

∂(x, y, z)

∂(τ, θ, ϕ)
= − cρ2 sin θ

γ(1 + β cos θ)
(A.4)

where we have retained the appearance of ρ. With the above equation we are
able to compute the integrals on the lhs of (26). The normal vector of the
surface represented by PP

′
is

nµ = (−1, 0, 0, 0)
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From (21), we get

p1
a =

∫ P

P ′
dSε(n)nµ

1

c
Θµ0
a =

1

4πc

∫ 2π

0

dϕ

∫ τ0

0

dτ

∫ 1

−1

d cos θ · (−1) · e
2

c4
(au

2 − aλaλ)

· [−γ(1 + β cos θ)] · γ(β cos θ + 1) · c

γ(1 + β cos θ)

= −
∫ τ0

0

dτ
2

3

e2

c5
aλa

λγv

p0
a = −

∫ τ0

0

dτ
2

3

e2

c4
γaλa

λ

where we have used:

aλa
λ − a2

u = aλa
λ(1− cos2θ)

The remaining components of pµa are equal to 0. The velocity term is

p0
v =

∫ P

P ′
dSε(n)nµ

1

c
Θµ0
v = −

∫ τ0

0

dτ
1

2

e2γ3

(ct0 − ct(τ))
2 (1 +

1

3
β2)

p1
v = −

∫ τ0

0

dτ
2

3

e2γ3v

c(ct0 − ct(τ))
2

The term Θµν
va gives

p0
va =

∫ P

P ′
dSε(n)nµ

1

c
Θµ0
va = −

∫ τ0

0

dτ
e2γ(2a0 − 2

3βa
1)

c2 (ct0 − ct(τ))

p1
va = −

∫ τ0

0

dτ
2

3

e2γ(βa0 + a1)

c2 (ct0 − ct(τ))

We may expect the term pµva can be canceled out. This is true. We apply an
integral by parts to p0

v and p1
v:

p0
v = −1

2

e2γ2(1 + 1
3β

2)

c (ct0 − ct(τ))

∣∣∣∣τ0
0

+

∫ τ0

0

dτ
e2γ(2a0 − 2

3βa
1)

c2 (ct0 − ct(τ))

p1
v = −2

3

e2γ2β

c (ct0 − ct(τ))

∣∣∣∣τ0
0

+

∫ τ0

0

dτ
2

3

e2γ(βa0 + a1)

c2 (ct0 − ct(τ))

The result is what we expected.
The term corresponding to Θµν

v0 is

p0
v0 = −

∫ τ̃0

0

dτ
1

2

e2γ3
0(

ct0 − ct̃(τ)
)2 (1 +

1

3
β0

2) = − 1

2

e2γ2
0(1 + 1

3β0
2)

c (ct0 − cγ0τ)

∣∣∣∣∣
τ̃0

0

(A.5)

p1
v0 = −2

3

e2γ2
0β0

c (ct0 − cγ0τ)

∣∣∣∣τ̃0
0

(A.6)
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where γ0 = 1/
√

1− v2
0/c

2 and

t̃(τ) = γ0τ , t0 = γ0τ̃0 (A.7)

is the relation between the coordinate t and the proper time τ for uniform
motion of the electron. When substituting the bound τ0(or τ̃0) of the integrals
we would get infinities. These infinities will not bother us, as we will see in
section 3. Hence we retain the zeros in the denominators but in the limit form.
For instance,

ct0 − ct(τ0) = lim
a→0

ct0 − ct(τ0 −
a

c
) = lim

a→0
γ(τ0)

a

c
≡ γ(τ0)

a→0

c

where we have used

t(τ0 −
a

c
) ≈ t(τ0)− γ(τ0)

a

c

a is an invariant and has the dimension of length. The treating for the substi-
tuting of τ̃0 is analogous. Summing up pµv , pµva and pµv0 together gives

d

dτ0

∫ P

P ′
dSε(n)nµ

1

c
(Θµ0

va + Θµ0
v −Θµ0

v0 ) =
d

dτ0

(
1

2

e2γ(1 + 1
3β

2)

ca→0

)
d

dτ0

∫ P

P ′
dSε(n)nµ

1

c
(Θµ1

va + Θµ1
v −Θµ1

v0 ) =
d

dτ0

(
2

3

e2γβ

ca→0

)
When calculating the integral of the term Θµν

crs we regard the external fields
as constants. This can be justified by two reasons. One is that we can make the
volume V very small so that the external fields becomes homogeneous∗. The
second is the electron is subjected only to the field at the location where it is.
Thus we can just choose the external field as a uniform electric field E0 without
loss of generality. Analogous to our previous discussion, it is not necessary to
calculate directly the part on Σ′. Instead, it can be evaluated in the following
way: Suppose that a constant force f = −eE0 begins to act on the electron at
t = 0 so that it keeps moving uniformly. Thus (24) becomes

d

dτ0

∫
Σ

dSε(n)nµ
1

c
(Θµν

v0 +Θµν
crs(v0))+f

ν =
d

dτ0

∫
Σ

dSε(n)nµ
1

c
Θµν
crs(v0)+f

ν =
dpvmech
dτ0

= 0

in virtue of (25). Here Θµν
crs(v0) is the Θµν

crs when the electron is moving uniformly

with velocity v0 and fν is the covariant form of f :

fν = γ(
f · v
c
, f)

Hence,

∗We can’t treat the fields of the electron in this way because they have a source-the
electron, i.e. a singularity.
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∫
Σ′
dSε(n)nµ

1

c
Θµν
crs(v0) = −fν τ̃0 −

∫ P ′

P

dSε(n)nµ
1

c
Θµν
crs(v0)

Now we have

∫
Σ

dSε(n)nµ
1

c
Θµν
crs =

∫
Σ′
dSε(n)nµ

1

c
Θµν
crs(v0) +

∫ P ′

P

dSε(n)nµ
1

c
Θµν
crs

= −fν τ̃0 −
∫ P ′

P

dSε(n)nµ
1

c
Θµν
crs(v0) +

∫ P ′

P

dSε(n)nµ
1

c
Θµν
crs

(A.8)

Let the electric field be along the x axis, we have then

(Fext)
01 = −E0, (Fext)

10 = E0

All the other componemts of (Fext)
µν are equal to 0. We only need to consider

Θ0ν
crs due to nµ. Let us calculate first its 0 component. From (20) it can be

shown that

Θ00
crs =

E0

4π
(Fsel)10

According to (19),

(Fsel)10 =
e

cρ2
(v1u0 − v0u1) +

e

c2ρ
[
1

c
(a1v0 − a0v1) + u0(a1 +

auv1

c
)− u1(a0 +

auv0

c
)]

=
e

ρ2
cos θ − ea0

c2ρ
· 1− cos2θ

γβ

The following equations are helpful for us:

a1 =
a0

β
,
dγ

dv
=
γ3β

c
, a0 = c

dγ

dτ
= γ3β

dv

dτ

The velocity term of Θ00
crs gives

∫ P ′

P

dS(−1)
1

c

E0

4π

e

ρ2
cos θ = − E0

4πc

∫ 2π

0

dϕ

∫ τ0

0

dτ

∫ 1

−1

d cos θ · e
ρ2

cos θ · cρ2

γ(1 + β cos θ)

= −eE0

2

∫ τ0

0

dτ

∫ 1

−1

dx · γ x

γ2(1 + βx)

=
eE0

2

∫ τ0

0

dτ

∫ 1

−1

dx · γ
[
β − x+ β

(1 + βx)

]
Then we can immediately write down
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∫ P ′

P

dSε(n)nµ
1

c
Θµν
crs(v0) =

eE0

2
τ̃0

∫ 1

−1

dx · γ0

[
β0 −

x+ β0

(1 + β0x)

]
=
eE0

2
t0

∫ 1

−1

dx

[
β0 −

x+ β0

(1 + β0x)

]
where (A.7) has been used in the last step. The acceleration term gives

∫ P ′

P

dS(−1)
1

c

E0

4π

−ea0

c2ρ

1− cos2θ

γβ
=
eE0

2c

∫ τ0

0

[t0 − t(τ)]
dv

dτ
dτ

∫ 1

−1

dx
1− x2

(1 + βx)
2

=
eE0

2

∫ τ0

0

[t0 − t(τ)]d

[∫ 1

−1

dx
x+ β

(1 + βx)

]
= −eE0t0

2

∫ 1

−1

dx
x+ β0

(1 + β0x)
+
eE0

2

∫ τ0

0

γdτ

∫ 1

−1

dx
x+ β

(1 + βx)

Summing up these results according to (A.8) yields∫
Σ

dSε(n)nµ
1

c
Θµ0
crs = eE0

∫ τ0

0

γβdτ

The treatment for the 1 component similar. Thus it follows that

d

dτ0

∫
Σ

dSε(n)nµ
1

c
Θµν
crs = −e

c
F νλextvλ

After collecting all the results of our calculation, we finally obtain(replace τ0
with τ)∗

dpmech
dτ

+
d

dτ

(
2

3

e2γβ

ca→0

)
= γ

(
eE +

v ×B

c

)
− 2

3

e2

c5
aλaλγv (A.9a)

dEmech
cdτ

+
d

dτ

(
1

2

e2γ
(
1 + 1

3β
2
)

ca→0

)
= γ

ev ·E
c
− 2

3

e2

c4
aλaλγ (A.9b)

Now we apply a cut-off on τ , i.e. we replace a→0 with a constant a0:

dpmech
dτ

+
d

dτ

(
2

3

e2γβ

ca0

)
= γ

(
eE +

v ×B

c

)
− 2

3

e2

c5
aλaλγv (A.10a)

dEmech
cdτ

+
d

dτ

(
1

2

e2γ
(
1 + 1

3β
2
)

ca0

)
= γ

ev ·E
c
− 2

3

e2

c4
aλaλγ (A.10b)

This procedure is equivalent to digging out a sphere of radius a0(in the instanta-
neously rest reference frames) from the volume in which we calculate the energy
and momentum of the electromagnetic fields.

∗Although they are derived for the case of rectilinear motion, they can apply to the cases
of curvilinear motion since there is no limit on the duration of the motion of the electron in
our calculation.
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