A Note About the *ABC* Conjecture - A Proof of The Conjecture: $C < rad^2(ABC)$

Abdelmajid Ben Hadj Salem

6, Rue du Nil, Cité Soliman Er-Riadh, 8020 Soliman,

Tunisia

E-mail: abenhadjsalema@gmail.com

Abstract: In this paper, we consider the *ABC* conjecture, then we give a proof of the conjecture $C < rad^2(ABC)$ that it will be the key of the proof of the *ABC* conjecture.

© Copyright owned by the author

A Note About the *ABC* Conjecture - A Proof of The Conjecture: $C < rad^2(ABC)$

To the memory of my Father who taught me arithmetic

To the memory of Jean Bourgain (1954-2018) for his mathematical work notably in the field of Number Theory

1. Introduction and notations

Let a a positive integer, $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \ge 1$ positive integers. We call *radical* of a the integer $\prod_i a_i$ noted by rad(a). Then a is written as:

$$a = \prod_{i} a_i^{\alpha_i} = rad(a) \cdot \prod_{i} a_i^{\alpha_i - 1}$$
(1.1)

We note:

$$\mu_a = \prod_i a_i^{\alpha_i - 1} \Longrightarrow a = \mu_a . rad(a)$$
 (1.2)

The ABC conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6) ([1]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the ABC conjecture is given below:

Conjecture 1.3. (*ABC Conjecture*): Let a,b,c positive integers relatively prime with c=a+b, then for each $\varepsilon > 0$, there exists $K(\varepsilon)$ such that :

$$c < K(\varepsilon).rad(abc)^{1+\varepsilon} \tag{1.4}$$

We know that numerically, $\frac{Logc}{Log(rad(abc))} \le 1.616751$ ([2]). A conjecture was proposed that $c < rad^2(abc)$ ([3]). Here we will give a proof of it.

Conjecture 1.5. Let a, b, c positive integers relatively prime with c = a + b, then:

$$c < rad^{2}(abc) \Longrightarrow \frac{Logc}{Log(rad(abc))} < 2$$
 (1.6)

This result, I think is the key to obtain a proof of the veracity of the ABC conjecture.

2. A Proof of the conjecture (1.5)

Let a, b, c positive integers, relatively prime, with c = a + b. We suppose that b < a. If c < rad(ab) then we obtain:

$$c < rad(ab) < rad^2(abc) \tag{2.1}$$

and the condition (1.6) is verified.

In the following, we suppose that $c \ge rad(ab)$.

2.1 Case c = a + 1

$$c = a + 1 = \mu_a rad(a) + 1 \stackrel{?}{<} rad^2(ac)$$
 (2.2)

2.1.1 $\mu_a = 1$

In this case, a = rad(a), it is immediately truth that :

$$c = a + 1 < 2a < rad(a)rad(c) < rad^{2}(ac)$$

$$(2.3)$$

Then (2.2) is verified.

2.1.2 $\mu_a \neq 1, \mu_a < rad(a)$

we obtain:

$$c = a + 1 < 2\mu_a \cdot rad(a) \Rightarrow c < 2rad^2(a) \Rightarrow c < rad^2(ac)$$
(2.4)

Then (2.2) is verified.

2.1.3 $\mu_a \ge rad(a)$

We have $c = a + 1 = \mu_a.rad(a) + 1 \le \mu_a^2 + 1 \stackrel{?}{<} rad^2(ac)$. We suppose that $\mu_a^2 + 1 \ge rad^2(ac) \Longrightarrow \mu_a^2 > rad^2(a).rad(c) > rad^2(a)$ as rad(c) > 1, then $\mu_a > rad(a)$, that is the contradiction with $\mu_a \ge rad(a)$. We deduce that $c < \mu_a^2 + 1 < rad^2(ac)$ and the condition (2.2) is verified.

2.2 c = a + b

We can write that c verifies:

$$c = a + b = rad(a) \cdot \mu_a + rad(b) \cdot \mu_b = rad(a) \cdot rad(b) \left(\frac{\mu_a}{rad(b)} + \frac{\mu_b}{rad(a)}\right)$$

$$\implies c = rad(a) \cdot rad(b) \cdot rad(c) \left(\frac{\mu_a}{rad(b) \cdot rad(c)} + \frac{\mu_b}{rad(a) \cdot rad(c)}\right)$$
(2.5)

We can write also:

$$c = rad(abc) \left(\frac{\mu_a}{rad(b).rad(c)} + \frac{\mu_b}{rad(a).rad(c)} \right)$$
 (2.6)

To obtain a proof of (1.6), one method is to prove that:

$$\frac{\mu_a}{rad(b).rad(c)} + \frac{\mu_b}{rad(a).rad(c)} < rad(abc)$$
 (2.7)

2.2.1 $\mu_a = \mu_b = 1$

In this case, it is immediately truth that:

$$\frac{1}{rad(a)} + \frac{1}{rad(b)} \le \frac{5}{6} < rad(c).rad(abc)$$
 (2.8)

Then (1.6) is verified.

2.2.2 $\mu_a = 1$ and $\mu_b > 1$

As $b < a \Longrightarrow \mu_b rad(b) < rad(a) \Longrightarrow \frac{\mu_b}{rad(a)} < \frac{1}{rad(b)}$, then we deduce that:

$$\frac{1}{rad(b)} + \frac{\mu_b}{rad(a)} < \frac{2}{rad(b)} < rad(c).rad(abc)$$
 (2.9)

Then (1.6) is verified.

2.2.3 $\mu_b = 1$ and $\mu_a \le (b = rad(b))$

In this case we obtain:

$$\frac{1}{rad(a)} + \frac{\mu_a}{rad(b)} \le \frac{1}{rad(a)} + 1 < rad(c).rad(abc)$$
 (2.10)

Then (1.6) is verified.

2.2.4 $\mu_b = 1$ and $\mu_a > (b = rad(b))$

As $\mu_a > rad(b)$, we can write $\mu_a = rad(b) + n$ where $n \ge 1$. We obtain:

$$c = \mu_a rad(a) + rad(b) = (rad(b) + n)rad(a) + rad(b) = rad(ab) + nrad(a) + rad(b)$$
 (2.11)

We have n < b, if not $n \ge b \Longrightarrow \mu_a \ge 2b \Longrightarrow a \ge 2brad(a) \Longrightarrow a \ge 3b \Longrightarrow c > 3b$, then the contradiction with c > 2b. We can write:

$$c < 2rad(abc) + rad(b) \Longrightarrow c < rad(abc) + rad(abc) < rad^{2}(abc) \Longrightarrow c < rad^{2}(abc)$$
 (2.12)

2.2.5 $\mu_a.\mu_b \neq 1, \mu_a < rad(a)$ and $\mu_b < rad(b)$

we obtain:

$$c = \mu_c rad(c) = \mu_a . rad(a) + \mu_b . rad(b) < rad^2(a) + rad^2(b) < rad^2(abc)$$
 (2.13)

2.2.6 $\mu_a.\mu_b \neq 1, \mu_a \leq rad(a)$ and $\mu_b \geq rad(b)$

We have:

$$c = \mu_a.rad(a) + \mu_b.rad(b) < \mu_a\mu_brad(a)rad(b) \le \mu_brad^2(a)rad(b)$$
 (2.14)

Then if we give a proof that $\mu_b < rad(b)rad^2(c)$, we obtain $c < rad^2(abc)$. As $\mu_b \ge rad(b) \Longrightarrow \mu_b = rad(b) + \alpha$ with α a positive integer ≥ 0 . Supposing that $\mu_b \ge rad(b)rad^2(c) \Longrightarrow \mu_b = rad(b)rad^2(c) + \beta$ with $\beta \ge 0$ a positive integer. We can write:

$$rad(b)rad^{2}(c) + \beta = rad(b) + \alpha \Longrightarrow \beta < \alpha$$

$$\alpha - \beta = rad(b)(rad^{2}(c) - 1) > 3rad(b) \Longrightarrow \mu_{b} = rad(b) + \alpha > 4rad(b)$$
(2.15)

Finally, we obtain:

$$\begin{cases} \mu_b \ge rad(b) \\ \mu_b > 4rad(b) \end{cases} \tag{2.16}$$

Then the contradiction and the hypothesis $\mu_b \ge rad(b)rad^2(c)$ is false. Hence:

$$\mu_b < rad(b)rad^2(c) \Longrightarrow c < rad^2(abc)$$
 (2.17)

2.2.7 $\mu_a.\mu_b \neq 1, \mu_a \geq rad(a)$ and $\mu_b \leq rad(b)$

The proof is identical to the case above.

2.2.8 $\mu_a.\mu_b \neq 1, \mu_a \geq rad(a)$ and $\mu_b \geq rad(b)$

We write:

$$c = \mu_a rad(a) + \mu_b rad(b) \le \mu_a^2 + \mu_b^2 < \mu_a^2 \cdot \mu_b^2 \stackrel{?}{<} rad^2(a) \cdot rad^2(b) \cdot rad^2(c) = rad^2(abc) \quad (2.18)$$

Supposing that $\mu_a.\mu_b \ge rad(abc)$, we obtain:

$$\mu_{a}.\mu_{b} \geq rad(abc) \Rightarrow rad(a).rad(b).\mu_{a}.\mu_{b} \geq rad^{2}(ab)rad(c) \Longrightarrow$$

$$ab \geq rad^{2}(ab).rad(c) \Rightarrow a^{2} > ab \geq rad^{2}(ab).rad(c)$$

$$\Rightarrow a > rad(ab)\sqrt{rad(c)} \geq rad(ab)\sqrt{7} \Rightarrow$$

$$\begin{cases} c > \sqrt{7}rad(ab) \geq 3rad(ab) \\ c \geq rad(ab) \end{cases}$$

$$(2.19)$$

The inequality $c \ge 3rad(ab)$ gives the contradiction with the condition $c \ge rad(ab)$ supposed at the beginning of this section. Then we obtain $\mu_a.\mu_b - rad(abc) < 0 \Longrightarrow c < rad^2(abc)$.

We announce the theorem:

Theorem 1. (Abdelmajid Ben Hadj Salem, 2019) Let a, b, c positive integers relatively prime with c = a + b and $1 \le b \le a$, then $c \le rad^2(abc)$.

3. About The Proof of The ABC Conjecture

3.1 Case: $\varepsilon \geq 1$

Using the result of the theorem above, we have $\forall \varepsilon \geq 1$:

$$c < rad^{2}(abc) \le rad(abc)^{1+\varepsilon} = K(\varepsilon).rad(abc)^{1+\varepsilon}, \quad K(\varepsilon) = 1, \ \varepsilon \ge 1$$
 (3.1)

It still open the case ε < 1.

References

- [1] Waldschmidt M.: On the abc Conjecture and some of its consequences presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013. (2013)
- [2] Robert O., Stewart C.L. and Tenenbaum G.: A refinement of the abc conjecture. Bull. London Math. Soc. 46,6, 1156-1166 (2014).
- [3] Mihăilescu P.: Around ABC. European Mathematical Society Newsletter **N**° **93**, September 2014. 29-34, (2014)