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Abstract. Newton’s mechanics is simple. His equivalence principle is
simple, as is the inverse square law of gravitational force. A simple theory
should have simple solutions to simple models. A system of n particles,
given their initial speed and positions along with their masses, is such
a simple model. Yet, solving for n > 2 is not simple.
This paper discusses, why that is a difficult problem and what could be
done to get around that problem.

1. Problem Statement
Classical mechanics is essentially a linear, ”first order” theory in which the
dynamical quantities describe properties of the particles themselves, such as
the law of inertia, F = ma, as well as energy and momentum conservation
etc.
The graviational force, F = (const)∇ m1m2

|x1−x2| , is the exception to that theory:
it is a product of quantities, namely the mutual interaction the masses, dis-
guised as a linear first order quantity F . That makes it complicated to even
deal with a gravitational interaction of two particles, necessitating elliptic in-
tegrals, Legendre polynoms, Bessel functions, and all that, in order to derive
its solutions. But it can be done, and it involves some beautiful mathematics
and calculations, which explains, why it’s done in physics first hand up to
this day. The result is that the particles move (with their reduced masses)
around the center of mass in all curves given by the intersection of a plane
with a cone.
That is mathematically interesting, as it allows to describe the set of solutions
through a hyperbolic, quadratic equation, namely that of the cone itself. And
it straight leads to the question, if not a quadratic approach to the dynamics
might be simpler to describe gravitational interaction.
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2. The Cone
The picture of that cone is always that of a two-dimensional surface in three
dimensions, because it is easy to visualize, but, even given the fact that one
angular, cyclic coordinate can be eliminated, this is still inconvenient:
it is mathematically the product of two non-parallel intersecting lines and a
circle. And the circle is well-known to yield us the conservation of angular
momentum, which the Hamiltonean does then not depend on. So, let’s drop
it. We are then left with the two non-parallel lines in a two dimensional
(Euclidean) coordinate system, which by proper scaling, transform into the
diagonals of R2, that intersect in the origin. Let a, b denote horizontal and
vertical axes. Then the original condition that the path of motion is to be
the intersection of a plane with the cone reduces to the intersection of a line
with the diagonals, i.e.: a2−b2 = 0. That is an invariant, in fact the invariant
of a mass point moving in a constant gravitational field. I am now free to
scale a2, which I choose to be the square of total energy E2 of the system,
up to an additive constant of motion. Then E2 − b2 = (Const) is a constant
of motion. And, as E is a constant of motion, E2 is conserved, so b2, and b
must be conserved, too. Since a is now measured in units of energy, b will
have to be of the same dimension. Now, for a closed system, total momentum
and total angular momentum are invariants of motion, which therefore can
be subtracted. Now, suppose for that closed system, there was a notion of a
state, in which which all particles are at rest with respect to eachother. Let
me call it ”the” rest system and denote it by Erest. Then

Q2 := E2 − E2
rest

was an invariant, either. Q2 would then capture the square of all motional
energy in the system, namely the (square of) kinetic energy, including the
potential energy into which it converts to and from. So, it is a function of the
kinetic energy T and the potential energy V .
Let’s inspect the bounded 2-particle system: Because the angular momentum
is preserved (and hence an invariant of motion), the polar coordinates are ir-
relevant, and consideration restricts to the radial coordinate r. If the reduced
mass stays at constant r(t) = r0 from the center of mass for all t, it moves in a
circle, which makes it a perfect rest system. Generally, however, in a stable so-
lution of the 2-particle system, moving and bounded (reduced mass oscillates
in r between the minimal radius rmin >= 0 and a maximal radius rmax > 0.
With the exclusion of rmin = 0, the velocity is zero at both rmin and rmax
and must have maximum absolute value of velocity in between, which is at
that radius, where the centrifugal force cancels the gravitational attraction,
i.e.: (Const)mMr2 = L2

2mr3 , where L is the angular momentum of the (reduced)
moving mass m, and M is the total mass. This yields r0 = L2

(Const)2Mm2 as
the radius of maximal velocity and therefore maximal kinetic energy in the
radial direction and suggests to define the rest system of a bounded moving
(reduced) mass to be the energy of the mass m on a circle of radius r0, and
clearly, it would make sense to set the potential energy to zero at r0.)
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(Note that that system is not defined for L = 0, in case of which r0 = 0, for
which the kinetic energy T undefined.)

Next, we look into Q: The cone equation demands: T 2 − V 2 = 0; but if
we set E0 := V + T and demand E0 to be constant, as we would in classical
mecanics, then E0 = (1/2)T follows, so the oscillating particle can never
reach ymin and ymax with constant T +V . That said, Q2 cannot be (T +V )2.
However, −V 2 = (iV )2, the imaginary factor maps the cone equation into a
circle, and Q2 := (|T |2 + |V |2) does fit. So, I take that as given. Lastly, the
square energy of the center of mass at rest itself is a dynamic invariant. I
can subtract that and get for that moving particle of reduced mass in the
gravitational field of center of mass:

E2 = E2
rest +Q2,

where Q2 := (|T |2 +|V |2) is itself a dynamic invariant.

Remark 2.1. Elastic (headover) collisions follow the same rules as elliptic
oscillation: the only difference is that the minimal radius of return for the
lighter (reduced mass) particle is not behind the center of mass, but before,
or at the surface of the center of mass itself.
Now, suppose that the center of mass is within a compound solid body of
diameter greater zero. Then, in the frame of reference, of zero total angular
momentum, the body at the center of mass will be rotating in the opposite
direction to the outer reduced mass, and that reduced mass may collide even-
tually with some edge of the solid body at some radius r > 0. By addition of
a proper total mamumentum and angular momentum that collision can again
be transformed into a headover collision (where the sum of momentum of the
collision is zero). Given that the collision is elastic, the outer mass is again
just reflected, and while Q2 = (|T |2 +|V |2) is invariant w.r.t. space inversion
(a.k.a. parity), the effect of the collision is a symmetry transformation w.r.t.
E2 = E2

rest +Q2 and does not change the overall dynamics.

As has been shown, the cone invariance allows to separate the outer,
moving particle (of reduced mass) from the mass center: their energy squares
simply add. (For a 1-particle system that clearly also holds.) Then, by induc-
tion, given a system of n+ 1 particles, we can replace the 1st n particles by
its own center of mass and reduce it to a 2-particle problem and separate the
square of energy for the last particle (with reduced mass) out, leaving the
square energy of the center of mass for the first n particles as a summand.
So, that principle of additivity holds for all n-particle (elastically colliding)
systems. Finally, for a large number of fairly equally heavy particles, the re-
duced masses are approximately the particles’ masses, so we get for such an
n-particle system:

E2 =
∑

1≤k≤n
E2
k =

∑
1≤k≤n

E2
rest,k +Q2

k =
∑

1≤k≤n
E2
rest,k + (|Tk|2 +|Vk|2), (2.1)
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in which all terms and in particular Q =
√∑

k(|Tk|2 +|Vk|2) are invariants.
We define Q to be the heat of the system. The fact that it is an invariant of the
closed system is important, because that means that heat can be transfered
deliberately from one closed mechanical system to another, which is what we
observe. (This does however not answer the question of why heat would flow
from hot to cold systems, only.) And, as an invariant, that is why it was and
can be neglected in the Newtonian, gravitational mechanics.

Remark 2.2. What was done, was to diagonalize the quadratic form: Any
quadratic form is mathematically defined through a linear operator, that is
itself the square of a normal operator, and this square operator rewrites into
the sum of three linear symmetric operators a positive, a negative, and a zero-
operator, where the zero-operator delivers the invariants, and the negative
operator can be inverted to a positive operator by taking its absolute values.

3. Parity
The next step is to from a system of n disrete particles to a continuum of
particle densities, which will replace the mass squares m2

k with a square mass
densitiy ρ2

k(t, ~x), and the Q2
k would become a density, representing the square

of heat, and the sum over the k particles will be replaced by the integration
over the spatial volume 4dx3. But there is a technical problem in the flow
of particles j(t, ~x) := ρ(t, ~x), which is to replace the momenta ~pk: Wheras
in the discrete finite n-particle model collisions occur only sporadically, more
exactly: at each time t on a set of measure zero, and the momenta are ob-
servable to the outside almost everywhere for all ~x ∈ R3, in the continuous
model, the fluxes superimpose destructively: in fact, within a solid body or a
liquid in a container, the internal flow of particled cancels out completely to
the ouside, and macroscopically, all particles appear to stay at rest: the total
momentum of the particles cancels out, even locally.
To resolve that problem, notice that locally, both energy and momentum are
constant right before and after an elastic collision, which - as is well-known
from the theory of an ideal gas - means that the particles behave equivalently
to ones that pass through freely instead of colliding and bouncing back. That
way, we can model the situation by splitting the flux ~j into two component
~j+ and ~j− of opposite parity. When both are equal, then their superposition
will cancel completely, but that would not mean that the system was without
motion, because the Euclidean square, of the components,

∣∣j2
∣∣ := |j−|2 +|j+|2

would be greater zero.
That leads straight to set j = j1σ1 +σ2j2 +σ3j3, where the σk are Hamilton’s
quaternions or Pauli’s sigma matrices (both differ from eachother by a factor
i): if we would go in with a unit vector 2−1/2(1, 1) on the r.h.s., as equal
pairing of positive and negative parity, then that would lead to destructive
superposition. The other extremes are the unit vectors (1, 0) and (0, 1), in
which case all motion will be synchronous, either to the left or to the right,
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like waves in a water glass that shake seemingly synchronously to either side:
Evidently, j(t, ~x) 6= 0 =⇒ ρ(t, ~x) 6= 0, in other words: in the absence of
masses the heat is zero. Other contraints for the scalar components j1, j2, j3
then obviously are that their absolute sqares need to be well-defined and fi-
nite, and that they all vanish on the system’s boundary. That again gives
two further extremes: j1, j2, j3 could be constant within the confined body’s
region, in which case the whole motional energy within the body was kineti-
cal (although at the boundary this energy will have to be converted instantly
into potential energy and to be released as kinetical energy thereafter), and
it also can be totally potential energy, in case of which nothing would move
at all.

That said, could we gain energy from a system for which all kinetic
energy has been converted into potential energy? It appears that we need to
convert that energy into a kinetical energy, which then can be used to drive
mechanical machines.
There is another side to it: When the momenta cancel out locally within the
body, then the T 2

k and therefore V 2
k are stationary, so the V 2

k can be included
into the square rest energy E2

rest,k.

4. Laplace and the Inverse Square Law
Consider a mass m1 located in the origin, say. Then the square of its gravita-
tional potential is V 2(r) = G2m2

1
r2 , and if we integrate over any sphere around

the origin of radius r > 0 we trivially get 4πG2m2
1, and that then holds for

any (decently smooth) boundary over a stars-haped region containing the
origin. Hence. integrating over such a region containing n masses m1, . . . ,mn

we get out 4πG2∑
1≤k≤nm

2
k, and if we’d want to take its root, then that

would be the square root of that. Simple. The only problem is that we con-
ceive mass to be additive, rather than its square, so the common standpoint
is that the elliptic Euclidean geometry has to be flat, disregarding the fact
that two masses m1 and m2 at locations ~x1 and ~x2 both have their own,
linearly independent 3-dimensional location coordinates.
The demanded additivity can be enforced by introducing an additional at-
tractive potential between masses:
Given a closed system of n masses m1, . . . ,mn with their center of mass at
the origin with total mass M = m1 + · · ·+mn, the square of its gravitational
potential is given by

V 2(r) = 4πG2
∑

k
m2

k

r2 = 4πG2M2

r2 − 4πG2 2
∑

k 6=l
mkml

r2 , so

V (r) =
√

4πGM
r

√
1− 2

∑
k≤l

mkml

M2 ≈
√

4πG
(
M
r −

∑
k<l

mkml

Mr

)
, where the

total mass M � mk is assumed to be much larger than each of the mk.
For each k = 1 . . . , n then µk :=

∑
k<l

mkml

M sums up to the reduced mass for
mk, so the needed gravitational potential between two (gravitational) masses
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m1 and m2 at location ~x, ~y ∈ R3 to ensure mass additivity turns out to be
Vgrav(|~x− ~y|) =

√
4πGm1m2

|~x−~y| .

Remark 4.1. The extra factor
√

4π can of course be integrated into G. Note
also that V 2(r) = G2m2

r2 represents the intensity of a signal that is emitted
continually from the mass source m at the origin and spreads radially at a
constant velocity c. To get to the relativistics, all it needs is to restrict time
to the local time of the mass source, which means that V 2(r) will be replaced
by V 2(t, r = ct) = G2 m2

t2−r2 . Finally, note the difference between V (r) and
Vgrav(r): While V (r) is the potential energy of the mass source m itself, in
which m is a first order factor in the nominator, Vgrav(r) factors the mass m
with the external mass m2, so seen from the perspective of Vgrav, V (r) looks
like representing the potential energy per mass. This is however treacherous:
V (r) is exactly the (static) field representation of the particle, which is an
equivalent view to that mass, but it is not the potential for any other particle
m2.

As was ssen in section 3, in order to describe the internal heat of a
bounded, closed system of particles, we need the matrix-valued flux j =
j1σ1 +σ2j2 +σ3j3 that operates on component pairs of positive and negative
parity, where the flux is converted to energy by factoring it with the speed
of light c. According to equation 2.1, T 2 := j2c2 plays an equivalent role as
V 2 in the dynamics: So, when the mass densities ρ lead via V (r) to some
gravitational field Vgrav(r), then cj should be yielding a pseudo-vector field
A(~x) = A1(~x)σ1 + A2(~x)σ2 + A3(~x)σ3 with an analogous effect as Vgrav,
that is: we expect a vector field ~A := (A1, A2, A3) to take effect on external
particles m2 just like Vgrav does on m2. Not surprisingly, such a field that does
transmit heat (i.e.: a mechanical quantity) is known to exist. But surprisingly,
that field is the electromagnetic field, which is based on electrical charges
rather than masses. That leads straight to:

5. Action and Charges
The next step will be to notice the similarity of the relation for E2 with
the energy equation of a free system in special relativity: Let’s set Ekin :=
cp1σ1 + p2σ2 + p3σ3, and likewise E = jc = j1σ1 + j2σ2 + j3σ3), with c being
the speed of light, and replace c by r/t. If now we multiply the energy by
the time t, we get out the action, the two coordinates x and y of the cone
section above transform up to constants into time and space, the invariance
of the cone equation w.r.t. the inversion of x and y becomes the invariance
of time and space inversion, and the derived energy equation turns into the
constancy of the absolute square of the action, i.e.: the action becomes the
unitarity of action in space and time.
We already dealt with parity, the space inversion, and we saw that fluxes with
positive and negative parity can superimpose destructively. On the same line,
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time inversion leads to energy inversion, but that means equivalently mass in-
version. We therefore should have negative and positive masses, to which the
parity rules then will carry over. And we do have, namely electrical charges:
With the exception of neutrinos, of which is currently not known whether
thse have a mass greater zero, down to the very quarks every particle of mass
greater zero is charged, plus: it is known that the negative charges match
with the positive ones. So, this strongly points to mass as being the absolute
values of charges, i.e.: we may conceive the mass m as being equivalent -
up to a factoring coupling constant ε - to the absolute value

√
q2

+ + q2
− of a

charge pair (q+, q−) of a positive charge q+ and a negative charge q−.
Therefore, fields V,A1, A2, A3 should follow the covariant Maxwell equations,

�Aµ = 4π
c
jµ, (0 ≤ µ ≤ 3),

where A0 = V, j0 = ρ is the charge density, j1, j2, j3 are the (relativistic)
charge fluxes, A1, A2, A3 are their vector field components as above, � :=
∂2

∂x2
0
− ∂2

∂x2
1
−· · ·− ∂2

∂x2
3

is the d’Alembert operator, and (x0 := ct, x1, . . . , x3) ∈
R3 are the components in 4-dimensional time and space.
Because we have two components for either parity and two components for
either charge, it follows that we can and should state these equations as one
equation in terms of the four Hermititian Dirac matrices α1, . . . , α3 as

�A = 4π
c
j,

where A := A0α0 + · · ·+A3α3 and j := j0α0 + · · ·+ j3α3. This matrix equa-
tion operates on a complex space C4, in which - up to SU(4)-equivalence -
the first two components represent positive and negative parity of positive
charges and the last two the positive and negative parity of negative charges.
(Up to the fact that we track charge and parity of either sign, instead of
destructively superimpose their values, the last equation is nothing but an
equivalent rewrite of the Maxwell equations.)
These equations say that charge sources and their motion can equivalently
be rewritten as radial waves of energy that are steadily emitted from these
sources and spread at the speed of light. Up to an additional coupling con-
stant, that is exactly what we would expect for the first energy component
V = A0 for masses, and it boils down to the Laplace equation for the grav-
itational field in the non-relativistic limit. The other three components are
analogous extensions to the fluxes. And, if there was no other energy than
gravitational interaction, then the three other components were sheer invari-
ants, as by principle, gravity does not depend on the speed of its mass sources.
So, as to gravity alone, we would demand the vanishing of the vector com-
ponents A1 = A2 = A3 ≡ 0 and would not need to care about parity and
mechanical heat.
The point now is that in electrodynamics, it’s just the other way round:
Note that the 1st component A0 always is a longitudinal energy wave (i.e. in
the direction of the spreading wave). But according to electrodynamics, the
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waves have to be transversal. That can only be fulfilled, if and only if A0 ≡ 0.
And it is clear, why: over a distance larger than the atomic scale, particles
are neutral, and a superposition of positive and negative charge densities will
destructively cancel itself, while the sum of absolute squares of positive and
negative charges still is non-zero.

So, the Maxwell equations suffice to describe both gravitation and elec-
tromagnetism. Note that a 4-dimensional vector field (A0, . . . , A3) is needed
for this, so the symmetry (Lie) group of this is U(2) = SU(2)×U(1) (instead
of just U(1)). In here, U(1) comes in by the the association of the absolute
square of charge pairs with the absolute square of mass, in particular, the
coupling constant ε attaches to that.

It was also shown that a mathematically satisfactory formulation needs
the distinction of either sign of parity, which leads to map the quadrupel
(j0, . . . , j3) to j := j0α0, . . . , j3α3). And these 4-vector fluxes now have U(4)
as their symmetry group, which is defined as the group of all unitary map-
pings on the parity-charge quadrupels (λ1, · · · , λ4) ∈ C4. U(4) is a super
group of U(2), more exactly, we have: U(4) = SU(3)×SU(2)×U(1)×U(2).
Now SU(3) is known to be the symmetry group of strong interaction, SU(2)
that for weak interaction, while the group U(2) is our symmetry group of long
ranged photonic interaction of charge and mass. So, what’s that additional
group U(1) about? It couples the square of baryons and leptons with the
square of masses, in other words: we have another coupling constant (aside
of ε), through which baryons and leptons get assigned a mass. This explains
on mathematical grounds, why protons are thousand time heavier than the
electron. Keeping with contemporary physics, we might equvalently associate
this group U(1) as the symmetry group for the Higgs particle.

6. The Mass Dilemma
According to Special Relativity, the total energy for a free particle system is
given by E2 = m2c4 + p2c2, where E is its total energy, m the total inertial
mass of that system, p the absolute value of total momentum, and c is the
speed of light. When, in particular the mass system is at rest (which means
that the total momentum vanishes), then E = mc2 is termed rest energy
and m the rest mass. Still, that rest mass can consist of any number of not
massless particles, and we may add a heat Q to that resting system. Then
E2
heated = m2c4 + Q2 = m2

heatedc4. Because the principle of equivalence of
gravitational and inert mass mandates the ratio of inert and gravitational
mass to be constant G = m/mgrav, we run into the conflict with the princi-
ple of velocity independence of masses in the gravitational field: the square
m2
grav has to be proportional to its square of heat, either, in order to maintain

mass equivalence! If that was the case, gravity and termodynamics as well as
mechanics and electrodynamics would only decouple from eachother for the
temperature limit T → 00K - contrary to what was assumed before.
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Simple experiments could test for that: if the (mathematical) pendula
of two masses of different temperature, suspended at a rod of same length
(measured from suspension point to the center of mass) have the same period,
then the weight of the masses have to increase with temperature. On the same
line, one could prepare three identical metallic spheres with valves to pump
air in or out; while the first one is unchanged, the second one gets some of its
air pumped out, which is weighed, say 10 (gravitational) grams of weight (at
normal pressure), and the missing 10 grams replaced by spraying 10 grams of
lacquer to its surface. The third sphere then is brushed off 10 grams of weight,
which are replaced by 10 grams of air pumped into the shell. Then measure
the weight of the three shells as well as their ratio of inert and gravitational
mass (via mathematical pendulum). In case the mass equivalent proves to be
correct, the 2nd and 3rd spheres are to be of the same weight and weigh more
than the first shell.

7. Heat Flow
Given two neutral dynamical systems S1 and S2 at different temperature,
what Maxwell’s equations predict is that heat ”under normal conditions”
the heat will flow from the hotter System, S1, say, to the cooler one: the
more heat S1 has over S2, the larger the impact (A1, . . . , A3) will be on the
target sources of S2 and vice versa. This implicitly preliminates the elastic
scattering of matter with the electromagnetic field. Nothing will hinder S2,
however, to follow inelastic scattering, according to which kinetic energy is
converted into potential energy, and this inelastic scattering may even lower
ihe temperature, even though heat is delivered by another system.

8. Lorentz Transformation of Mass and Charge
As is well-known, the relativistic energy of a free particle of mass m0 and
momentum ~p ∈ R3 is given by E2 = m2

0c
4 + p2c2. Setting ~p = m~v, Ein-

stein concluded: m2c4 = m2
0c

4 + m2v2c2, and therefore: m2 = m2
0

(1−(v/c))2 , so
m = + m0√

1−(v/c)2
.

The last step is a simplification of the complete algebraic solution: The
square root of E is E = α0m

2
c + mc

∑
k αkvk, where the α0, . . . α3 are the

4 × 4 α-matrices that - as already discussed above - operate on a vector
space C4, for which each and every unit vector λ ∈ C4 is a solution of the
square equation. In the standard Dirac representation, α0 is the diagonal
matrix with eigenvalues +1,+1,−1,−1, and α1 is the interchange operator
α1 : (λ1 . . . , λ4) 7→ (λ4, λ3, λ2, λ1). It is this the reason, why for (λ1, . . . , λ4)
the first two components could be associated with positive charge or mass of
positive and negative parity and the last two of a negative mass or charge
with positive and negative parity.
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Another implication of E = α0m0c
2 + mc

∑
k αkvk then is that the op-

erator C which interchanges the first two components with the last ones,
namely C : (λ1, . . . , λ4) 7→ (λ3, λ4, λ1, λ2) is the charge inversion, while P :
(λ1, . . . , λ4) 7→ (λ2, λ1, λ4, λ3) is the parity inversion, and T = CP : λ 7→ −λ
is the energy (or time) inversion. In particular, T PC = I4 is the identity.
Given all that, let’s see what the Lorentz transformation of charges rewrites
in terms of alpha matrices: We have analogously m = m0(1−~γ ·(~v/c)), where
γ0 = α0 and γk = γ0αj , (1 ≤ k ≤ 3) are the Dirac matrices. And because
mα0~v · ~α/c = (−m)α0(−~v) · ~α/c = CPmα0~v · ~α/c, although the absolute
value |m| of the charge increases (according to Einstein’s relation), the net
charge stays constant, in other words, the additional charge is neutral. This
additional charge is then the source of magnetic fields, and of course it can
be interpreted as being made of circular currents.
Moreover, because of that neutrality of that magnetic field source, heat could
increase the gravity of the mass sources without affecting the atomic light
spectra of their contained, heated particles.

Hans Detlef Hüttenbach


