The curvature and dimension of a closed surface

S. Halayka*

September 26, 2019

Abstract

The curvature of a closed surface can lead to fractional dimension. In this paper, the properties of the 2 -sphere surface of a three-dimensional ball and the $2 . x$-dimensional surface ($2 . x$-surface) of a three-dimensional fractal set are considered. Tessellation is used to approximate each surface, primarily because the $2 . x$-surface of a threedimensional fractal set is otherwise non-differentiable (having no well-defined surface normals).

1 Tessellation of closed surfaces

Approximating the $2 . x$-surface of a three-dimensional shape via triangular tessellation (a mesh) allows us to calculate the $2 . x$-surface's dimension $D \in(2.0,3.0)$.

First we calculate, for each triangle, the average dot product of the triangle's normal $\hat{n_{i}}$ and its three neighbouring triangles' normals $\hat{o_{1}}, \hat{o_{2}}, \hat{o_{3}}$:

$$
\begin{equation*}
d_{i}=\frac{\hat{n_{i}} \cdot \hat{o_{1}}+\hat{n_{i}} \cdot \hat{o_{2}}+\hat{n_{i}} \cdot \hat{o_{3}}}{3} . \tag{1}
\end{equation*}
$$

Because we assume that there are three neighbours per triangle, the mesh must be closed (no cracks or holes, precisely two triangles per edge).

Then we calculate the normalized measure:

$$
\begin{equation*}
m_{i}=\frac{1-d_{i}}{2} . \tag{2}
\end{equation*}
$$

Once m_{i} has been calculated for all triangles, we can then calculate the average normalized measure λ, where t is the number of triangles:

$$
\begin{equation*}
\lambda=\frac{\sum_{i=1}^{t} m_{i}}{t} . \tag{3}
\end{equation*}
$$

The dimension of the closed surface is:

$$
\begin{equation*}
D=2+\lambda \tag{4}
\end{equation*}
$$

In this paper, Marching Cubes [1] is used to generate the 2.x-dimensional triangle meshes. The full C++ code for this paper can be found at [2].

[^0]
2 Conclusions

For a 2-sphere, the local curvature all but vanishes as the maximum triangle edge length L decreases:

$$
\begin{equation*}
\lim _{L \rightarrow 0} \lambda(L)=0 \tag{5}
\end{equation*}
$$

To decrease L, one must increase the sampling resolution r (an integer, greater than or equal to 2), where $g_{\max }$ is the sampling grid maximum and $g_{\min }$ is the sampling grid minimum:

$$
\begin{equation*}
L=\sqrt{3} \underbrace{\left(\frac{g_{\max }-g_{\min }}{r-1}\right)}_{\text {step size }} . \tag{6}
\end{equation*}
$$

This results in a dimension of practically (but never quite) 2.0, which is to be expected from a non-fractal surface. See Figures 1-3.

On the other hand, for the $2 . x$-surface of a three-dimensional fractal set, the local curvature does not vanish:

$$
\begin{equation*}
\lim _{L \rightarrow 0} \lambda(L) \neq 0 \tag{7}
\end{equation*}
$$

This results in a dimension considerably greater than 2.0 , but not equal to or greater than 3.0, which is to be expected from a fractal surface. See Figures 4-7.

As far as we know, this method of calculating the dimension of a closed surface is novel.

References

[1] http://paulbourke.net/geometry/polygonise/
[2] https://github.com/sjhalayka/meshdim

Figure 1: Low resolution $(r=10)$ surface for the iterative equation is $Z=Z^{2}$. The surface's dimension is 2.02 .

Figure 2: Medium resolution $(r=100)$ surface for the iterative equation is $Z=Z^{2}$. The surface's dimension is 2.06 .

Figure 3: High resolution ($r=1000$) surface for the iterative equation is $Z=Z^{2}$. The surface's dimension is practically 2.0 .

Figure 4: Low resolution $(r=10)$ surface for the iterative equation is $Z=Z \cos (Z)$. The surface's dimension is 2.05 .

Figure 5: Medium resolution $(r=100)$ surface for the iterative equation is $Z=Z \cos (Z)$. The surface's dimension is 2.11 .

Figure 6: High resolution $(r=1000)$ surface for the iterative equation is $Z=Z \cos (Z)$. The surface's dimension is 2.08 .

Figure 7: A two-dimensional slice of $Z=Z \cos (Z)$, showing the fractal nature of the set.

[^0]: *sjhalayka@gmail.com

