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Abstract 

It will be shown that Newton’s theory already implies a maximum velocity with which a 
massive particle can travel if the universe is included into the consideration (according to 
Mach’s principle). The resulting formulas for the velocity dependence of the particle’s mass 
and it’s energy are identical with those of SR. The constancy of the speed of light does not 
have to be postulated for this purpose, but comes rather as one of the results. The results 
suggest also that the speed of light (in “vacuum”) is not a natural constant. One can also 
conclude that the “action at a distance” – property of Newton’s law of gravity is not in 
contradiction to the local character of nature as described by the theory of relativity. 
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1. Introduction 

With his astonishing paper in 1964 John Stewart Bell showed us a way to determine 
experimentally whether a theory describes local realism.[1] The numerous 
experiments performed since then on quantum entangled states have revealed that 
certain measurements are incompatible with the assumption of locality. Local realism 
as a fundamental property does not seem to exist in nature. 

With the following consideration we are not aiming to find out the reasons behind the 
non-local character of quantum mechanics, but we take this experimental finding as a 
fundamental property of nature and investigate, whether this property can also be 
found in the fundamentals of classical mechanics. Thus, we are not following 
Newton, who did surprisingly not believe in an “action on a distance” principle, though 
his law of gravitation is based on it.[2]  

However, if we are looking carefully to Newton's theory (if we understand it to mean 
both the law of inertia and the law of gravity), we see that only gravity is described as 
non-local: the gravitational force acts instantaneously at every point of the 
universe.[3] But the universe is not payed attention to when describing a moving 
mass in the framework of Newton’s mechanics. In the following consideration we will 
abolish this nonobservance in Newton’s mechanics.  
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We proceed from Newton's laws of inertia and of gravity and view them as one unit 
for describing all classical properties of masses, and we take the action at a distance 
(or long range) principle substantially seriously: all masses in the universe are 
instantaneously interconnected by the force of gravity! In contrast to Newton, we also 
want the description of the motion of a mass point to take all the masses actually 
existing in the universe into account from the start. And so we go along with the 
notion of Ernst Mach that the motion of a mass point should depend on all other 
masses in the universe.[4] We therefore base our considerations on the mass 
distribution of the universe as the given and experimentally measurable starting point. 
We of course immediately run into the fundamental difficulty that our knowledge of 
mass distribution in the universe is naturally uncertain and becomes more uncertain 
the farther away the masses are from Earth. But in contrast to 100 or even 300 years 
ago, we have today a wide range of experimental data, and it is possible to make 
physically justifiable assumptions on this basis, meaning we can set up an empirically 
justifiable model of the universe (based upon the classical view of a three-
dimensional space and a separate time). We will then have to discuss whether the 
results of our examination represent progress compared to today's state of theory 
which is underpinned more by fundamental hypotheses, and so whether the 
uncertainties of the necessary assumptions are outweighed by the basic problems of 
the theory of relativity and its current extensions. Our approach focuses on the 
universe “as it is”, meaning on the most reliable observation data possible about the 
structure of the universe on the whole. Right from the start we therefore definitely 
exclude entire classes of abstract models of the universe “as it might also be”. 
Whether that is an advantage or a disadvantage will have to be discussed later 
based on the results of our examination. 

There were considerations of similar topics within the past decades, but the 
fundamental causes and relationships as found and described in the following were 
not discovered in the previous papers. This will be discussed in chapter 5 in more 
detail (see also the references there). 

2. Description of a mass within the universe 

We begin by examining a test sample with a mass m. This test sample can be at rest 
or in motion. It should not be located or move in an empty “absolute” space but rather 
in the actually existing universe. The universe should be included in the mathematical 
formulation from the beginning. We initially proceed from the following very simple 
model of the universe: a three-dimensional finite space stretches out through the 
distribution of masses. We therefore not proceed, like Newton, from the notion of an 
absolute space. In contrast to Newton's conception the space in our theory is bound 
to the existence of masses in the universe, that is: no masses, no space. The space 
is only formed from the existence of masses in the universe and can be measured 
section by section: the distance between two masses at rest vis-a-vis other masses 
in the universe can be determined through comparison with the extent of existing 
(fixed) masses in the universe.  
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We have to make a conceptual clarification at this point. The expansion of existing 
(fixed) bodies, that is, their suitability as a measuring stick, does not depend on their 
“mass” property but on the “matter” property. The latter is determined by strong, weak 
and electromagnetic interactions and in today's physical theory is described by the 
standard model of elementary particle physics. This differentiation is important here 
and will still be important later on elsewhere. 

We can define, for example, the universe's center of gravity as the zero point (origin 
of the coordinate system) of the space. We initially limit ourselves to the examination 
of such processes where the expansion or shrinking of the universe can be 
disregarded. We therefore proceed from the image of a quasi-stationary state in 
relation to such processes. 

We can also build a harmonic oscillator from some of the existing solid bodies whose 
oscillations determine the unit of time. If this clock is at rest relative to the masses in 
the universe, we will establish a temporally constant oscillation period that we can 
define as the unit of time, at least locally, that is, in the immediate environment of the 
clock. Therefore, just like with Newton, time and space are initially separate entities in 
our model. At a clock located at the universe's center of gravity, for example, we 
measure invariable oscillation periods and thus “uniformly flowing” time.  

For reasons of mathematical simplicity, we initially place a test sample to be 
considered with mass m (“sample mass” in short) at the universe's center of gravity, 
that is, at the origin of the spatial coordinate system. We will have to examine random 
placements later on of course. 

We now make a brief preliminary consideration to make the core of what we wish to 
work out as clear as possible: The Newtonian gravitational force between two 
masses, m and mi, located at distance ri, is given by 

                                                        F = G 
 

 .                                                    (2.1a)                                    

The mass m can be at rest (mass m0) or can be moving. Whether there is a velocity 
dependence of m with respect to its gravitational property is open till this step of 
consideration. We will return later to this aspect (see chapter 3). The question of how 
the phenomenon of gravity and the force action (2.1a) have come into the universe 
we leave unanswered at this point, too. We assume that gravity is present 
everywhere in the universe and satisfies the law (2.1a) at any distance. Referring to 
the above mentioned experiments with entangled states we are not afraid of using 
this view of a long-range-order and instant action property of the gravitational force. 

If masses mi and m are initially located at an infinite distance from each other and 
then approach each other to a distance ri, the following energy ΔEi which before the 
approach was “hidden” as potential energy in the system of both masses is set “free”: 

                                       Ei = - ΔEpot,i = - ∫ G 
 

 dr =  G 
 

 .                           (2.1b)                
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The potential energy of masses infinitely distant from each other is impossible to 
determine or measure. It can only be “computed” based on Newton's law of gravity. 
In contrast, the energy set free during the approach of both masses can be 
determined and measured. If the two approaching masses, for example, are not 
decelerated by impact or something else, then the energy set free can initially be 
identified as the kinetic energy of both masses, which can also be converted to other 
forms of energy at any time. 

Let Eu1 be the total internal energy of the universe without a sample mass at rest m 
placed at the origin, with the sample mass m in this state infinitely distant from all 
masses mi in the universe. An observer at the origin will determine that there is no 
mass m. With a sample mass m this internal energy is greater than Eu1 due to the 
sum of all “obtained” energies (2.1b) which the masses mi have at distance ri in 
reference to the location of m, that is, based on our examination, in reference to the 
origin. The value of this sum is given by 

                                                          E = ∑ G
 

 .                                                 (2.1)                

This formula applies to completely random distributions of masses in the universe. In 
order to work out the significant physical aspects and be able to make the simplest 
possible calculations, we will not examine this fairly general distribution below but 
limit ourselves to the scenario whereby the masses mi in the universe (in sufficiently 
large volume elements) are evenly distributed at (constant) density ρ and up to a 
distance R0 from the origin. We know that this is experimentally very well confirmed 
today.[5] By integrating the volume of the universe we get the following for this 
scenario: 

                     E  = G m ρ ∫ sin θ dθ ∫ dφ ∫  dr = 2π G m ρ Ro
2.                      (2.2) 

The universe's internal energy therefore is greater by this amount vis-a-vis the 
scenario where there would be no m, which is the same way of saying that m is at an 
infinite distance from the origin.  

You can interpret the existence of this energy in such a way that energy Eass is 
assigned to mass m. If we select the abbreviation  

                                                        b0
2 = 2π G ρ Ro

2,                                             (2.3)            

we can write: 

                                                        Eass = m b0
2.                                                    (2.4)           

If we are precise, we must determine that this energy is not only “assigned” to sample 
mass m but is existentially connected to it: It does not exist without the sample mass 
(Eass = 0 for m = 0) and it must be present if the sample mass exists (at the origin). 
Energy Eass and sample mass m therefore form one physical unit. They represent 
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inseparable elements of a physical entity which are both detectable and measurable 
in principle. 

Due to the importance of this notion we wish to clarify it once again in another way 
and perform a thought experiment: We first remove a sample mass m conceived in 
the origin from this origin, and have it approach infinity. We assume that the mass 
available in the universe with density ρ up to its edge is so thinly distributed that the 
sample mass can move without colliding with other masses. The potential energy 
must first be expended in order to transport the mass to the edge (that is, to radius 
Ro) of the universe. It is identical to the potential difference between the edge (R = 
Ro) and the center of the sphere (R = 0), and for a homogenously filled sphere (that 
is, ρ = const.) it is:[6] 

                                                               ∆Ẽpot =  G m  ρ Ro
2.                                           (2.5)            

Based on our notion the universe ends at R = Ro. However, there is nothing initially in 
this notion to prevent the sample mass m from moving even beyond it conceptually if 
we have already brought it to the edge of the universe. We could, for example, shoot 
it further beyond with a canon perpendicular to the “surface” of the universe. 

The energy needed to bring the sample mass from the edge of the universe to infinity 
is[6] 

                                                  ΔEpot =  G m   ρ Ro
2.                                            (2.6) 

The total potential difference between the position of the sample mass m at the origin 
(R = 0) and the position at infinity is then the sum of (2.5) and (2.6): 

                                                ΔEpot tot = 2π G m ρ Ro
2.                                           (2.7) 

This is precisely in line with the energy Eass which we “assigned” to the sample mass 
m according to (2.2) or (2.4). It is taken successively from the energy reservoir of the 
universe in order to bring the sample mass from the origin to infinity and is now found 
as potential energy in the gravitational field between the sample mass and the 
“remaining universe”, but again it might have to be “attributed” to this sample mass 
since an observer in the universe “left behind”, including at the origin of course, can 
determine nothing else experimentally than the fact that there is now no sample 
mass. The observer cannot perceive its gravitational effect and therefore its potential 
energy as well and hence cannot measure it. For the observer the sample mass does 
not exist. He will define the internal energy of the universe at Eu1. 

If the universe with infinitely distant sample mass m has internal energy Eu1, then its 
internal energy Eu2 with the sample mass m at the origin is greater by Eass: 

                                                    Eu2 = Eu1 + Eass.                                                   (2.8) 

This additional energy is contained somewhere in the environment. However, since it 
only exists if the sample mass is located (moving or at rest) at the origin (and not 
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outside the universe), then conceptually we can assign it to the sample mass and 
speak as though the sample mass had energy Eass. In contrast to the universe with 
an infinitely distant sample mass, we now have a universe with an additional physical 
“object” that is made up of sample mass m and an “assigned energy” Eass. The 
sample mass is a “solid”, spatially local sub-object, while the “assigned energy” is a 
“non-solid”, non-local sub-object. And to emphasize that both sub-objects form a 
physically inextricable interconnected unit, it seems appropriate to call this unit a 
“masson”. 

Equation (2.4) reveals a formal similarity of the description of the “object” with that of 
the correlation between mass and energy that Einstein discovered in his SR. We of 
course immediately ask whether there is more to this than just a purely formal 
relationship or whether b0 is perhaps not identical to the speed of light. The quantities 
going into (2.4) - G, ρ and Ro - can basically be determined experimentally, and there 
are also measured values for them but they are of widely varying accuracy. While G 
can be measured very precisely, the value for ρ is fairly uncertain, and there are only 
estimates for Ro. For the visible part of the universe, values for Ro of about 1.3 x 1028 
cm to approximately 10 x 1028 cm are indicated. If we now arbitrarily assume a value 
of 2.07 x 1028 cm, which lies within the range of values found in the literature (cf. for 
example[7]), then we find ourselves at 

                                         G = 6.674 x 10-8 
 

  and ρ = 5 x 10-30  : 

                                       b0 = 2𝜋𝐺𝜌 Ro = 3 x 1010 .                                           (2.9) 

Then b0 would really be identical to the speed of light c. Naturally (2.9) is still by no 
means evidence of the correctness of our assumption because the values given in 
the literature for ρ and especially for Ro are expressed with considerable caution and 
must still be considered uncertain today (perhaps even in principle) . But the value of 
b0 at first glance appears to lie very much within the order of magnitude of c, and we 
can at least take (2.9) as an encouraging sign to explore the idea further that there is 
more to it than a formal relationship between (2.4) and Einstein's E = mc2 formula. 

Before we do this, we should note at this point that in our thought experiment 
involving the removal of a sample mass from the universe (or the introduction of one 
into the universe) we have disregarded the time between the beginning and end of 
the respective experiment. Provided masses could only be moved with finite velocity 
(SR!), this would raise the question as to whether such a thought experiment could 
have physical relevance at all due to the very long time needed for it given finite 
velocities. If we assume that it would certainly be feasible in principle given enough 
time, then the masses of the cosmos of course would move in this time, indeed as is 
actually the case (expansion of the universe since the Big Bang). For ρ and Ro the 
time averages to be determined over the length of the experiment would have to be 
(must) be considered. However, this does not appear to call our basic model of the 
universe into question. 
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And one more thing: Naturally our considerations invariably apply both to a universe 
with an inhomogeneous density distribution and to an unlimited, infinitely vast 
universe. For a density function that decays fairly strongly from a specific radius R1 
we get similar relations such as (2.3) and (2.5), of course with another value R0

‘ 

instead of R0. But we shall stick to the very simple model of the universe chosen 
above because the easiest way to study and clarify basic relationships 
mathematically is with this model. 

3. Velocity dependence of a mass in the universe 

We again consider a sample mass (or better still: a solid test sample) placed at the 
origin but we now proceed from the aforementioned notion of a masson. This masson 
exhibits the following features: 

It is characterized by a  gravitational mass:               mg                                         (3.1)                            
and by an “assigned energy”:                            Eass = mg b0

2.                                 (3.2)                          

The mass is at the location of the solid body (the matter). Let us first leave open the 
question of where the “assigned energy” is located and in which form it exists. 

Any change of the energy of the masson is given by 

                                                 dEass = dmg b0
2 .                                                     (3.3)                            

Let now an external force F (for example an electrical force, not the gravitational 
force of another mass!) act on the solid body. The energy transferred to the mass 
along a path element ds is then, according to Newton's law of inertia, given by: 

                                    dEin = F ds =  p ̇ ds = (m v̇ +  ṁ v)ds .                                (3.4)                               

The mass m  appearing in (3.4) is the inert mass associated with the solid body 
(matter). For what follows we now make use of experimental experience that inert 
and heavy mass always turn out to be proportional to each other when measuring 
their quantity, that is, they are “identical” when the right units of measurement are 
chosen. This means the two types of mass are indistinguishable both at rest and in 
motion, i.e. mg = min = m. This assumption is the same as that underlying the 
principle of equivalence, an essential principle of GR. However, it takes its strong 
form there, namely in the sense that one cannot distinguish (locally) whether a 
sample mass under consideration is located in an accelerated reference frame or in a 
system in which gravity is working. For the theory formulated here, it is enough to 
assume the indistinguishability of both types of mass (weak principle of equivalence). 

Let us again imagine the masses in the universe as homogenously distributed and as 
individual masses so far distant from sample mass m that we can disregard their 
direct gravitational effect on mass m in relation to force F. We therefore do not need 
to consider a direct force action of other masses in (3.4). 
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The amount of dEass and dEin in (3.3) and (3.4) must be equal, and thus we find (with 
min = mg = m): 

                                            dm b0
2  = (mv̇ +  ṁv) ds ,                                            (3.5)                                            

and with ds = v dt we finally arrive at 

                                                     = 
 

 – 
 .                                                         (3.6) 

For v = 0 the mass m has to be equal to m0 (= “rest mass”). And the Integration of m 
= m0 to m and of v = 0 to v leads to                                        

                                                      m = 
 

 .                                                       (3.7) 

The total “assigned” energy of the masson is thus given by 

                                                     Etot =  
 

 b0
2 .                                                (3.8) 

For v = 0, Etot merges into rest energy E0 = m0 b0
2.  

From (3.7) we get the following for momentum 

                                                  p = mv = 
 

 v.                                                 (3.9) 

We know this expression from relativistic mechanics as the generalization of the 
relationship between momentum and velocity. 

Using (3.9), (3.8) of course can also be written in the following form: 

                                                 Etot = (m b ) +  p b  .                                      (3.10) 

(3.9) and (3.10) represent the form conventionally used in SR for describing a moving 
mass by means of energy and momentum. 

Equation (3.7) or (3.8) arises exclusively from Newton's law of gravity for a solid body 
in its (distant) environment and from Newton's law of inertia for this solid body (but 
with m ≠ const. !), provided we set identical values for both of the solid body's 
properties of inert mass and gravitational mass. The initially undefined dependence 
m = m(v) in (3.2 to 3.4) must then clearly follow from both Newtonian laws (and the 
masses of the universe).                                                                                                                                                     
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All prior relations in which the abbreviation b0 appears were derived without 
referencing the speed of light. Equation (2.9) gave an initial indication that b0 could 
be identical to the speed of light based on experimental quantities. And so now 
relation (3.7), which was also derived entirely without reference to the speed of light 
but has been fully verified experimentally for b0 = c, is likewise strong evidence that 
b0 really corresponds to the speed of light. And more than that: The mathematical 
description of a well-defined physical phenomenon has to be clear without ambiguity 
and must not depend on the way it has been derived. Therefore, we must conclude, 
that b0 and c are identical. And it seems that the constancy of the light velocity in 
different inertial frames is caused by the remote masses of the universe (see also 
chapter 4.2).  

What we gather from our previous considerations is that it is possible without running 
into contradictions to view a solid test sample, both at rest and in motion, as a 
masson and therefore as a quasiparticle whose environment is also admitted into the 
mathematical description. The masses in the universe here can be viewed as rigidly 
fixed, at least in the short time period in which the sample mass is considered. On 
this basis we find the correct description of experimental experience for both a 
masson at rest and a masson in motion. If there are no other masses nearby, its 
kinematics is determined by the “distant” masses of the universe following the action-
at-a-distance principle. The speed of light is not included in the physical derivation. 

The physical concept of a moving masson shows similarity with the concept of a 
polaron where a phonon cloud moves around an electron and produces an effective 
mass for this polaron. This image of a quasiparticle seems to allow us to describe a 
solid body in the environment in an adequate physical sense, and it seems to fulfill 
Mach’s requirement.  

Of course, we will have to examine modifications of our model assumptions (for 
example, non-homogeneous mass distribution, or non-abrupt and uniform density 
reduction at the edge of the universe). Some elementary considerations in this 
respect are to be found within the subsequent chapter 4. 

4. First consequences, evaluations and new questions 

4.1 Short-range/long-range interaction– local/non-local   

Since the theory expounded here is based on Newton's law of gravitation, it 
recognizes that all masses in the universe constantly and instantaneously interact 
with each other. Therefore, the theory developed is also an action-at-a-distance 
theory. On the other hand, it yields the result that masses evidently cannot be 
accelerated beyond b0 because the energy would otherwise approach infinity 
according to (3.8). Hence the existence of an action - at - a - distance and 
simultaneously of a maximum velocity for masses seems not to be a contradiction 
(see further remarks under 4.2)). 
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4.2 Transformation properties 

If b0 = c, then equations (3.7) and (3.8) are identical to those that Einstein discovered 
in SR. He derived these equations from two experimental experiences, namely the 
constancy of the speed of light in reference frames moving relative to each other and 
the requirement that natural laws in reference frames moving uniformly relative to 
each other must be transformable into each other by means of linear coordinate 
transformation (principle of relativity). His goal in this approach was to resolve the 
different transformation behaviors of electrodynamics (Lorentz-invariant) and 
mechanics (Galileo-invariant). It was shown that this is only possible if both spatial 
coordinates and time simultaneously are transformed in all physical laws. Lorentz 
transformation supersedes Galilean transformation for spatial coordinates and a non-
transformed universal time, transforming space and time simultaneously. Relations 
(3.7) and (3.8) then arise from the transformation relations in a mathematically 
explicit way. Tolman physically illustrated this in his elegant thought experiment.[8] 
Here he assumes, apart from the validity of the Lorentz transformation, only the third 
axiom of Newton, namely the conservation of total momentum. 

We have arrived at relations (3.7) and (3.8) in an entirely different way. Since 
Tolman's experiment only involves elastic collisions with ideally smooth balls, these 
steps can be performed in reverse order. Consequently, vice versa the Lorentz 
transformation also follows from the validity of relations (3.7) and (3.8) for test 
samples moving uniformly relative to each other.  

In our derivation the principle of relativity does not have to be assumed. It is already 
in Newton's equations of motion which we in fact have taken as the starting point of 
our considerations. The constancy of the speed of light in moving light sources also 
does not have to be assumed. It is shown rather that moving light sources and light 
receivers – like all masses – are subject to Lorentz contraction. This result is in line 
with the image that Lorentz proposed in 1892 in a purely formal way without any 
physical justification in order to describe moving bodies correctly in the context of 
Maxwell's theory.[9] We have found the physical justification here. The variable b0 
defined by the environment goes into the contraction formula and is equated with the 
speed of light.  

We can then very much take the view that there is a prevailing proper time in every 
reference frame moving uniformly relative to another, as it happens in SR. However, 
this representation seems like a phenomenological description which has deeper 
underlying causes. Based on the theory developed here, space and time are linked 
to each other by Newton's laws in the actually existing universe. Minkowski's theory 
of four-dimensional spacetime can be retained and used for the elegant description 
of motion in space and time. And it now has a deeper underlying cause. The inertia 
of mass and the laws of motion for a mass point are not attributed to properties of 
spacetime (as with Einstein/Minkowski) but are rather a consequence of Newton's 
laws in the actually existing universe. “Spacetime” is derived from more fundamental 
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quantities in our theory. The “actually existing universe” is included in our theory with 
the model representation of a finite, spherical, homogeneous mass distribution.  

Further assumptions are unnecessary. However, in this interpretation the universe 
with all its masses represents a preferred reference frame relative to which other 
frames can move. Based on the special form of the Lorentz transformation (group 
property), one can view reference frames in uniform motion relative to each other or 
relative to the universe as (mathematically!) equivalent or not preferred among each 
other. Therefore, it follows also for light sources (having always a mass) that the 
description of their motion is Lorentz invariant. This explains the constancy of the 
speed of light in all inertial systems. In this paper, therefore, we have found 
something similar to a luminiferous “ether” for the propagation of light, without having 
to look for it, but in a way entirely different from the approaches employed from the 
time of Lorentz to this day. We arrive at it completely naturally from Newton's laws 
alone, without any auxiliary hypotheses or model representations. The universe with 
all its masses represents a kind of “ether”! 

Our finding is identical with Einstein’s finding within his SR: The mass-related 
phenomena of mechanics are subject to the same Lorentz’ transformation properties, 
which Maxwell’s equations have to obey. This fact leads immediately to the question, 
whether there are deeper interrelations between gravitational and electro-magnetic 
phenomena. Or, referring to our derivation above: Are the remote masses of the 
universe also causative or co-determining for Maxwell’s laws? There will be a basic 
approach to this question in another paper.[29] 

We have to mention another aspect related to all physical phenomena underlying 
Lorentz transformation properties: One can show (see e.g. [26] p. 30) that for those 
phenomena information transfer is only possible with a transfer velocity vs < c (= b0), 
otherwise causality would be violated. Therefore, it seems that we should better 
speak on a “force-at-a-distance” rather than on an “action-at-a-distance” principle 
when considering Newton’s law of gravity. And we have also to mention that, up to 
now, it is unfathomed whether and how there is a relationship between this “force-at-
a-distance” phenomenon and the nonlocal character of quantum phenomena 
mentioned in the introduction. 

4.3 Local dependence of the speed of light 

The relations discovered almost necessarily suggest that the speed of light coincides 
with the variable b0 introduced here. If this is correct, the speed of light would not be 
a universal constant but a variable derived from several parameters of the universe. 

Relation (2.3) or (2.9) only applies in the event the test sample is located at the 
origin. If on its way from infinity it has not yet arrived at the origin but is (presently) at 
rest, for example, at distance r from the origin, then it has until then emitted only a 
part of its potential energy to the environment, namely (cf. e.g. Demtröder[6]) 
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              ΔEpot ∞ r = ΔEpot ges - ∆Ẽpot(r) =  2π G m0 ρ Ro
2 -  G m0  ρ r2 

                                         = 2π m0 G ρ ( Ro
2 -  r2 ).                                                (4.1) 

The remaining potential energy Emro  =  G m0  ρ r2 we assign to the test sample at 

position r. It does not appear in the test sample's environment. 

We can also write equation (4.1) as 

                                                  ΔEpot ∞ r = m0 b
2                                                      (4.2) 

where 

                                          b = 2π G ρ ( R  – r  ) .                                              (4.3) 

Our previous results suggest that b is identical to the speed of light c, and equation 
(4.1) or (4.3) demonstrates that b is not a universal constant but depends rather on 
the position of the light speed observer within the universe (i.e. his distance from the 
origin of the universe). This is different to what Einstein had discovered during his 
way from the special to the general theory of relativity (GR), because (2.9) and (4.3) 
are caused by the “distant” masses of the universe, whereas Einstein considered 
“local” or “near” masses.[10,11] (see also[12] and section 5). However just recently 
there was a publication possibly confirming (4.3).[13] 

4.4 Expansion of the universe 

The speed of light can be measured today in the laboratory with a relative accuracy 
of approximately 10-9[14]. If we develop (4.1) into a series, for r ≪ Ro we can write: 

                                                 b ≈  2πG ρ Ro (1 −  ).                                     (4.4) 

To enable us to determine in a measurement at position r a deviation from the 
measured value compared to a measurement at the origin, the following must then 
apply: 

  > 10-9                                                      (4.5) 

or                                                          r2 > 10-9 6 Ro
2.                                           (4.6) 

If Ro takes the value 1.3 x 1028 cm, then r must at least be around 1024 cm, allowing 
us to measure in a laboratory a deviation at position r compared to a measurement at 
the origin. This corresponds to a distance of about a million light-years. 

If we are observers at the origin, then we of course cannot install a laboratory a 
million light-years away in order to measure a different speed of light that might exist 
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there. However, the local dependence of the speed of light would basically yield an 
interesting consequence: The redshifts of light sources at different distances from the 
origin and of the spatially varying speed of light differ from the redshifts that would 
result if the speed of light were assumed to be locally independent. For the recession 
velocity v the redshift z is given by 

z =   - 1                                                        (4.7) 

At delay difference Δt between the beginning and end of a signal period, the following 
applies even to stars that emit light signals at very precise and consistent time 
intervals τ  (so-called standard candles): 

 =                                                               (4.8) 

We obtain an increased redshift compared to (4.7) or a greater delay difference 
compared to (4.8) not only when the light source moves at higher velocity but also 
when the speed of light, at which the light travels from the light source to the 
observer, is on average less than c. This is exactly the case according to (4.3) if the 
comparison light source is farther away from the observer (conceived at the origin) 
than the reference light source. The effect is currently not measurable for r < 1024 
cm. However, the farther beyond the light sources are, the clearer the effect. The 
obvious question here is whether the escape velocities measured against distant 
standard candles and assuming the same value for the speed of light everywhere are 
not in fact smaller. This could be verified if new calculations were done taking (4.3) 
into consideration and were compared with existing experimental results. This 
potentially could affect the hypothesis of an accelerated expanding universe. (See 
also chapter 4.7)). 

4.5 Extent of the universe 

The velocity-dependent increase of a moving mass according to (3.10) can be 
observed experimentally[15]. Consequently, the value of b0 is also determined 
experimentally. G is known. If the value of ρ can be measured or estimated in a 
plausible manner, then by virtue of correlation (2.3) the extent R0 of the universe can 
also be determined or estimated. 

If we assume, that the edge of the universe can proceed with the maximum velocity b 
according to (4.3), the radius of the universe expands with 

                                       R0(t) = b t = 2π G ρ  R   t = G   t 

or                                    R0(t) = √GM  t  .                                                            (4.9) 
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This proportionality between R0 and  t  has already been proposed by Dirac in 
1939[16]. 

4.6 Origin of the universe 

If the universe were to have developed from an originally very small point (with an 
“early” diameter r0), then at the initial phase of birth the maximum propagation speed 
at the edge of a spherical initial point would be given by (cf. (4.3)) 

                                              b' = 2π G ρ  r   = G 
( )

  .                                 (4.10) 

M(t) here is the total mass of the universe at time t after the Big Bang. Depending on 
the rate of formation of masses during the initial phase of the universe, the maximum 
possible propagation speed at the edge could have been different from today's speed 
of light. This has been studied theoretically recently[13] and the authors have 
concluded that the speed of light in the early phase after the Big Bang was very 
much higher than what it is today. Their theory yields calculable and in principle also 
measurable values. Through comparison with it we have another possibility of 
confirming or rejecting the theory presented here. Moreover, there are indications 
that the fine-structure constant in the early development phase of the universe could 
have been less than what it is today[17], and this would also be compatible with a 
higher value for b‘. 

4.7 Rest energy of the universe and dark energy 

At first view it seems, that we can write for the rest energy of a volume element dV at 
any distance r from the origin of the universe (see (4.3)): 

                                 dE’(r) = m0(r) b
2(r) = ρ(r) dV(r) 2π G ρ ( R  – r  ),             (4.11) 

and for a homogeneous mass distribution ρ(r) = ρ0 = const.: 

                                 dE‘(r) = ρ0
2 2π G ( R  – r  ) sin θ dθ dφ r2 dr.                  (4.11a) 

Integration over dθ and dφ yields the rest energy of a thin shell at distance r: 

                                 dE(r) = 8 𝜋  ρ0
2 G  R  – r   r2 dr.                                   (4.12) 

If we integrate (4.12) from r = 0 to r = R0 we find for the “rest energy of the universe”: 

                                       Eu0 = G 
 

  ρ0
2 R0

5.                                                     (4.13) 

But the formulas (4.11) to (4.13) are based upon the consideration of a specimen 
mass m0 within the universe as it exists today. The process of its formation has not 
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been taken into account, but this is necessary when calculating the total rest energy 
of the universe. This can be seen, if we investigate the “reverse process”, i.e. if we 
start from the universe as it is today and remove then step by step the outmost shells 
of it and transport it to infinity. The mass of the outmost shell (at radius R0) is given 
by 

                                         dm(R0) = 4 π R0
2 ρ0 dr .                                                 (4.14) 

To move this mass from R0 to ∞  against the gravitation field of the remaining mass 
of the universe we need the energy 

                                  dE’’ = G R ρ  ∫
     

                                             (4.15) 

or                               dE‘‘ = G R  ρ  
   

 

And if we repeat this removal for all shells from r’ = R0 to r’ = 0 we find the total 
energy, which is needed to remove the total mass of the universe to infinity: 

                      ΔE = l G ρ   ∫ 4 πr′ dr′ l = l G 
 

ρ  R  | .                         (4.16) 

In the reverse process the potential energy of all masses being transferred from 
infinity into the finite universe is transformed into internal energy of the universe. 
According to the considerations of the above chapters 2 and 3 this energy is identical 
with its “rest energy”. 

The value of (4.16) is half of the value of (4.13). Accordingly, the corrected value of 
the rest energy of a thin shell dE’(r) amounts to half of the value of (4.12). 

Let us now consider a force F(r) acting on a mass element dm = ρ0 dV(r) along a 
path element dr. The energy of the mass element is then increased along dr by  

                                                     dEF = F(r) dr .                                                 (4.17a) 

Since dEF has to be equal to dE’(r), the force between adjacent shells (if ρ0 = const(r) 
and dr ≪ r ) is thus determined and given by  

                                                      F(r) = 
( ) 

 .                                                  (4.17b) 

Referring the force (4.17b) to the surface area A(r) of the shell we find for the 
pressure: 

                                      p(r) = 
( )

( ) 
 =  π  ρ0

2 G  R  – r  .                                  (4.18) 

Obviously, this pressure forces the universe to expand. Is it fallacious to assume, that 
the rest energy of the universe as defined by (4.18) might be connatural to the “dark 



 

16 
 

energy” widely assumed in present physics as cause for the expansion of the 
universe found by measurements? This, of course, is a speculation and has to be 
investigated in detail, including possible revisions of the recession velocities as 
discussed under chapter 4.4). 

4.8 Inhomogeneous mass distribution 

In the preceding chapters we assumed a homogeneous distribution of masses in the 
universe, i.e. a constant mass density ρ0, and we were considering only the influence 
of remote masses onto a specimen mass m0. These assumptions are not necessary, 
and a complete generalization to a non-homogeneous and arbitrary distribution is 
possible, but not intended here; it would by far exceed the frame of this paper. 
However, we will have a first look onto the special case of a single mass M, which is 
added to the homogeneous distribution with density ρ0, having the distance R to a 
specimen mass m at the center of the universe. 

Instead of (2.1) we find for the internal energy of the (static) universe with respect to 
a specimen mass m0 in rest: 

                              ΔEpot,o = ∑ G    →  ΔE’ pot,o = ∑ G  + G  ,               (4.19) 

and instead of (2.3) and (2.4): 

                              Eo = m0 b0’
2     with   b0’ 

2 = 2π G ρ Ro
2 + G  .                       (4.20) 

Let us now consider a moving test mass m close to the origin of the universe exactly 
as in chapter 3, but now with the additional mass M at distance R from this origin. In 
this case the gravitational force of the mass M has to be added to the external force 
F, and (3.6) has to be changed in: 

                          dE‘F‘ = Fds + G  er ds = (m�̇� +  ṁ𝐯) ds .                                 (4.21) 

This nonlinear differential equation cannot be integrated as easily as (3.8). But for a 
first exploration of basic properties, we can arbitrary choose the direction of F 
towards the center of the mass M, i.e. ds = dr, and we find 

                                          Fdr + G  dr = (mv̇ +  ṁv) dr.                                    (4.22) 

Before we are going to solve this equation, we are considering the change of the 
potential energy of the mass m when approaching the mass M (the mass m shall be 
in rest at the beginning and end of the change): 

                                                        dEpot,M = G  dr.                                           (4.23) 

We integrate from r = R to r = R1:             
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                                 ΔER,R1 = ∫ G dr =  - G  (R – R1) ,                          (4.24) 

whereas < m > is the mean mass between m(R) and m(R1). The loss of the potential 
energy of the mass m in the gravitational field of M according to (4.21) obversely 
elevates the internal energy of the universe, i.e the energy of the “masson” (see 
chapter 3): 

                                      ΔEu = - ΔER,R1 =  G  (R – R1).                                  (4.25) 

We can write (4.25) in the form 

                                  ∆Eu =  (R – R1)   = ∆m  ,                                        (4.26) 

i.e. we can interpret the energy gain of the universe to be proportional to the increase 
of the mass 

                                   ∆m =   (R – R1) =   ∆R.                                           (4.27) 

For infinitesimal changes in the vicinity of R the relation (4.27) merges into 

                                                      dm =  dr,                                                       (4.28) 

and we can write (for r close to R) 

                                                     dEu = dm  .                                                   (4.29) 

Based on this previous consideration of the change of the potential energy we can 
solve equation (4.22). Embracing (4.29), we have to write instead of (3.5): 

                     dE‘ges = dm b0‘
 2 +  dm  = dm (b0‘

 2 +   ) = dm b0‘‘
 2.                  (4.30) 

with                 b0‘‘
 2 = b0

2 + 2  = b0
2 (1 + 2  ).                                               (4.31) 

As in chapter 3 one has also to stipulate here: 

                                                       dE‘F‘ =  dE’
ges ,                                                (4.32) 

and we find in close analogy to (3.9): 

                                                   = 
 

 – 
 .                                                       (4.33) 

or 

                                                 m = 
 

 .                                                        (4.34) 
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The rest energy is given by 

                                          E0’ = m0 b0’
2 + m0 

( )
G                                          (4.35) 

or,              if  
( )

 ≪ 1:                          E0’ = m0 b0’
2 .                                        (4.36) 

Eventually we find approximately 

                                                        E’ = 
 

 .                                                  (4.37) 

On the basis of (4.20) to (4.37) the trajectory of a mass m moving around the mass M 
(whereas F, er and ds do not point into the same direction) can be calculated (e.g. for 
mercury around the sun). The formulas contain terms with the Schwarzschild radius 

rs = 2  , leading to trajectories, which are not closed for one loop, and therefore 

leading to a perihelion precession. It has to be examined, whether the results are in 
accordance with the results of GR or whether there will be deviations. This shall not 
been carried out within the framework of this paper and is left to future investigation. 

5. Comparison with previous considerations and theories 

In sections 2 and 3 we have seen, how the masses of the universe determine the 
inertia of a single mass. The derivation leads to the same formulas as they result 
from SR, but with a parameter b0 instead of the velocity c of light. Because of the fact 
that one and the same phenomenon must be described by one and the same 
formula, irrespective of the way it has been developed, we conclude, that b0 must be 
identical with c. Our derivation is based upon the influence of all masses of the 
universe on the mass considered, i.e. our derivation is fulfilling Mach’s requirement. 
Einstein’s derivation of the SR is based on the constancy of light velocity, which is in 
line with experimental findings (e.g. Michelson’s experiment), but nevertheless is a 
postulate, and there is (at least directly) no connection to the masses of the universe. 
The light velocity c is considered to be a universal natural constant. In this method of 
approach the SR is not related to Mach’s requirement. Gravitation and the masses of 
the universe are not included directly in the SR. But the conformance of the theory 
developed here and the SR suggests itself, that there is a “hidden” interconnection 
between light and gravity. Within the framework of the SR this interconnection is 
interpreted as a fundamental property of space and time, Minkowski’s “space-time”. 
The derivation given here in sections 2 and 3 do not support this interpretation, on 
the contrary: The Lorentz transformation is found without any reference to light and is 
directly determined by the masses of the universe. The constancy of light velocity is 
not involved and might have causes not understood up to now. 

This hidden interconnection between light velocity and the masses of the universe 
was first discovered by Dicke.[18] He investigated the property of a light beam when 
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passing the sun and found a relation between the dielectric “constant” of the vacuum 
and the mass of the sun: 

                                                         ϵ ≅ 1 +   ,                                                 (5.1) 

where G is the gravitational constant, M is the sun’s mass, and r is the distance from 
the sun. 

His derivation was based upon the assumption that gravitation should be electro-
magnetic in origin and that the “vacuum” has the effect of a polarizable medium on a 
hydrogen atom. With further assumptions he calculated the variation of the refractive 
index about the sun, which is “required to obtain a deflection of light of the amount 
expected and observed”. This way he found (5.1). He stated that the second term is 
clearly associated with the presence of the sun, and then he put the question: “What 
about the first term? Does it have its origin in the remainder of the matter in the 
universe?”. To investigate this possibility he formed the integral 

                                                   2G ∫ dr = 4πGρR .                                      (5.2) 

Then he inserted the appropriate value for G and assumed R = 5.4x1027 cm,  = 4 x 

10-29 g/cm2 and thus found (5.2) to be equal to unity (with the units choosen by him). 
This result is similar to our result in (2.3) if it is assumed, that c = b0. Dicke did not 
derive his finding from basic laws, and he described it himself as an “interpretation”. 
In any case it stems from light properties, and it is open, which physical mechanism 
would be responsible for the correlation between light (i.e. an electro-magnetic 
phenomenon) and gravity. But in spite of the number of assumptions not justified by 
first principles he “discovered” the relations (5.1) and (5.2), giving a hint on the 
interconnection between light and the masses of the universe. 

Such an interrelation was first described by Einstein on his way from special to 
general relativity by postulating his principle of equivalence between a system with a 
gravitational field and a uniformly accelerated system, which should apply for all laws 
of physics.[10,11] Applying the results of the SR he found for the light velocity within 
a gravitational potential Ф : 

                                                      c = c0 (1 + 
Ф

 ).                                                   (5.3)                

Referring to Huygens principle he concluded that a light beam should be bent in a 
gravitational field in the same way as in an accelerated system. The potential Ф must 
not be caused by the distant masses of the universe and therefore the second term 
in (5.3) is not indicating Mach’s principle, but according to Dicke, the first term could. 
Einstein was apparently not aware of this “hidden” property. In his early years 
Einstein considered himself as “follower of Mach”, but later on he seemed not to 
consider Mach’s principle “as a useful fundament for a new theory”.[19]  
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After Einstein (1908/1911) and before Dicke (1957) at least two other scientists were 
considering this topic, namely Schrödinger and Sciama:[20,21] 

Schrödinger tried to find a physical law in order to explain inertia in line with Mach’s 
principle. He established an ad hoc Ansatz in a certain analogy to Newton’s law of 
gravity and some “heuristic” requirements. Based upon the relation found he 
calculated the perihelion precession of a planet and compared the result with the 
respective result of the GR for Mercury and thus determined a parameter 𝛾 contained 

within his ad hoc formula to be 𝛾 = . Eventually he found the following relation: 

                                                      c = 4π ρ G R .                                                   (5.4) 

This is quite similar to (2.3), but the physical meaning of R was open. He concluded, 
that R has to be much larger than the diameter of our galactic system, because 
otherwise the inertia of a mass would show anisotropy, whereas if the masses of the 
universe would be contained within a sphere of radius R one could expect c2 to be 
isotropic.  

One can see that he also “discovered” an interrelation between c and the masses of 
the universe, but he did not derive this from basic physical laws and he also needed 
the GR for “calibrating” his ad hoc formula. Therefore, his result was a consequence 
of the GR in which the interconnection with c is “hidden”.  

A similar attempt was independently undertaken also by Sciama.[21] He tried to 
develop “the simplest mathematical scheme to describe that matter has inertia only in 
the presence of other matter” and established an ad hoc formula for the description of 
gravitational effects in a formal analogy to Maxwells equations. In his book of 1969 
he simplified his approach and “assumed that the inertial action has a similar 
structure as the Coulomb law”.[22] He needed to introduce “the c2 factor for 
dimensional reasons”. With some further considerations he found the formula  

                                                                G = 
 

 ,                                               (5.5) 

which is formally identical with (2.3). He stated that “the gravitational constant at any 
point is determined … by the distribution of the matter in the universe”, assuming that 
the light velocity is a natural constant. Also in this case the derivation was not based 
upon basic laws but on an analogy, and the light velocity was introduced through this 
analogy (Maxwell’s laws). 

The physical essence behind all these considerations is the question to which extent 
Mach’s principle is contained or not contained in the GR. This question was the topic 
of a long lasting “controversy” between Einstein and de Sitter,[23] and was treated 
afterwards at length on several occasions, e.g.[24,25] Till this date this question 
seems not to be completely answered (see e.g.[26] p.181/182). It has been 
examined also recently, see e.g.[27]. Here a fifth dimension has been introduced into 
the framework of GR in order to explain inertia. Therefore, also this author like all the 
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others mentioned above relies on light properties contained in SR, GR or Maxwell’s 
equations. It seems that the possibility of the derivation as described here in sections 
2 and 3 was not noticed by all of them.   

Our considerations and calculations show that the impact of all “distant” masses of 
the universe on a specimen mass m is included already in the SR, i.e. Mach’s 
principle is contained in it. The postulate of the constancy of the light velocity is not 
required for the derivation. Instead, a particle approach and the principle action-at-a-
distance are used for the description of the influence of the masses of the universe. 
The derivation and the results do not contradict neither SR nor GR. As far as 
Einstein's deliberations from SR to GR are valid, these deliberations can also be 
used to transfer the theory presented here to GR, which also admits calculation of 
motions of masses in locally very inhomogeneous mass distributions. However, 
extending the derivation in chapter 3 to inhomogeneous mass distributions, that is, 
consideration of masses located near the sample mass m in equations (2.1), would 
result in (nonlinear) equations of motion for the local masses, deviating from 
Newton’s description, where the distant masses are not taken into account. In this 
case Einstein’s (strong) equivalence principle is not required as a postulate, but 
possibly will arise as a consequence. Whether the equations of motion in GR (or 
alternatives to it) will result in this manner must of course be studied. However, this 
exceeds the established framework of this paper. 

6. Gravitational waves and light 

The quantities b0 and b (cf. (2.3), (2.4), (3.10), (3.11) and (4.3)) have the dimension 
of speed and very much appear to coincide with the speed of light. But light and the 
speed of light do not appear at all in the derivation of the equations. The natural 
question therefore is what physical nature does “speed” b0 have and how can a 
possible relationship with the speed of light emerge. It is definitely related to gravity. If 
a physically meaningful and measurable speed value can be found for b0, then 
according to (2.3) this must be related to the gravitational constant G and the 
universal variable ρ, as well as depend on the extent of the universe R0. The latter 
requirement appears odd at first glance, but it implies that a physical variable at a 
certain location, that is, a local variable, should depend on the overall extent of the 
universe. On the other hand, however, this is just not surprising because this paper is 
based on Newton's action-at-a-distance theory of gravity: gravity acts instantaneously 
and everywhere, even across the greatest distances. Schrödinger alluded to this 
feature (“action in distans”), but was in doubt whether it could be harmonized with the 
finite velocity of propagation resulting from the SR.[20]   

If b0 must now be identical to the speed of light, on the one hand, and be related to 
gravity, on the other, then evidently we must look for a resonating system that is 
gravitationally and electromagnetically defined. We will describe this in detail in 
another paper.[29] Here, we only give an overview with the most important 
considerations.  
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We first move away from the previous very simplified model representation where we 
viewed the universe as static, that is, with spatially fixed masses (“fixed stars”). We 
want to see it more as a structure in which individual volume elements can move 
relative to each other, as it is indeed the case in reality, reminding us of the 
properties of the simplest resonating object made of mass points, namely a linear 
chain. In its familiar form such a chain consists of individual punctiform masses 
located along a straight line, each at distance a from each other. They are usually 
linked in linear fashion by springs with spring constant D.  

If you consider only longitudinal deflections and force action only between the closest 
neighbors, then the nth mass with deflection sn is subject to spring forces 

Fn,n+1 = D (sn+1 – sn)                                                      (6.1) 

Fn-1,n  = D (sn-1 – sn),                                                     (6.2) 

producing the equation of motion 

m s̈n = D (sn+1 + sn-1 – 2sn ).                                        (6.3) 

We find wave solutions with the approach 

sn = s0 𝑒
(  ).                                                 (6.4) 

The dispersion relation is expressed by 

ω(k) = 2  l sin (  ) l.                                            (6.5) 

Let us now consider a chain whose masses, in turn, are lined up in a row (for the 
moment, at the beginning) at distance a from each other. They do not exert spring 
forces on each other but attract each other according to Newton's law of gravity. If 
we, in turn, only consider the closest neighbors and longitudinal deflections, then we 
have (for the moment) the gravitational forces on mass n: 

FG n,n+1 =   G 
(   )

                                            (6.6) 

                                                         FG n-1,n = - G 
(   )

 .                              (6.7) 

Let us assume that (longitudinal) deflections are very much smaller than the 
distances a, then the following applies approximately 

FG n,n+1 =   G  (1 – 2 ( 
 

))                                      (6.8) 

FG n-1,n = - G  (1 – 2 ( 
 

)).                                     (6.9) 
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And with the abbreviation D1 = 2G  we arrive at the equation of motion 

m s̈n = - D1 (sn+1 + sn-1 – 2sn ).                                       (6.10) 

Compared with (6.3), we see the negative sign before the coupling constant, and 
approach (6.4) in this case leads to purely imaginary values for ω(k): 

                          ω(k) = i 2  l sin (  ) l.                                           (6.11)  

Longitudinal wave propagation is obviously impossible on such a chain. 

Next, we want to consider transverse waves of a linear chain whose mass points 
exert gravitational forces on each other and we, in turn, only consider the closest 
neighbors. 

We again designate deflections of the nth mass perpendicular to the chain line (for 
example, in the z direction) with sn. The gravitational attraction between neighboring 
masses is then: 

                   FG n,n+1 = G 
(  )

    and  FG n-1,n = -  G 
(  )

.                (6.12) 

For the z components of these forces we get 

                                  FG n,n+1,z = G 
(  )

 
 

(  )
  

and                                                                                                                        (6.13) 

                                   FG n-1,n,z = G 
(  )

 
 

(  )
.   

If we disregard terms of order s2 and higher, we find the following equation of motion: 

                                           m s̈n = D2 (sn+1 + sn-1 – 2sn )                                       (6.14) 

with                                        D2 = G .                                                                (6.15) 

In terms of form, this equation is identical to equation (6.3) for a chain whose 
elements are bound to each other by spring forces. If we now stack these chains 
beside and above each other, we get a lattice that should allow transverse 
oscillations as described in the lattice theory of solid state bodies.  

In a forthcoming paper [28] we describe a homogeneous universe with mass density 
ρ (constant everywhere) through such a lattice model whereby we view a snapshot in 
which distance a between lattice points is constant. In this paper we also consider 
interactions not only between next neighbors, but between all neighbor mass points. 
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Such a model appears to admit plane “gravitational waves” which exhibit the 
universal expansion R0 perpendicular to the direction of propagation and as a good 
approximation travel at the following propagation speed 

                                                              =  2πGρR   .                                       (6.16) 

This propagation speed coincides with the variable b0 (cf. (2.3)). We do not want to 
call these waves “gravitation waves” because this name is reserved today for waves 
in space-time, which result from the general theory of relativity. The extent to which a 
relationship exists between both types of gravity-related waves still needs to be 
clarified. And, there is another interesting relationship certainly to be investigated: If 
such gravitational waves as described above are existing anywhere in the universe, 
they will interact with every test mass in the universe wherever it might be located. 
Therefore, any test mass must necessarily show some wave properties. Is there a 
fundamental link to quantum mechanics?  

In another paper [29] we examine a further aspect, namely how plane, universally 
expanding “gravitational waves” can link with plane electromagnetic waves. This is 
possible through the existing plasma in the universe made of electrically charged 
particles, and leads to a situation where the direction and propagation speed of 
electromagnetic waves must coincide with the direction and propagation speed of 
“gravitational waves”. 

7. Summary and conclusion 

It seems as if the results of the special theory of relativity can be derived solely on the 
basis of both Newton's laws for inert and heavy masses and on the equivalence of 
inert and heavy mass. Light and its properties play no role in the derivation. We 
likewise do not need to examine reference frames (inertial systems) moving relative 
to each other. It is clear that the fundamental property of Newton's law of gravity, 
namely that gravity is to be understood and described as an action-at-a-distance, is 
not inconsistent with a maximum speed at which solid bodies can move. This 
maximum speed can be calculated from fundamental quantities of the universe, 
namely the gravitational constant, its density and its extent. It is not a universal 
natural constant but depends rather on the position of the moving body in the 
universe, among other things, and appears to be identical to the speed of light. 

The reason for this is that in the theory presented here Newton's law of inertia is 
related to Newton's law of gravity, whereby all masses in the universe interact 
instantaneously (action-at-a-distance) with each other, right up to the edge of the 
universe. Everything interacts with everything at every moment! This nonlocality 
appears to be included in quantum theory, whereas the theory of relativity does not 
reproduce it under the current interpretation. The theory developed here is non-local 
but nonetheless yields the results of the special theory of relativity. It therefore seems 
conceivable that both theories are entirely valid and the previous contradictions of 
action-at-a-distance/nonlocality (Newtonian and quantum theory) against local 
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action/locality (theory of relativity) disappear. The particle approach and the principle 
action-at-a-distance seem to be reasonably applied to the “distant” masses of the 
universe being at rest.  

The distant masses of the universe build up a preferred reference frame, and our 
theory yields the Lorentz transformation for masses being uniformly moved against 
this preferred frame (or against any other inertial frame). This is also valid for light 
sources (having always a mass), and explains the constancy of the speed of light in 
all inertial systems.  

This paper is based on the model of a homogeneous universe with very low mass 
density. In this case, its results contradict neither the special nor the general theory of 
relativity. A generalization to non-homogenous mass distributions can be performed 
but is studied in the work presented here only on a very elementary level. 

Acknowledgements 

The author is grateful to the Professors Dr. H.P. Büchler, Dr. Nicolas Gisin, Dr. Gerd 
Schön, Dr. Ulrich Steiner, Dr. Ulrich Weiß and Dr. G. Wunner for their valuable 
comments and their encouraging support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

26 
 

References 

1  J. S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195 

2   I. Newton, Letters to Bentley, 1692/3: „It is inconceivable that inanimate Matter 
should, without the Mediation of something else, which is not material, operate upon, 
and affect other matter without mutual Contact … That Gravity should be innate, 
inherent and essential to Matter, so that one body may act upon another at a 
distance thro’ a Vacuum, without the Mediation of anything else, by and through 
which their Action and Force may be conceived from one another, is to me so great 
an absurdity that I believe no Man who has in philosophical Matters a competent 
Faculty of thinking can ever fall into it …” 

3   I. Newton, Royal Society, July, 5th, 1687, “Philosophiae Naturalis Principia 
Mathematica”  

4   E. Mach, F.A.Brockhaus, Leipzig, 1883, „Die Mechanik in ihrer Entwicklung“  

5   R.P. Kirshner, Princeton University Press 2002, “The extravagant universe”  

6   W. Demtröder, Experimentalphysik 1, Springer Berlin Heidelberg New York 1994,   
Chap. 2.9.5 

7  J. Richard Gott III et al., Astrophys.J. 2005, 624, 463. Planck Collaboration, Planck 
2015 results. XIII. Cosmological parameters, Astronomy&Astrophysics 2016, 594, 
A13. Additional references with: https://de.wikipedia.org/wiki/Universum  

8  R.C. Tolman, Philosophical Magazine 1912, 23, 375  

9 H.A. Lorentz, Arch. neerlandaises des sciences exactes et naturelles 1892a, 25, 
363 

10 A. Einstein, Jahrbuch der Radioaktivität 1908, 4, 411 

11 A. Einstein, Annalen der Physik 1911, 35, 898 

12 A. Unzicker, „Einstein’s verlorener Schlüssel“, München 2015, ISBN: 1517045452 
(overview with further original citations on the topic „variable light velocity“) 

13 N. Afshordi, J. Magueijo, Phys. Rev. D 2016, 94, 101301 

14 Boulder Group, National Bureau of Standards (1973) 

15 Bucherer, A.H., „Messungen an Becquerelstrahlen. Die experimentelle Bestätigung der 
Lorentz-Einstein-Theorie“, Physikalische Zeitschrift (1908), 9 (22), 755 – 762. Furthermore: 
Neumann, G., Annalen der Physik (1914), 320 (20), 529 – 579, C.E. Guye, C. Lavanchy, 
Compt. Rend. Sci. (1915) 161, 52-55 

16 P.A.M. Dirac, Proc. R. Soc. Lond. (1938) 205 

17 J.K.Webb et.al., Phys. Rev. Lett. (2001), 87, 091301 



 

27 
 

18 R.H. Dicke, Review of modern Physics 1957, 29, Number 3, 363 

19 A. Einstein, „Mein Weltbild“, Berlin 1991, 135 

20 E. Schrödinger, Annalen der Physik 1925, 382, 325 

21 D.W. Sciama, Monthly Notices of the Royal Astronomical Society 1952, 113, 34 

22  D.W. Sciama, “The Physical Foundations of General Relativity”, New York 1969 

23  S. Röhle, „Mathematische Probleme in der Einstein – de Sitter Kontroverse“, 
Max-Planck-Institut für Wissenschaftsgeschichte 2002 

24 J. Barbour and H. Pfister (eds.), Mach’s Principle – From Newton’s Bucket to 
Quantum Gravity, Birkhauser, Boston 1995 

25 H. Bondi, J. Samuel, arXiv:gr-qc/9607009v1, 1996 

26 E. Rebhan, Theoretische Physik: Relativitätstheorie und Kosmologie, Springer 
Berlin Heidelberg 2012 

27 S. Das, arXiv: 1206.6755v2, 2015  

28 F.-K. Boese “On gravitational waves in Newtons universe”, to be published 

29 F.-K. Boese “On the interaction of gravitational and electro-magnetic waves in the 
universe”, to be published 

 

 


