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Abstract 

 

The main finding this paper is nontrivial and implicit possibility to use well developed  

mathematical theory of differential equations with delays for solving actual engineering problem 

of a drone autonomous flight. In this paper we describe correct operation of autopilot for 

supply correct drone flight. There exists noticeable delay in getting information about position 

and orientation of a drone to autopilot in the presence of vision-based navigation. In spite of this 

fact, we demonstrate that it is possible to provide stable flight at a constant height in a vertical 

plane.  We describe how to form relevant controlling signal for autopilot in the case of the 

navigation information delay and provide control parameters for particular case of flight. 
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1. Introduction 

The main finding this paper is possibility to use well developed  mathematical theory of 

differential equations with delays for solving actual engineering problem of a drone autonomous 

flight. It is a nontrivial problem, because it cannot be made directly and explicitly. Indeed, we 

need to make some nontrivial mathematical transform of the physical differential equations and 

to find nontrivial solution for relevant parameters of the differential equations if we want to use 

known methods of the mathematical theory of differential equations with delays. This paper is 

engineering application of stability theory for differential equations with delays described in [1-

5]. In this paper we describe correct operation of autopilot for supply desirable drone flight 

(movement of a drone in a vertical plane at a constant height). For the finding drone flight 

parameters was used vision-based navigation [6-15]. For realization vision-based navigation was 

developed the computer program “Video-navigation of UAV over relief” [6]. This program was 

tested in Zhejiang Province in east China near the capital Hangzhou using Google Earth data 

[12]. There always exists noticeable delay in getting information about position and orientation 

of a drone to autopilot for vision-based navigation because of computer processing image’s big 

data. In spite of this fact, we demonstrate that it is possible to provide stable flight at a constant 

height in a vertical plane. We want to describe how to form relevant controlling signal for 

autopilot in the case of the navigation information delay. For this purpose we use theory of 

stability for differential equations with delays described in [1-5]. We plan to use the autopilot 

described in the paper for controlling flight parameters found from vision-based navigation. 
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Although there is a resistance of engineers to the use of theoretical results on stability of 

differential equations with delays, the theory of these equations develops intensively. Every year 

hundreds of papers on stability analysis of delay equations are published.  

Let us consider two examples. 

Example 1: These two very similar equations arise directly from the Newton second low: 

''( ) 0y t =  and ''( )x t = .  Assume that  is very small and consider the same initial conditions at 

the point 0: (0) 0, '(0) 0y y= =  and (0) 0, '(0) 0x x= = . Their solutions are ( ) 0y t   and 

2( )
2

x t t


=  respectively. It is clear that lim ( ) ( )t x t y t→ − =  , and there is no stability with 

respect to right-hand side. Conclusion: we need a feedback control to stabilize the equation 

''( ) ( )x t f t= with respect to a right-hand side. In this way we come to stability analysis of the 

delay equation 
1

''( ) ( ( ))
m

i i

i

x t a x t t
=

= − − . ( ) 0i t   appeared as a result of information, operation 

or transport delays existing in all real technological processes. 

Example 2. There exists a delusion that instead of stability analysis of the delay equation one can 

use elements of the modern technology, for example, GPS gives us the values of 

1 2 3( ), ( ), ( ),...x t x t x t  with very small time intervals 1i i it t t+ = − .  It can be demonstrated, for 

example, on the delay equation ''( ) ([ ])x t ax t= − , where [ ]t is the integer part of t  and 0a  . At 

the moment t  we know almost exactly ([ ])x t , but this does not help in stabilization. 

Actually, it is known from the paper [16] that all solutions of the equation ''( ) ( ( ))x t ax t t= − −  

are bounded if and only if 
0

( )t dt


  . For our equation ''( ) ([ ])x t ax t= − , we have ( ) [ ]t t t = −  

and 
0

( )t dt


=  . This means that there exist unbounded solutions of the equation ''( ) ([ ])x t ax t= − , 

and this equation is unstable. The direct use of GPS without theoretical basis could not achieve 

stabilization even the signals from GPS come with very small time intervals. 

Results on exponential stability, i.e. all solutions of the homogeneous equation 

1

''( ) ( ( ))
m

i i

i

x t a x t t
=

= − −  tend to zero like exp( )t−  with positive  , were obtained for the case 

2m   under corresponding conditions on the coefficients and delays in the form of inequalities 

in the paper [17]. 

 

Stability analysis presents one of the necessary parts in the almost all papers on robotics. Their 

authors avoid to consider the delay in their models although they accept fact of arising transport, 

information or executive delay in robotics models. They use the technique of Lyapunov’s 

functions which has the long history (starting with works of N.Krasovskii in 1950s) but is not 

convenient in many cases for stabilization by delay feedback control. 

 

The current basic engineering method for analyzing a delayed system is replacing the system 

with delays to the system without delay and using the classical theory of stability (characteristic 



3 
 

equations in linear case, and method of Lyapunov’s functions – in nonlinear). It is usually 

achieved in the frame of the following two ideas or their combinations ([18,19]): 

 

A) to extrapolate a motion forward during the delay time, 

B) to take into account the estimate error of a current state and to use all possible 

values of the process for its future analysis. 

 

The use of method B) results in an obvious decrease in the accuracy of control and its 

effectiveness.  

The use of method A) is possible when the system is sufficiently inert and does not have a strong 

control effect during the delay time. Even in this case, we need to use a complex algorithm. This 

results in an increase in the time and cost of creating a control system, the cost of computing 

power for extrapolation. The simplification of the model leads to a decrease in the accuracy and 

effectiveness of control. Also, when we change and upgrade the system, this big work needs to 

be carried out again. 

If there is a control effect on the behavior of the system during the delay time, the method makes 

even more expensive and complex - it requires complex iterative schemes, the iterations do not 

always converge and require a long calculation time, which may insert an additional time delay. 

This can lead to a complete loss of controllability of the system. In order not to be unfounded 

from the mathematical point of view, we added an explanation of the shortcomings of approach 

A) and the justification for the necessity of using new results on stability theory. 

 

 It looks that the use of Azbelev’s theory of stability of functional differential equations can open 

new perspectives in the control in robotics. See the book [21]  . 

In the book [2], based on Azbelev’s theory, we developed the stability analysis and methods of 

estimates of solutions to systems of delay differential equations.  

The use of mathematical theory of stability and control of systems with delays allows: 

1) It reduces the time and costs for control development. 

2) It is easy to modernize the control of the system if the system has been changed. 

3) Methods are universal for a wide class of systems. 

4) Due to the high accuracy of mathematical methods, the system will have efficient and precise 

control. 

5) There are no additional delays or control failures for complex cases where the controlled 

system is not inertial, and the control effect is significant during the delay time. 

 

2. Stability of systems with time delays 

Throughout the paper e denotes the Euler number. 𝐿∞ is the space of essentially bounded 

measurable functions: [0,+∞) → R.  

Consider the non-homogenous system of differential equations 

 

𝑥𝑖
′(𝑡) − ∑ ∑ 𝑎𝑖𝑗

𝑘 ( 𝑡)𝑚
𝑘=1 𝑥𝑗(𝑡 − 𝜃𝑖𝑗

𝑘 (𝑡))𝑛
𝑗=1 = 𝑓( 𝑡), 𝑡 ∈ 0,+∞)    (2.1) 

𝑥(𝜉) = 0, 𝜉 < 0, i = 1, . . . , n, 
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Where 𝐴𝑘(𝑡) = {𝑎𝑖𝑗
𝑘 ( 𝑡)}𝑖,𝑗=1,...,𝑛 are 𝑛 × 𝑛 matrices with entries 𝑎𝑖𝑗

𝑘 (𝑡) ∈ 𝐿∞, 𝜃𝑖𝑗
𝑘 (𝑡) ∈ 𝐿∞ 

for 𝑘 = 1, . . . , 𝑚, 𝑓(𝑡) = 𝑐𝑜𝑙{𝑓1( 𝑡) , . . . , 𝑓𝑛( 𝑡)}, 𝑓𝑖 ∈ 𝐿∞, for 𝑖 = 1, . . . , 𝑛. The components 

𝑥𝑖: [0, +∞) → ℝ of the vector 𝑥 = 𝑐𝑜𝑙{𝑥1, . . . , 𝑥𝑛} are assumed to be absolutely continuous and 

their derivatives 𝑥𝑖
′ ∈ 𝐿∞.  A vector-function 𝑥 is a solution of (2.1) if it satisfies system (2.1) for 

almost all 𝑡 ∈ [0, +∞).   

Denote 

𝜃𝑖𝑖
+(𝑡) = 𝑚𝑎𝑥𝑚≥𝑘≥1 𝜃𝑖𝑖

𝑘(𝑡) 

𝜃𝑖𝑖
−(𝑡) = 𝑚𝑖𝑛𝑚≥𝑘≥1 𝜃𝑖𝑖

𝑘(𝑡) 

                                                        𝛥𝑖 = 𝑒𝑠𝑠𝑠𝑢𝑝𝑡≥0{𝜃𝑖𝑖
+(𝑡) − 𝜃𝑖𝑖

−(𝑡)}.     

It was shown in Theorem 3.2 in [1] that: 

If the following conditions are fulfilled: 

(1.1) There exist positive numbers 𝑧1, . . . , 𝑧𝑛 such that 

∑ 𝑎𝑖𝑗
𝑘 (𝑡)𝑚

𝑘=1 𝑧𝑖 − ∑ ∑ |𝑎𝑖𝑗
𝑘 (𝑡)|𝑧𝑗

𝑚
𝑘=1

𝑛
𝑗=1,𝑗≠𝑖 ≥ 1, 𝑡 ∈ [0, +∞), 𝑖 = 1, . . . , 𝑛      

(1.2) For every 𝑖 = 1, … , 𝑛 at least one of the conditions (1.2a) or (1.2b) be fulfilled: 

 (1.2a) there exists 𝑚𝑖 such that 𝑎𝑖𝑖
𝑘(𝑡) ≥ 0,  𝑎𝑖𝑖

𝑗
(𝑡) ≤ 0, 𝜃𝑖𝑖

𝑘(𝑡) ≥ 𝜃𝑖𝑖
𝑗
(𝑡) for 𝑘 =

            1, . . . , 𝑚𝑖, 𝑗 = 𝑚𝑖+1, . . . , 𝑚, ∑ 𝑎𝑖𝑖
𝑘(𝑡) ≥

𝑚𝑖
𝑘=1

1

𝑒
∑ |𝑎𝑖𝑖

𝑗
(𝑡)|𝑚

𝑗=𝑚𝑖+1
 for 𝑡 ∈ [0, +∞) 

            ∫ {∑ 𝑎𝑖𝑖
𝑘(𝑠)

𝑚𝑖
𝑘=1 −

1

𝑒
∑ |𝑎𝑖𝑖

𝑗
(𝑠)|𝑚

𝑗=𝑚𝑖+1
}

𝑡

𝑡−𝜃𝑖𝑖
+(𝑡)

𝑑𝑠 ≤
1

𝑒
, 𝑡 ∈ [0, +∞) and 

         (1.2b) there exists 𝑚𝑖 such that 𝑎𝑖𝑖
𝑘(𝑡) ≥ 0,  𝑎𝑖𝑖

𝑗
(𝑡) ≤ 0, 𝜃𝑖𝑖

𝑘(𝑡) ≤ 𝜃𝑖𝑖
𝑗
(𝑡) for 𝑘 =

                     1, . . . , 𝑚𝑖, 𝑗 = 𝑚𝑖+1, . . . , 𝑚, ∑ 𝑎𝑖𝑖
𝑘(𝑡) ≥

𝑚𝑖
𝑘=1 ∑ |𝑎𝑖𝑖

𝑗
(𝑡)|𝑚

𝑗=𝑚𝑖+1
 for 𝑡 ∈ [0, +∞) 

       ∫ {∑ 𝑎𝑖𝑖
𝑘(𝑠)

𝑚𝑖
𝑘=1 − ∑ |𝑎𝑖𝑖

𝑗
(𝑠)|𝑚

𝑗=𝑚𝑖+1
}

𝑡

𝑡−𝜃𝑖𝑖
+(𝑡)

𝑑𝑠 ≤
1

𝑒
, 𝑡 ∈ [0, +∞)  

and 

       ∫ ∑ 𝑎𝑖𝑖
𝑘𝑚𝑖

𝑘=1

𝑠+𝛥𝑖
𝑠

(𝜉)𝑑𝜉 ≤
1

𝑒
 ∀𝑠 ≥ 0, where 𝛥𝑖 = 𝑒𝑠𝑠𝑠𝑢𝑝𝑡≥0{𝜃𝑖𝑖

+(𝑡) − 𝜃𝑖𝑖
−(𝑡)}  

Then system (2.1) is exponentially stable. 

 

3. Parameters of drone’s motion 

 

3.1 Nonlinear equations 

 

Let us define the following variables and parameters used in equations of motion for a 

drone (see Fig. 1) [22]: 
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Fig.1 Parameters of drone's longitudinal motion 

 

1) for forces and moments of forces:  

P − Tractive force directed along longitudinal drone axis  

Y− Carrying force orthogonal to flight velocity  

X− Resistance force opposite to V  

G − Gravitation force  

𝑀𝑧 − Total moment of aerodynamical forces with respect of transversal axis  

𝑓1, 𝑓2, 𝑓3 − Random forces and random moments of forces  

2) for variables describing motion:  

V− Flight velocity tangent to trajectory (with respect of air)  

H – Height above mean sea level of a drone flight 

L – Drone path in longitudinal direction  

ϑ − Pitch angle, i.e. angle between longitudinal drone axis and horizontal plane  

θ − Tilting of velocity about horizontal plane  

α − Angle of attack, i.e. angle between longitudinal axis of a drone and projection of drone 

velocity on the symmetry plane of the drone 

3) Drones parameters: 

m = G/g − drone mass  

𝐽𝑧 − Inertial moment of drone with respect of axis z p - air density 
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4) Controlling signals: 

 

𝛿𝑝− Position of drone central control knob 

 𝛿𝐵− Deviation of drone control elevator 

5) External environment parameters: 

𝑈𝑥and 𝑈𝑦− wind velocities along axes𝑥and𝑦, correspondently 

 

It's shown in [22] that forward movement and rotation are described by the system of 

equations: 

 

{
 
 
 
 

 
 
 
 𝑚

𝑑𝑉

𝑑𝑡
= 𝑃(𝛿𝑝(𝑡),𝑀(𝑉, 𝐻)) 𝑐𝑜𝑠( 𝛼) − 𝑋(𝛼, 𝑉, 𝐻) − 𝐺 𝑠𝑖𝑛( 𝜃) + 𝑓1(𝑡)

𝑚𝑉
𝑑𝜃

𝑑𝑡
= 𝑃(𝛿𝑝(𝑡),𝑀(𝑉,𝐻)) 𝑠𝑖𝑛( 𝛼) − 𝑌(𝛼, 𝑉, 𝐻) − 𝐺 𝑐𝑜𝑠( 𝜃) − 𝑓2(𝑡)

𝐽𝑧
𝑑2𝜗

𝑑𝑡2
= 𝑀𝑧(𝛼,𝑀(𝑉,𝐻), �̇�, �̇�, 𝛿𝐵(𝑡)) + 𝑓3(𝑡)

𝑑𝐻

𝑑𝑡
= 𝑉 𝑠𝑖𝑛( 𝜃) + 𝑈𝑦(𝑡)

𝑑𝐿

𝑑𝑡
= 𝑉 𝑐𝑜𝑠( 𝜃) + 𝑈𝑥(𝑡)

𝜗 = 𝜃 + 𝛼

 (3.1) 

 

𝑃 = 𝑃(𝛿𝑝, 𝑉),𝑋 = 𝑐𝑥(𝛼,𝑀)𝑆
𝜌(𝐻)𝑉2

2
,𝑌 = 𝑐𝑦(𝛼,𝑀(𝑉,𝐻))𝑆

𝜌(𝐻)𝑉2

2
, 𝜗 = 𝜃 + 𝛼,    

𝑀𝑧 = 𝑚𝑧(𝛼,𝑀(𝑉,𝐻), �̇�, �̇�, 𝛿𝐵)𝑏𝑎𝑆
𝜌(𝐻)𝑉2

2
 , 𝑀(𝐻) ≝

𝑉

𝑎(ℎ)
  

Here 

𝑐𝑥 And 𝑐𝑦- coefficients of resistance and carrying forces, correspondently 

𝑚𝑧 - Coefficient of moment 

S – Area of winds 

𝑏𝑎 - Length of wind chord 

𝜌(𝐻) - Air density at a flight height 

𝑀 = 𝑉/𝑎 - Mach number 

𝑎 - Sound velocity 

 𝑚𝑧(𝛼, 𝛼, �̇�, 𝑉, 𝛿𝐵, 𝜌) = 𝑚1𝑧(𝛼,𝑀(𝑉,𝐻), 𝛿𝐵) + 𝑚2𝑧(𝑀(𝑉, 𝐻), �̇�, �̇�)   

Aerodynamical damping moment: 
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𝑚2𝑧(𝑀(𝑉,𝐻), �̇�, �̇�) = 𝑘 (
𝐿1

𝑀(𝑉, 𝐻)
�̇� + 𝑘′�̇�) 

𝐿1- Distance from tail unit to center of mass 

𝑘, 𝑘′- Constants 

Dependence of parameters on a flight height above mean sea level is defined by the following 

equations: 

𝜌(𝐻) = 𝜌(0) (
𝑇𝐻(𝐻)

𝑇(0)
)

1

𝛾−1
 ;𝑎(𝐻) = √𝛾𝑅𝑇𝐻(𝐻); 𝑇𝐻(𝐻) = 𝑇(0) − 𝛽𝐻, where 

𝑇𝐻(𝐻) - Temperature at a flight height 

𝑇(0), 𝜌(0) - Temperature and air density at mean sea level 

𝛾 - Adiabatic constant 

𝑅 - Gas constant 

𝛽 - Temperature gradient over height 

 

3.2 Steady state solution 

For the constant wind, zero-controlling external small random forces and moments we can find a 

steady state solution for a drone flight: 

𝑉0, 𝜃0, 𝛼0, 𝜗0, 𝐻0, (𝑈𝑥)0, (𝑈𝑦)0  

𝑈𝑦(𝑡) = (𝑈𝑦)0 + 𝛥𝑈𝑦(𝑡)  

𝑈𝑥(𝑡) = (𝑈𝑥)0 + 𝛥𝑈𝑥(𝑡), 

Where 𝛥𝑈𝑥(𝑡), 𝛥𝑈𝑦(𝑡) - small wind fluctuations. 

The steady state solution can be obtained from (1) by equating all external small random forces 

and moments, controlling parameters, wind velocity fluctuations, all derivatives to zero: 
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( )

2
20 0

0 0 0 0 0 0 0

2
20 0

0 0 0 0 0 0 0

0

0 0 0

0 0

0 0 0

1 2 3

1
sin( ) cos( ) ( ) ( )

2 2

1
cos( ) sin( ) ( ) ( )

2 2

0

sin( ) ( )

( ) ( cos( ) ( ) ) (0)

( ) 0;   ( ) 0;   ( ) 0;   ( ) 0;   ( )

def

x x

def

y y

z

y

x

p B

V
G P c S c S V

V
G P c S c S V

m

V U

L t V U t L

t t f t f t f t


  


  





  

 

= − = −

= + =

=

= −

= + +

= −

= = = = 0;   ( ) 0;   ( ) 0x yU t U t















=  =  =




  

Here we use the following steady state parameters: 

(𝑇𝐻)0 = 𝑇0 − 𝛽𝐻0;   𝜌0 = 𝜌(0) (
𝑇𝐻(𝐻0)

𝑇0
)

1

𝛾−1
;   𝑎0 = √𝛾𝑅(𝑇𝐻)0;   𝑀0 =

𝑣0

𝑎0
  

𝑃0 = 𝑃(0,𝑀0);   (𝑐𝑥)0 = 𝑐𝑥(𝑎0,𝑀0);   (𝑐𝑦)0 = 𝑐𝑦(𝑎0,𝑀0);   (𝑚𝑧)0 = 𝑚𝑧(𝑎0,𝑀0, 0,0,0)  

(
𝜕𝑐𝑥

′

𝜕𝑀
)
0
, (

𝜕𝑐𝑦
′

𝜕𝑀
)
0
,(
𝜕𝑐𝑥

𝜕𝛼
)
0
,(
𝜕𝑐𝑦

𝜕𝛼
)
0
,(
𝜕𝑃

𝜕𝛿𝑃
)
0
,(𝑐𝑦

′ )
0
,(𝑐𝑥

′ )0, (
𝜕𝑚𝑧

𝜕�̇�
)
0
,(
𝜕𝑚𝑧

𝜕𝛼
)
0
,(
𝜕𝑚𝑧

𝜕�̇�
)
0
,(
𝜕𝑚𝑧

𝜕𝑀
)
0
,(
𝜕𝑚𝑧

𝜕𝛿𝐵
)
0
 - 

values of the functions and its derivatives for the steady values 

𝑉0, 𝜃0, 𝛼0, 𝜗0, 𝐻0, (𝑈𝑥)0, (𝑈𝑦)0, 𝛿𝐵(𝑡) = 0, 𝛿𝑃(𝑡) = 0  

 

3.3 Linear equations 

Since the system (1) is nonlinear, it’s too hard to use those equations to analyze stability. We 

need to linearize those equations on the premise that the parameters 𝜗0, 𝜃0, 𝑉0, 𝛼0, 𝐻0 

corresponding with steady flight get small increments 𝛥𝜗,𝛥𝜃,𝛥𝑉,𝛥𝛼,𝛥𝐻caused by perturbations 

action on a flight. 

Let us define the following deviations from the steady state: 

0

0

0

0

0

( )

( )

( )

( )

V V V t

t

t

H H H t

  

  

  

= + 


= + 



= + 
 = + 

 = + 

  

𝑣(𝑡) =
𝛥𝑉

𝑉0
;   ℎ(𝑡) =

𝛥𝐻

𝑉0𝜏𝑎
;   𝛼(𝑡) = 𝛥𝛼;   𝜃(𝑡) = 𝛥𝜃;   𝜗(𝑡) = 𝛥𝜗;   𝑣𝑦(𝑡) =

𝛥𝑈𝑦

𝑉0
;   𝑣𝑥(𝑡) =

𝛥𝑈𝑥

𝑉0
;  

The correspondent parameters are the following: 

𝜏𝑎 =
𝑚

𝜌0𝑉0𝑆
; 𝜇 =

𝑏𝑎𝑚

2𝑟𝑧
2𝜌0𝑆

; 𝑟𝑧
2 =

𝐽𝑧

𝑚
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𝑟𝑧- inertial radius 

�̄� =
𝑡

𝜏𝑎
;𝑝 =

𝑑

𝑑�̄�
  

𝑐𝑥
′ (𝑀) ≝ 𝑐𝑥(𝛼0, 𝑀) − 2

𝑃(0,𝑀) 𝑐𝑜𝑠(𝛼0)

𝜌0𝑆𝑉0
2 ;  𝑐𝑦

′ (𝑀) ≝ 𝑐𝑦(𝛼0, 𝑀) + 2
𝑃(0,𝑀) 𝑐𝑜𝑠(𝛼0)

𝜌0𝑆𝑉0
2 ; 

We can made linearization of (1) in the neighborhood of the found steady state solution: 

{
 
 

 
 (𝑝 + 𝑛11)𝜐 + 𝑛12𝛼 + 𝑛13𝜗 + 𝑛14ℎ = 𝑛𝑝𝛿𝑝 + 𝑓1(𝑡)

−𝑛21𝜐 + (𝑝 + 𝑛22)𝛼 − (𝑝 + 𝑛23)𝜗 + 𝑛24ℎ = 𝑓2(𝑡)

𝑛31𝜐 + (𝑛0𝑝 + 𝑛32)𝛼 + (𝑝
2 + 𝑛33𝑝)𝜗 + 𝑛34ℎ = −𝑛𝐵𝛿𝐵(𝑡) + 𝑓3(𝑡)

−𝑛41𝜐 + 𝑛42𝛼 − 𝑛42𝜗 + 𝑝ℎ = 𝜐𝑦(𝑡)

  

 𝑛11 =
𝑀0

2
(
𝜕𝑐𝑥

′

𝜕𝑀
)
0
+ (𝑐𝑥)0;  𝑛12 =

1

2
((

𝜕𝑐𝑥

𝜕𝛼
)
0
− (𝑐𝑦)0) ; 

 𝑛13 =
1

2
(𝑐𝑦
′ )0; 𝑛14 =

𝛽𝑉0𝜏0

2(𝑇𝐻)0
[
𝑀0

2
(
𝜕𝑐𝑥

′

𝜕𝑀
) −

(𝑐𝑥)0

𝛾−1
] ; 

 𝑛21 = −(
𝑀0

2
(
𝜕𝑐𝑦

′

𝜕𝑀
)
0
+ (𝑐𝑦)0); 𝑛22 =

1

2
((

𝜕𝑐𝑦

𝜕𝛼
)
0
+ (𝑐𝑥)0); 

 𝑛23 =
1

2
(𝑐𝑥
′ )0; 𝑛24 =

𝛽𝑉0𝜏0

2(𝑇𝐻)0
[
𝑀0

2
(
𝜕𝑐𝑦

′

𝜕𝑀
)
0
−
(𝑐𝑦)0

𝛾−1
]; 

 𝑛31 = −𝜇𝑀0 (
𝜕𝑚𝑧

𝜕𝑀
)
0
;  𝑛32 = −𝜇 (

𝜕𝑚𝑧

𝜕𝛼
)
0
; 

 𝑛33 = −
𝜇

𝜏𝛼
(
𝜕𝑚𝑧

𝜕�̇�
)
0
; 𝑛34 = −𝜇

𝛽𝜏𝛼𝑉0

2(𝑇𝐻)0
𝑀0 (

𝜕𝑚𝑧

𝜕𝑀
)
0
; 

  𝑛0 = −
𝜇

𝜏𝛼
(
𝜕𝑚𝑧

𝜕�̇�
)
0
; 

 𝑛41 = 𝑠𝑖𝑛( 𝜃0); 𝑛42 = 𝑐𝑜𝑠( 𝜃0); 

 𝑛𝑝 =
(
𝜕𝑃

𝜕𝛿𝑃
)
0
𝑐𝑜𝑠(𝛼0)

𝜌0𝑠𝑉0
2  ; 𝑛𝐵 = −𝜇 (

𝜕𝑚𝑧

𝜕𝛿𝐵
)
0
; 𝑝 =

𝑑

𝑑�̄�
     

The typical real values of the coefficients 𝑛𝑖𝑗 can be found from the Table 1. 
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3.4 Adjusting the system to a proper form 

We have to adjust our system to a proper form to apply the theory of stability. 

{
 

 
𝜐′(𝑡) = −𝑛11𝜐(𝑡) − 𝑛12𝛼(𝑡) − 𝑛13𝜗(𝑡) − 𝑛14ℎ(𝑡) = 𝑛𝑝𝛿𝑝(𝑡 − 𝜏)

𝛼′(𝑡) = 𝜗′(𝑡) + 𝑛21𝜐(𝑡) − 𝑛22𝛼(𝑡) + 𝑛23𝜗(𝑡) − 𝑛24ℎ(𝑡)

𝜗″(𝑡) = −𝑛0𝛼
′(𝑡) − 𝑛33𝜗

′(𝑡) − 𝑛31𝜐(𝑡) − 𝑛32𝛼(𝑡) − 𝑛34ℎ(𝑡) − 𝑛𝐵𝛿𝐵(𝑡 − 𝜏)

ℎ′(𝑡) = 𝑛41𝜐(𝑡) − 𝑛42𝛼(𝑡) + 𝑛42𝜗(𝑡)

 

 

Let's start with linear substitution. It brings the system to a form where all diagonal 

coefficients are non-zero. 

The first substitution is following: 
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ℎ(𝑡) = 𝜆(𝑡) −𝑊𝑣(𝑡) ⇒  ℎ′(𝑡) =
𝑑𝜆(𝑡)

𝑑𝑡
−𝑊

𝑑𝑣(𝑡)

𝑑𝑡
; 

Now we have: 

{
 
 

 
 

𝜐′(𝑡) = −𝑛11𝜐(𝑡) − 𝑛12𝛼(𝑡) − 𝑛13𝜗(𝑡) − 𝑛14(𝜆(𝑡) −𝑊𝜐(𝑡)) = 𝑛𝑝𝛿𝑝(𝑡 − 𝜏)

𝛼′(𝑡) = 𝜗′(𝑡) + 𝑛21𝜐(𝑡) − 𝑛22𝛼(𝑡) + 𝑛23𝜗(𝑡) − 𝑛24(𝜆(𝑡) −𝑊𝜐(𝑡))

𝜗″(𝑡) = −𝑛0𝛼
′(𝑡) − 𝑛33𝜗

′(𝑡) − 𝑛31𝜐(𝑡) − 𝑛32𝛼(𝑡) − 𝑛34(𝜆(𝑡) −𝑊𝜐(𝑡)) − 𝑛𝐵𝛿𝐵(𝑡 − 𝜏)

𝜆′(𝑡) = 𝑊 (−𝑛11𝜐(𝑡) − 𝑛12𝛼(𝑡) − 𝑛13𝜗(𝑡) − 𝑛14(𝜆(𝑡) −𝑊𝜐(𝑡)) + 𝑛𝑝𝛿𝑝(𝑡 − 𝜏)) +

+𝑛41𝜐(𝑡) − 𝑛42𝛼(𝑡) + 𝑛42𝜗(𝑡)

 

 

The second linear substitution is used here to decrease the order of the system. 

𝜗′(𝑡) = 𝜑(𝑡) + 𝑏0𝜗(𝑡); 

{
 
 
 
 

 
 
 
 
𝜐′(𝑡) = −𝑛11𝜐(𝑡) − 𝑛12𝛼(𝑡) − 𝑛13𝜗(𝑡) − 𝑛14(𝜆(𝑡) −𝑊𝜐(𝑡)) + 𝑛𝑝𝛿𝑝(𝑡 − 𝜏)

𝛼′(𝑡) = 𝜑(𝑡) + 𝑏0𝜗(𝑡) + 𝑛21𝜐(𝑡) − 𝑛22𝛼(𝑡) + 𝑛23𝜗(𝑡) − 𝑛24(𝜆(𝑡) −𝑊𝜐(𝑡))

𝜗′(𝑡) = 𝜑(𝑡) + 𝑏0𝜗(𝑡)

𝜑′(𝑡) = −𝑛𝐵𝛿𝐵(𝑡 − 𝜏) + ((−𝑛23 − 𝑏0)𝑛0 − 𝑏0(𝑛33 + 𝑏0))𝜗(𝑡) +

+((−𝑊𝑛24 − 𝑛21)𝑛0 +𝑊𝑛34 − 𝑛31)𝜐(𝑡) +

+(−𝑛33 − 𝑏0 − 𝑛0)𝜑(𝑡) + (𝑛0𝑛24 − 𝑛34)𝜆(𝑡) − 𝛼(𝑡)(−𝑛0𝑛22 + 𝑛32)

𝜆′(𝑡) = 𝑊𝛿𝑝(𝑡 − 𝜏)𝑛𝑝 + (𝑊
2𝑛14 −𝑊𝑛11 + 𝑛41)𝜐(𝑡) + (−𝑊𝑛13 + 𝑛42)𝜗(𝑡) +

+(−𝑊𝑛12 − 𝑛42)𝛼(𝑡) −𝑊𝜆(𝑡)𝑛14

 

𝛿𝑃 and 𝛿𝐵 are control parameters. We want to express them as linear combinations of our 

original variables: 

𝛿𝑃(𝑡 − 𝜏) = 𝑝1𝜐(𝑡 − 𝜏) + 𝑝2𝛼(𝑡 − 𝜏) + 𝑝3𝜗(𝑡 − 𝜏) + 𝑝4ℎ(𝑡 − 𝜏) ; 

𝛿𝐵(𝑡 − 𝜏) = 𝑏1𝜐(𝑡 − 𝜏) + 𝑏2𝛼(𝑡 − 𝜏) + 𝑏3𝜗(𝑡 − 𝜏) + 𝑏4ℎ(𝑡 − 𝜏) 

Taking this into account the system will be the following: 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜐′(𝑡) = −𝑛11𝜐(𝑡) − 𝑛12𝛼(𝑡) − 𝑛13𝜗(𝑡) − 𝑛14(𝜆(𝑡) −𝑊𝜐(𝑡)) +

+𝑛𝑝 (𝑝1𝜐(𝑡 − 𝜏) + 𝑝2𝛼(𝑡 − 𝜏) + 𝑝3𝜗(𝑡 − 𝜏) + 𝑝4((𝜆(𝑡 − 𝜏) −𝑊𝜐(𝑡 − 𝜏)))

𝛼′(𝑡) = 𝜑(𝑡) + 𝑏0𝜗(𝑡) + 𝑛21𝜐(𝑡) − 𝑛22𝛼(𝑡) + 𝑛23𝜗(𝑡) − 𝑛24(𝜆(𝑡) −𝑊𝜐(𝑡))

𝜗′(𝑡) = 𝜑(𝑡) + 𝑏0𝜗(𝑡)

𝜑′(𝑡) = −𝑏0(𝜑(𝑡) + 𝑏0𝜗(𝑡)) −

− 𝑛0 (𝜑(𝑡) + 𝑏0𝜗(𝑡) + 𝑛21𝜐(𝑡) − 𝑛22𝛼(𝑡) + 𝑛23𝜗(𝑡) − 𝑛24(𝜆(𝑡) −𝑊𝜐(𝑡)))          

−𝑛33(𝜑(𝑡) + 𝑏0𝜗(𝑡)) − 𝑛31𝜐(𝑡) − 𝑛32𝛼(𝑡) − 𝑛34(𝜆(𝑡) −𝑊𝜐(𝑡)) − 𝑛𝐵(𝑏1𝜐(𝑡 − 𝜏)) +

+𝑏2𝛼(𝑡 − 𝜏) + 𝑏3𝜗(𝑡 − 𝜏) + 𝑏4(𝜆(𝑡 − 𝜏) −𝑊𝜐(𝑡))

𝜆′(𝑡) = 𝑊(𝑝1𝜐(𝑡 − 𝜏) + 𝑝2𝛼(𝑡 − 𝜏) + 𝑝3𝜗(𝑡 − 𝜏) + 𝑝4(𝜆(𝑡 − 𝜏) −𝑊𝜐(𝑡 − 𝜏)))𝑛𝑝 +

+(𝑊2𝑛14 −𝑊𝑛11 + 𝑛41)𝜐(𝑡) + (−𝑊𝑛13 + 𝑛42)𝜗(𝑡) +
+(−𝑊𝑛12 − 𝑛42)𝛼(𝑡) −𝑊𝜆(𝑡)𝑛14

  (3.1) 
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1.1 Autopilot 

For the case when steady state parameters cannot provide stability of the desirable steady state 

trajectory themselves, we need to use autopilots (Fig.2.). An autopilot states the controlling 

parameters 𝛿𝑝, 𝛿𝐵 to be functions of the output controlled 

parameters(𝜐(𝑡);   ℎ(𝑡);   𝛼(𝑡);   𝜃(𝑡);   𝜗(𝑡)), which are deviations from the desirable steady 

state trajectory. The values of the output parameters can be obtained by autopilot from 

navigation measurements, for example, from vision-based navigation, inertial navigation, 

satellite navigation and so on. On the basis these navigation measurements, the autopilot forms 

controlling signals to decrease undesirable deviation. Unfortunately, there always exists some in 

getting information about the output controlled parameters to autopilot for any navigation 

measurements. So we have a problem, because of the lack of some necessary information for 

controlling. In this paper we demonstrate that we are possible even for such conditions with the 

time delay to get controlling signal providing a stable flight. 

 

 

Fig.2 Automatic control 

 

4 Applying the theory to a particular case 

 

Apply the condition (1.1) of Theorem 3.2 in [1], described in section 2 of this paper to 

the system (3.1) 

Consider the system of inequalities: 

 

{
 
 
 
 

 
 
 
 
(𝑛𝑝𝑝4𝑊 + 𝑛14𝑊 − 𝑛𝑝𝑝1 + 𝑛11)𝑧1 − |−𝑛𝑝𝑝2 + 𝑛12|𝑧2 − |−𝑛𝑝𝑝3 + 𝑛13|𝑧3 − |−𝑛𝑝𝑝4 + 𝑛14|𝑧5 ≥ 1            (4.1)

𝑛22𝑧2 − |𝑛24𝑊 + 𝑛21|𝑧1 − |𝑛23 + 𝑏0|𝑧3 − 𝑧4 − |𝑛24|𝑧5 ≥ 1                                                                                    (4.2) 

−𝑏0𝑧3 − 𝑧4 ≥ 1                                                                                                                                                                     (4.3) 

(𝑏0 + 𝑛0 + 𝑛33)𝑧4 − |−𝑛0𝑛21 − 𝑛0𝑛24𝑊 − 𝑛21 + 𝑛34𝑊 − 𝑛𝐵𝑏1 + 𝑛𝐵𝑏4𝑊|𝑧1 − |𝑛0𝑛22 − 𝑛32 − 𝑛𝐵𝑏2|𝑧2 −

−|𝑛0𝑏0 + 𝑛33𝑏0 + 𝑏0
2 + 𝑛0𝑛23 + 𝑛𝐵𝑏3|𝑧3 − |𝑛0𝑛24 − 𝑛34 − 𝑛𝐵𝑏4|𝑧5 ≥ 1                                                            (4.4) 

(−𝑛𝑝𝑝4𝑊 + 𝑛14𝑊)𝑧5 − |−𝑊
2𝑛𝑝𝑝4 +𝑊

2𝑛14 +𝑊𝑛𝑝𝑝1 −𝑊𝑛11 + 𝑛41|𝑧1 − |−𝑛𝑝𝑝2 + 𝑛12 +
𝑛42
𝑊
| 𝑧2 −

− |−𝑛𝑝𝑝3 + 𝑛13 −
𝑛42
𝑊
| 𝑧3 ≥ 1                                                                                                                                           (4.5) 
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Take other coefficients from the first column of Table 1 we get following: 

𝑛11 = 0.024, 𝑛12 = −0.11, 𝑛13 = 0.2, 𝑛14 = −0.00043, 𝑛21 = −0.4, 𝑛22 = 2.4, 𝑛23 =

0, 𝑛24 = −0.0122, 𝑛31 = 0, 𝑛32 = 38, 𝑛33 = 2.45, 𝑛34 = −0.053, 𝑛0 = 0.4, 𝑛𝐵 = 49, 

𝑛𝑃 = 0.022, 𝑛41 = 0, 𝑛42 = 1;                   

 

We choose 𝑧1 = 1 ∙ |𝑧|, 𝑧2 = 1 ∙ |𝑧|, 𝑧3 = 10−10 ∙ |𝑧|, 𝑧4 = 10
−10 ∙ |𝑧|, 𝑧5 = 1 ∙ |𝑧|, 

where |𝑧| ≫ 1, |𝑧| ∙ 10−10 ≫ 1 

From (4.3) 

𝑏1 = −
𝑛21(𝑛0 + 1)

𝑛𝐵
 

𝑏2 =
𝑛0𝑛22 − 𝑛32

𝑛𝐵
 

𝑏3 = −
𝑏0
2 + 𝑛0𝑏0 + 𝑛33𝑏0 + 𝑛0𝑛32

𝑛𝐵
 

𝑏4 =
𝑛0𝑛24 − 𝑛34

𝑛𝐵
 

𝑏0 ≥ −𝑛0 − 𝑛33 + 1 /(|𝑧| ∙ 10
−10)    

From (4.3) 

𝑏0 ≥ −(1 + 1 /(|𝑧| ∙ 10
−10))    

We choose 𝑏0 = −1.001 

Then we can calculate parameters 𝑏1, 𝑏2, 𝑏3, 𝑏4: 

𝑏1 = 0.01142857143, 𝑏2 = -0.7559183673,  𝑏3 = 0.03777242857, 𝑏4 =

0.0009820408163 

 

From (4.2) 

𝑛22 − |𝑛24𝑊 + 𝑛21| − (|𝑛23 + 𝑏0| + 1) ∙ 10
−10

− |𝑛24| ≥
1

|𝑧|
 

𝑛22
|𝑛24|

−
(|𝑛23 + 𝑏0| + 1)

|𝑛24|
∙ 10−10 − 1 −

1

|𝑧||𝑛24|
−
𝑛21
𝑛24

≥ 𝑊

≥ −
𝑛22
|𝑛24|

+
(|𝑛23 + 𝑏0| + 1)

|𝑛24|
∙ 10−10 + 1 +

1

|𝑧||𝑛24|
−
𝑛21
𝑛24

 

 

162.95−
(|𝑛23+𝑏0|+1)

|𝑛24|
∙ 10−10 −

1

|𝑧||𝑛24|
≥ 𝑊 ≥ −228.51 +

(|𝑛23+𝑏0|+1)

|𝑛24|
∙ 10−10 +

1

|𝑧||𝑛24|
 

We choose 𝑊 = −63 

We choose 

|−𝑛𝑝𝑝2 + 𝑛12 +
𝑛42
𝑊
| = |−𝑛𝑝𝑝2 + 𝑛12| = |

𝑛42
2𝑊

| 

|−𝑛𝑝𝑝3 + 𝑛13 −
𝑛42
𝑊
| = |−𝑛𝑝𝑝3 + 𝑛13| = |

𝑛42
2𝑊

| 

 

so 

𝑝2 = −
|
𝑛42
2𝑊

|+|𝑛12|

𝑛𝑝
 ,  𝑝3 = −

|
𝑛42
2𝑊

|+|𝑛13|

𝑛𝑝
; 

Then we can calculate parameters 𝑝2, 𝑝3: 

𝑝2 = -5.360750359, 𝑝3 = 9.451659450 
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We introduce new variable 𝑝5 = 𝑝1 −𝑊𝑝4. 

Substituting 𝑝1 = 𝑝5 +𝑊𝑝4 we get conditions for parameters 𝑝4 and  𝑝5 from (4.1) and 

(4.5): 

 

  {
(𝑛14𝑊 − |

𝑛42

2𝑊
| (1 + 10−10) + 𝑛11) − 𝑛𝑃𝑝5 − |−𝑛𝑝𝑝4 + 𝑛14| > 0

(𝑛14𝑊 − |
𝑛42

2𝑊
| (1 + 10−10)) − 𝑛𝑝𝑝4𝑊 − |𝑊2𝑛14 +𝑊𝑛𝑝𝑝5 −𝑊𝑛11 + 𝑛41| > 0

 

 

  {
−0.022𝑝5 + 0.04315349210 − |0.022𝑝4 + 0.00043| > 0

0.022𝑝4 − 0.007506507971 − |0.00309 + 0.022𝑝5| > 0
    (4.6) 

 

  

We find the parameters and choose the particular ones that satisfy the requirements: 

 

𝑝1 = −35, 𝑝4 = 0.5512345678   

 

Now it's possible to find the requirements for delay: 

Apply the conditions (1.2) of Theorem 3.2 in [1], described in section 2 of this paper to 

the system (3.1) 

From eq. for 𝜐′(𝑡) 

(𝑛14𝑊 + 𝑛11 − 𝑛𝑝𝑝1)𝜏 ≤
1

𝑒
  

0.821𝜏 ≤ 0.368 

𝜏 ≤ 0.448 

(𝑛14𝑊 + 𝑛11 − 𝑛𝑝𝑝1 − |𝑛𝑝𝑝4𝑊|)𝜏 ≤
1

𝑒
;  

0.057𝜏 ≤ 0.368 

𝜏 ≤ 6.445 

From eq. for 𝜆′(𝑡) 

(𝑛14𝑊 − 𝑛𝑝𝑝4𝑊)𝜏 ≤
1

𝑒
 

0.791𝜏 ≤ 0.368 

𝜏 ≤ 0.465 

 

Finally,  

𝜏 ≤ 0.448 

Delay in seconds  

𝜏𝑠 ≤ 0.448𝜏𝑎 = 0.448 ∗ 3.8 𝑠𝑒𝑐 = 1.703 𝑠𝑒𝑐 

 

5 Computer simulations 

 

We made numerical simulation of the system (4.1)-(4.5) for different values of time delay 

(fig. 3-5). Nonzero initial conditions was used. We can see that the system (4.1)-(4.5) is 

stable even for values of time delay larger than theoretical one  𝜏 = 0.448 
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Fig. 3 Numerical simulation of the system (4.1)-(4.5) for time delay  

𝜏 = 1 

 
Fig. 4 Numerical simulation of the system (4.1)-(4.5) for time delay  

𝜏 = 1.9 
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Fig. 5 Numerical simulation of the system (4.1)-(4.5) for time delay  

𝜏 = 2 

 

6 Conclusion 

As a result, we proved that it's possible to maintain stable movement of a drone even when time 

delay exists in transfer information about output control parameters from navigation 

measurement devices to autopilot. We found control parameters for a particular case of flight and 

estimated max possible delay of the system. 
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