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Abstract

The following paper derives the fine-structure constant. This deriva-
tion suggests that the fine-structure constant can be theoretically deter-
mined as the spectrum range of all the energy modes fitting inside the
observable universe. This corresponds to the number of allowed radiation
modes of a particle from the cosmic horizon down to Planck length. Addi-
tionally, an association between Newton’s Law of Gravity and Coulomb’s
Law suggests there is a connection between mass and charge via the fine-
structure constant.

1 Introduction

The fine-structure constant (FSC) is subject to multiple physical interpretations
and is a recurrent topic for vivid scientific debates [1] [4]. The fundamental
nature of the fine-structure constant has remained unclear since its discovery
by A. Sommerfeld where he defined this number as the strength of the electro-
magnetic interaction between elementary charged particles. Furthermore, it has
not been clarified whether the fine-structure constant may vary in spacetime [2].

This paper introduces a new perspective suggesting that the nature of the FSC
is correlated to information horizon radiation which is emitted from the cosmic
particle horizon. Similar to Hawking radiation [5], it can be assumed that ra-
diation emits from an information horizon and this establishes a discrete wave
spectrum with allowed wavelengths fitting within the nodes of the horizon con-
finement [6] [7]. Such radiation could be assumed to cause energy gradients in
the realm of virtual particles which may indicate the establishment of forces
inside the vacuum. The existence of such radiation is assumed and by wave
superposition, a fairly precise FSC will be derived. This paper provides the
physical interpretation of the FSC and a more precise FSC which considers
the effect of the fundamental strong force. The fundamental FSC can be physi-
cally derived utilizing the Lambert W -function and a simple ratio of the current
size of the cosmic particle horizon and Planck length. Finally, an association
between Coulomb’s law and Newton’s gravity law will be analyzed as well.
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2 Method

2.1 Derivation for fundamental alpha

Using the uncertainty principle, it is suggested that in-between two objects,
or boundary conditions, and at a defined distance, virtual particles have en-
ergy/momentum waves that are associated to ∆x, and momentum, ∆p. These
virtual particles may transfer momentum in a confinement situation within the
boundaries. Here, assuming a discrete spectrum with nodes at the horizon [4]
[5], a certainty is established where the allowed waves are defined precisely for
every wavelength (energy) and this corresponds to the position of the particles.

Now assume there are two elementary probe charges located each at the edge
of the observable universe and count all the waves between these two objects.
The charges of these particles are inconsequential since they will merely change
the force direction and the total waves would be the same in the region. Count
all the waves from Planck length, lp, to the cosmic diameter, Θ = 8.8 · 1026

m multiplied by π/2. This is done using the assumption that the waves are a
consequence of oscillations within the horizon which propagate a circular wave
from the boundary to the middle of the confinement. The mode with the high-
est frequency would be the Planck Length while the mode with the greatest
wavelength would be the cosmic horizon multiplied by π/2. This is due to its
half circular nature and the momentum direction is a vector from the horizon
to the particle location in the middle of the confinement.

∆x∆p =
~
2

(1)

Now solve in terms of the change in momentum.

∆p =
~

2∆x
(2)

Use the energy formula for a photon ∆E/c = ∆p and solve in terms of ∆E.

∆E =
~c

2∆x
(3)

Here ∆xmax = πΘ/2 since the greatest uncertainty from the averaged probablity
of a particle in position of the superimposed wave is located in the middle of the
directional span of modes. The horizon, in absence of a directional acceleration,
is a circle.

∆E =
~c
πΘ

(4)
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However (4) is simply the maximum distance ∆x can be. Therefore, using this
knowledge, plug in for ∆x = klp in order to count all the waves from Planck
length to the circular horizon between the two probe charges up to N . The
observer is positioned in the middle so energy of the waves will be counted on
both sides.

N∑
k=1

∆Etot =
2~c
2lp

+
2~c
4lp

+ · · ·+ 2~c
2Nlp

(5)

Now look at the summation for the total waves, K, to count the modes of the
superimposed waves of the two charges up to N . Where N is the number of
waves.

K =

N∑
k=1

1

∆x
=

1

lp
+

1

2lp
+ · · ·+ 1

Nlp
(6)

Next replace N with Θπ
2lp

to compute all the waves from Planck length to the

observable universe.

K =

Θπ/(2lp)∑
k=1

1

k
(7)

Use the closed form approximation for a harmonic series formula namely
∑N
k=1

1
k ≈

ln(Neγ) where Euler–Mascheroni’s constant is denoted as γ. Note, for large Θ,
this approximation becomes an equality.

K = ln

(
Θπeγ

2lp

)
(8)

This is the total amount of waves for the energy between elementary particles.
Insert alpha, the coupling factor, as a power factor inside the equation. Recall,
α is defined as the strength of the electromagnetic force between elementary
particles.

Kem = ln

(
Θπeγα

2lp

)
(9)

The maximum wavelength between the two charges will have the following en-
ergy formula: ~c

2Θ/2 . Notice the denominator is simply the distance between the

two charges. Recall the particle lies in the middle of the confinement between
the two probe charges. Next, divide this by the reciprocal of total waves for the
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electromagnetic force. Again, α is the strength of the electromagnetic force so
the waves will have this power factor inside. Recall the formula for the electric
potential for two charges is U = keq1q2

r . This can be rewritten using ke = α~c
e2

and using two elementary charges, e, reduces to the following form U = ~cα
r .

U =
~c
Θ

1

ln(πΘeγα
2lp

)
(10)

Alpha can now be identified to the logarithmic ratio in the denominator. Namely,

α =
1

ln(πΘeγα
2lp

)
(11)

This special type of equation can be solved by utilizing the Lambert W -function
denoted as W .

1

α
= W

(
πeγΘ

2lp

)
(12)

What has been found can be denoted as alpha fundamental, αfund. It can be
correlated with the total fundamental electric energy and is the superposition
of all the waves between the two charges where 1/αfund = 138.2609014473.
This is close to the value of the experimental of 1/αexp = 137.035999173 [8].
Additionally, (11) can also be solved by Newton’s method or graphing to yield
the same result.

2.2 Derivation for Converging Alpha Using Strong Force

Although the energy of the electromagnetic force spans the entire observable
universe, one critical factor needs to be included. The strong force negates
the electromagnetic force in a short region, so the relevant waves must be sub-
tracted. This region exists from approximately 2.385 fm to 0.7 fm [3]. Since
the actual details of the strong force behavior are not fully understood yet, it
appears reasonable to use a model similar to the electromagnetic energy wave.
Additionally, a small region of weak force exists but it decreases exponentially
and has such an extremely short range (10−18 fm) that it can be neglected.
Subtract the waves in the region of the strong force from 2.385 fm to 0.7 fm.
The following property of logarithms, ln(a/lp) − ln(b/lp) = ln(a/b), is used to
subtract the waves in a region. Notice all other constants cancel out during
the division including Planck length, eγ and π. So the formula results into the
logarithmic ratio in the region.

α =
1

ln(πΘeγα
2lp

)− ln (2.385
0.7 )

(13)
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Combine the two logarithmic terms using ln(a)− ln(b) = ln(a/b).

α =
1

ln(π0.7Θeγα
4.77lp

)
(14)

The result is once again the Lambert function denoted as W such that,

1

α
= W

(
0.7πeγΘ

4.77lp

)
(15)

Finally the equation for the theoretical fine-structure constant will result in the
following value.

1

α
= 137.0350273791 (16)

This theoretical fine-structure constant has an error of approximately 7 · 10−6

with respect to the experimental value of 1/αexp = 137.035999139.

2.3 Fine Structure Constant’s Relationship to Gravity

Coulomb’s Law and Newton’s Gravity Law have been often compared for their
striking similarity. Here, this comparison is analyzed further to see if there is
any connection to the fine-structure constant.

Start by associating the two forces in a ratio. Begin by simplifying both equa-
tions FC = keq1q2

r2 and FG = GMm
r2 by taking both masses and charges to unity.

Note ke and G are Coulomb’s constant and the Gravitational constant, respec-
tively.

FC =
k′e
r2

(17)

FG =
G′

r2
(18)

Note that k′e and G′ have units of [N· m]. Take the ratio of the two forces to
get the power factor between them.

FG
FC

=
G′

k′e
(19)
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This ratio is the relationship of the two forces with the standard SI units. Next
use the same method as in section 2.1 to compute the waves between the two
particles. Next, use the stoney mass ms in order to relate Coulomb’ Law and
Newton’s Gravity Law. It should be noted that both forces are equivalent
for elementary charges and stoney masses, respectively. Since this situation
currently assumes 1 [kg] of mass, the square of the stoney mass will be divided
to find the total number of stoney particles creating the waves. Therefore, it
will be the total waves (8), the force power factor, and the stoney mass particles
multiplied together as indicated below.

1

α
= ln

(
πeγΘ

2lp
· G
′

k′e
· 12

m2
s

)
(20)

Replace the stoney mass ms =
√
αmp where mp is Planck mass and k′e =

α~c/e2. Notice the units of k′e is in [N· m] and the elementary charge e is
unitless.

1

α
= ln

(
πeγG′Θe2

2~clpα2m2
p

)
(21)

Finally replace G′ = ~c/m2
p using Planck’s gravitational constant relation and

simplify. Note m2
p is unit-less here.

1

α
= ln

(
πeγ~cΘe2

2~clpα2m4
p

)
(22)

Simplify to obtain the following formula which highlights the connection be-
tween Newton’s Gravity and the fine-structure constant using only fundamental
constants.

1

α
= ln

(
πeγΘe2

2lpα2m4
p

)
(23)

This equation can be solved using a slightly different product log W -Lambert
function. Here, α can be written as the following.

1

α
= −2W−1

−
√

2lpm4
p

2
√
πeγΘe2

 (24)

The computed value for α is the following. Additionally, (23) can also be solved
by graphing or iteration like Newton’s method.

1

α
= 137.0380609661 (25)
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3 Discussion

The fine-structure constant error in section 2.2 most likely comes from the strong
force region. The effective force in this short region is estimated to be around
(2.385 − 0.7) fm although it is known it varies greatly. Additionally, the weak
force has a range of 10−18 m and was neglected due to its small effect. Finally,
the energy from gravity can also be neglected for sections 2.1 and 2.2 for a
similar reason due to its weak strength and its small mass. It seems all the
energy comes from the same well and the sum of all the modes of the spec-
trum must be equivalent to the alpha. In addition, by correlating Newton’s
Gravity Law and Coulomb’s law, the fine-structure constant can be found using
the stoney mass. It seems here, the energy well goes towards gravity while the
error could be originated from slight deviations in the measurement of the cos-
mic horizon. Furthermore, getting a matching value of αexp using (23) yields
Θ = 8.78214 · 1026 m.

As for a physical interpretation, the equations developed in this paper seem
to suggest that a horizon could be acting like a membrane vibrating where
the allowed modes are distributed in length over the distance of the horizon’s
surface. This scenario could be the opposite phenomenon of waves caused by the
impact of drop on a flat water surface; a situation where the waves propagate
from the outside into the middle rather instead of the point of impact.

4 Conclusion

The physical nature of the fine-structure constant seems determined from the
energy superposition of all the waves between the objects spanning the entire
cosmic horizon. The discovery of the precise behaviors in the short spectrum
for both the strong force and weak force should allow full convergence to α.
In addition, there is a correlation of the fine-structure constant with Newton’s
Gravity law and Coulomb’s law linking mass to charge. The theoretical equa-
tions solving for α can be described using Lambert W functions.
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