The curvature and dimension of a fractal surface

S. Halayka*

September 21, 2019

Abstract

The curvature of a surface can lead to fractional dimension. In this paper, the properties of the 2 -sphere surface of a three-dimensional ball and the $2 . x$-surface of a three-dimensional fractal set are considered. Tessellation is used to approximate each surface, primarily because the $2 . x$-surface of a three-dimensional fractal set is otherwise non-differentiable (having no well-defined surface normal).

1 Tessellation of surfaces

Approximating the surface of a three-dimensional shape via triangular tessellation (a mesh) allows us to calculate the surface's dimension $D \in[2.0,3.0)$.

[^0]First we calculate, for each triangle, the average dot product of the triangle's normal $\hat{n_{i}}$ and its three neighbouring triangles' normals $\hat{o_{1}}, \hat{o_{2}}, \hat{o_{3}}$:

$$
\begin{equation*}
d_{i}=\frac{\hat{n_{i}} \cdot \hat{o_{1}}+\hat{n_{i}} \cdot \hat{o_{2}}+\hat{n_{i}} \cdot \hat{o_{3}}}{3} . \tag{1}
\end{equation*}
$$

Because we assume that there are three neighbours per triangle, the mesh must be closed (no cracks or holes).

Then we calculate the normalized measure:

$$
\begin{equation*}
m_{i}=\frac{1.0-d_{i}}{2.0} \tag{2}
\end{equation*}
$$

Once m_{i} has been calculated for all triangles, we can then calculate the average normalized measure λ, where t is the number of triangles:

$$
\begin{equation*}
\lambda=\frac{\sum_{i=1}^{t} m_{i}}{t} \tag{3}
\end{equation*}
$$

The dimension of the surface is

$$
\begin{equation*}
D=2.0+\lambda \tag{4}
\end{equation*}
$$

Analogous is the dimension of a line $D=1.0+\lambda$, where $D \in[1.0,2.0)$. See Figures 1 and 2.

In this paper, Marching Cubes [1] is used to generate the triangular tessellations. The full $\mathrm{C}++$ code can be found at [2].

For a 2 -sphere, the local curvature vanishes as the size of the triangles decreases. This results in a dimension of 2.0 , which is to be expected from a non-fractal surface. See Figures 3, 4, and 5 .

On the other hand, for the $2 . x$-surface of a three-dimensional fractal set, the local curvature does not vanish. This results in a dimension greater than 2.0, but not equal to or greater than 3.0, which is to be expected from a fractal surface. See Figures 6, 7, 8, and 9.

As far as we know, this method of calculating the fractal dimension of a surface is novel.

References

[1] http://paulbourke.net/geometry/polygonise/
[2] https://github.com/sjhalayka/meshdim

Figure 1: The average dot product of neighbouring line segments is $d_{i}=$ $(0.0+0.0) / 2=0.0$. This leads to a normalized measure of $m_{i}=(1.0-$ $\left.d_{i}\right) / 2.0=0.5$, which in turn leads to an average normalized measure of $\lambda=0.5$. The dimension is $D=1.0+\lambda=1.5$.

Figure 2: A line as it goes from dimension 1.0 (at top) to 1.9999 (at bottom). In the end, where the dimension is 1.9999 , the result is practically a rectangle.

Figure 3: Low resolution surface for the iterative equation is $Z=Z^{2}$. The surface's dimension is 2.02 .

Figure 4: Medium resolution surface for the iterative equation is $Z=Z^{2}$. The surface's dimension is 2.06 .

Figure 5: High resolution surface for the iterative equation is $Z=Z^{2}$. The surface's dimension is 2.0.

Figure 6: Low resolution surface for the iterative equation is $Z=Z \cos (Z)$. The surface's dimension is 2.05 .

Figure 7: Medium resolution surface for the iterative equation is $Z=$ $Z \cos (Z)$. The surface's dimension is 2.11.

Figure 8: High resolution surface for the iterative equation is $Z=Z \cos (Z)$. The surface's dimension is 2.08 .

Figure 9: A two-dimensional slice of $Z=Z \cos (Z)$, showing the fractal nature of the set.

[^0]: *sjhalayka@gmail.com

