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Abstract 
 

The SPARC catalogue of disk galaxies contains data on both the rotation 

curves and the baryonic matter distributions.  This data set enables an 

analysis to be carried out to see whether a simple weighting function 

applied to the matter distributions can explain the rotation curves, without 

the need for any dark matter.  It turns out that the radial distance raised to a 

small negative power is such a weighting function and it is sufficient to 

explain the observed rotation curves.  This observational result leads to a 

new expression for the rotation curve with only one adjustable parameter. 

 

 

 

 

 

1 Introduction 

 

JoKe1 (2015) put forward the conjecture that the energy scale can vary from location to 

location.  A variation of the energy scale can be thought of as a weighting function applied to 

the mass distribution.  The paper showed that the flat rotation curves of spiral galaxies can 

be explained by variations in the energy scale, without the need for any dark matter.  Papers 

JoKe2 (2015) and JoKe3 (2015) extended the work using an improved model of a Gaussian 

density distribution for the galaxy and another Gaussian for the energy scale variation.  Good 

fits were obtained for the rotation curves of 74 spiral galaxies.  The model worked with just 

the observed rotation curve and did not take into account any measurements of the actual 

mass distribution. 

 

The SPARC catalogue (Lelli et al, 2016) presents both the rotation curve data and the mass 

distribution data for 175 disk galaxies.  This enables a much better examination to be 

undertaken of the conjecture of energy scale variations.  In particular the problem can be 

inverted to get at the shape of the energy scale variation, which until now has been assumed 

to have a Gaussian profile. 

 

We can now construct the observed rotation curve from the baryonic matter distribution 

alone.  We do not have to assume a shape for the density distribution; this is given by the 



 

 

SPARC data.  And we do not have to assume a shape for the energy scale variation; this 

comes from analysing the SPARC data.  This paper explains how we arrive at these results. 

 

 

 

 

2 Theoretical  considerations 

 

In this section we look at how energy scale variations (weighting function) can be used to 

explain the rotation curves of disk galaxies, and how we might examine the form of energy 

scale variations. 

 

Newton's law of gravity tells us that the force on mass, 𝒎𝑨, from a central mass, 𝑴𝟎, is 

 

 
𝒎𝑨 �̈�  =  − 

𝑮 𝑴𝟎 𝒎𝑨

𝒓𝟐
  (1) 

 

where 𝑴𝟎, 𝒎𝑨  are the two masses; r  the separation; �̈� the acceleration; G  the gravitational 

constant.  It follows that the circular velocity, u(r) , is given by  

 

 
 𝒖𝟐(𝒓)  =  �̇�𝟐  =   

𝑮 𝑴𝟎

𝒓
   (2) 

 

 

For a spherically-symmetric distribution of mass, rather than a single point mass, equation 

(2) becomes 

 

 
𝒖𝟐(𝒓) =   

𝑮 

𝒓
 ∫ 𝒅𝑴(𝒙)

𝒓

𝒙=𝟎

  (3) 

 

where  dM(x)  is the mass increment of a spherical shell. 

 

In JoKe1 (2015) we put forward the conjecture that the energy scale can vary from location 

to location.  This leads to equation (1) being replaced by 

 

 
𝒎𝑨 �̈�  =  −

𝑮 𝑴𝟎 𝒎𝑨

𝒓𝟐
 
𝝃(𝟎)

𝝃(𝒓)
  (4) 

 

where ξ  is the function of position that describes the energy scale variation; 𝝃(𝟎)  is the 

value of the function at mass 𝑴𝟎;  𝝃(𝒓) the value at mass  𝒎𝑨.  It then follows that the 

circular velocity, as given by equation (2), becomes 

 

 
𝒗𝟐(𝒓)  =   

𝑮 𝑴𝟎

𝒓
 
𝝃(𝟎)

𝝃(𝒓)
  (5) 

 

where we use  v(r)  for the velocity with an energy scale variation and  u(r)  for the velocity 

with no energy scale variation. 

 

 



 

 

And for a spherically-symmetric distribution of mass, rather than a single point mass, 

equation (3) becomes 

 

 
𝒗𝟐(𝒓) =   

𝑮 

𝒓
 

𝟏

𝝃(𝒓)
 ∫ 𝝃(𝒙) 𝒅𝑴(𝒙)

𝒓

𝒙=𝟎

  (6) 

 

 

The ξ-function in equation (6) can be thought of as a weighting function (rather than an 

energy scale variation).  Each increment of mass, 𝒅𝑴(𝒙), is weighted with the value of the ξ-

function, 𝝃(𝒙), at the increment.  The ξ-function is dimensionless and the 𝝃(𝒓)  values are 

pure numbers. 

 

If we know the mass distribution, 𝒅𝑴(𝒙), and the form of the energy scale variation, 𝝃(𝒙), 

then we can calculate the observed rotation speed v(r), using equation (6).  This procedure 

was carried out in JoKe1 (2015) for a central point mass and a Gaussian energy scale 

variation.  It successfully reproduced the observed rotation curves beyond 10kpc for six 

galaxies.  JoKe2 (2015) replaced the point mass with a Gaussian density distribution, which 

enabled the central region to be fitted as well.  JoKe3 (2015) applied this simple model to a 

sample of 74 spiral galaxies and good fits for the rotation curves were obtained in all cases.  

In these papers the shapes of the density distribution and energy scale variation were 

assumed to be Gaussian as there was no observational data to work with. 

 

Of course, it is important to note that spiral galaxies are not spherically-symmetric.  They are 

disks where the visible matter is distributed not in a sphere but in a thin disk that can be 

considered to be axisymmetric.  The brightness of these disk galaxies falls off exponentially 

which means, for a constant mass-to-light ratio, that the density also falls off exponentially.  

So, we need to look at the gravitational attraction of thin exponential disks.  This has been 

covered in detail by Binney & Tremaine (2008) where the differences between a sphere and 

a disk are made clear.  For instance, a point inside a spherical shell experiences no 

gravitational acceleration whereas a point inside a ring experiences a gravitational 

acceleration outwards, away from the centre and towards the ring. 

 

As mentioned above, the brightness of disk galaxies is observed to fall off exponentially 

 

 𝑰(𝒓) =   𝑰𝒐 exp(− 𝒓 𝑹𝒅⁄ )  (7) 

 

where  I(r)  is the intensity;  Rd  is the characteristic distance, typically ~2 kpc in disk 

galaxies.  It follows that, for a fixed mass-to-light ratio, the surface density,  σ(r) , is given by 

 

 𝝈(𝒓) =   𝝈𝒐 exp(− 𝒓 𝑹𝒅⁄ )  (8) 

 

 

The gravitational potential in the disk, φ(r), can be obtained from Poisson's equation (Binney 

& Tremaine, 2008), and the circular velocity found from 

 

 
𝒖𝟐(𝒓)  =   𝒓 

𝝏𝝋

𝝏𝒓
  (9) 

 

 



 

 

If we know the distribution of normal (baryonic) matter across a disk galaxy, then we can get 

at the gravitational potential by solving Poisson's equation and calculate the expected 

rotation speed, 𝒖(𝒓), through equation (9).  The problem facing astronomers is that the 

expected velocity, u(r), is always less than the observed velocity, v(r) .  The current solution 

to this problem is the ad hoc postulate that dark matter exists and that galaxies are 

embedded in large spherical haloes of dark matter.  Dark matter then gives rise to a velocity 

contribution, w(r), given by 

 

 
𝒘𝟐(𝒓)  =   

𝑮

𝒓
∫ 𝒅𝑴𝑫𝑴(𝒙)

𝒓

𝒙=𝟎

  (10) 

 

where  𝒅𝑴𝑫𝑴(𝒙)  is the mass increment of a spherical shell of dark matter. 

 

The observed velocity, v(r), is now given by 

 

 𝒗𝟐(𝒓)  =   𝒖𝟐(𝒓) +  𝒘𝟐(𝒓)  (11) 

 

Given the expected velocity, u(r), and the observed velocity, v(r), we can always introduce 

sufficient dark matter that equation (11) holds.  Dark matter has no predictive power in the 

sense that, given the mass distribution, it cannot predict the observed rotation curve.  Dark 

matter is simply a rolling fudge factor added to make equation (11) work.  Whatever the 

observed and expected velocities are, we can always find an amount of dark matter that 

explains the data. 

 

Binney & Tremaine (2008) also show that the difference in the circular velocity, between an 

exponential disk and a sphere with the same mass, is only a few per cent.  And this 

difference becomes rapidly smaller at larger distances from the galaxy centre.  This means 

we can define an 'effective mass' given by 

 

 
𝒖𝟐(𝒓) =   

𝑮 

𝒓
 ∫ 𝒅𝑴𝒆(𝒙)

𝒓

𝒙=𝟎

  (12) 

 

where dMe(x)  is the effective mass of an increment of the disk (not a spherical shell).  So, 

although in general there can be substantial differences between spheres and disks, these 

differences are small in the case of an exponential disk. 

 

It then follows that our equation (6) for the circular velocity in an energy scale variation 

should be 

 

 
𝒗𝟐(𝒓) =   

𝑮 

𝒓
 

𝟏

𝝃(𝒓)
 ∫ 𝝃(𝒙) 𝒅𝑴𝒆(𝒙)

𝒓

𝒙=𝟎

  (13) 

 

where the increment in the effective mass, dMe(x), is the same as in equation (12). 

It should be noted that v(r)  is the actual rotational velocity as measured by the observations 

of disk galaxies. 

 

WYSIWYG: what you see is what you get. 

We can look at equation (1) in a different way.  The gravitational acceleration is usually given 

by adding up the contributions from all the masses: 



 

 

 

 
�̈�   =  − 

𝑮

𝒓𝟐
 {𝑴𝒈𝒂𝒔 + 𝑴𝒔𝒕𝒂𝒓𝒔 + 𝑴𝒃𝒖𝒍𝒈𝒆 + 𝑺𝑶𝑴} (14) 

 

where  SOM  stands for "some other (additive) mass", currently interpreted as dark matter.  

Our equation (4) is different; what we are saying is 

 

 
�̈�   =  − 

𝑮

𝒓𝟐
 {𝑴𝒈𝒂𝒔 + 𝑴𝒔𝒕𝒂𝒓𝒔 + 𝑴𝒃𝒖𝒍𝒈𝒆}  ×   𝑺𝑶𝑬 (15) 

 

where  SOE  stands for "some other (multiplicative) effect".  In our case we are calling this 

other effect a variation in the energy scale.  Others may choose to label it differently.  The 

main point is we take the view that there are no other masses, there is no dark matter, and 

that the matter we observe is all there is. 

 

The SPARC catalogue of galaxies (Lelli et al, 2016) provides the observed and expected 

velocities for 175 disk galaxies.  The expected velocity is given in the form 

 

 𝒖𝟐  =   ϒ𝒃 |𝒖𝒃𝒖𝒍𝒈𝒆| 𝒖𝒃𝒖𝒍𝒈𝒆 + |𝒖𝒈𝒂𝒔| 𝒖𝒈𝒂𝒔 +  ϒ𝒔|𝒖𝒔𝒕𝒂𝒓| 𝒖𝒔𝒕𝒂𝒓 (16) 

 

where  ϒ𝒃 is the mass-to-light ratio of the central bulge; ϒ𝒔 is the mass-to-light ratio of the 

disk of stars;  𝒖𝒃𝒖𝒍𝒈𝒆 is the contribution to the velocity from the central bulge; 𝒖𝒈𝒂𝒔 is the 

velocity from the gas;  𝒖𝒔𝒕𝒂𝒓 is the velocity from the disk of stars.  The mass-to-light ratio for 

the bulge is set to 0.7 by default; the mass-to-light ratio for the disk of stars is set to 0.5 by 

default. 

 

We are now in a position where we can examine the form of our ξ-function that describes the 

variation of the energy scale.  Knowing the expected velocity from the SPARC catalogue, we 

can get at the distribution of normal matter by inverting equation (12).  In incremental form 

this is 

 

 𝑮  𝜟{𝑴𝒆(𝒓)}  =   𝜟{𝒓 𝒖𝟐(𝒓)}  (17) 

 

 

And knowing the mass distribution we can get at the shape of our ξ-function by inverting 

equation (13).  In incremental form this is 

 

 𝝃(𝒓) 𝑮 𝜟{𝑴𝒆(𝒓)}  =   𝜟{𝝃(𝒓) 𝒓 𝒗𝟐(𝒓)}  (18) 

 

At this stage we have no idea what the shape of the ξ-function might be, or whether equation 

(18) can be solved to give any meaningful values at all.  What we have to do is process the 

data in the SPARC catalogue and see what we end up with.  The results of this process are 

covered in the next section. 

 

  



 

 

 

3 A  sample  of  SPARC  galaxies 

 

The next few pages show the results of applying the ideas of the previous section to a 

sample of galaxies from the SPARC catalogue (Lelli et al, 2016).  Some are gas dominated, 

some dominated by the stellar disk, and some have a central bulge. 

 

The top left panel shows the SPARC data.  The black diamonds are the observations of the 

rotation curve.  The purple curve is the contribution to the velocity from the central bulge (if 

one exists); the orange curve from the disk of stars; the green curve from the gas.  The blue 

curve is the expected velocity given by aggregating the components using equation (16). 

 

The top right panel shows the cumulative mass distribution corresponding to the velocities in 

the top left panel.  The values are found by solving equation (17), which is the numerical form 

of equation (12).  The black diamonds give the observed total mass corresponding to the 

black diamonds in the top left panel.  The blue line gives the normal matter mass 

corresponding to the blue line in the top left panel.  This diagram shows whether the 

observed or expected masses are levelling off or are still increasing at the outer edge of the 

galaxy.  The observed mass usually shows a continuing increase; the expected mass usually 

shows convergence.  If the observed mass is interpreted as the expected mass plus the dark 

matter mass, then we can define the dark matter ratio as 

 

 
Ratio(dark matter) =   

𝑴(dark matter)

𝑴(observed)
 =   

𝑴(observed) −  𝑴(expected)

𝑴(observed)
  (19) 

 

The bottom left panel shows, in logarithmic form, the ξ-function as a function of distance, as 

derived by solving equation (18), which is the numerical form of equation (13).  In practice 

ξ(r) is found by solving equations (17) and (18).  The black diamonds correspond to the 

observed velocities shown in the top left panel.  All galaxies show an approximate linear 

relation.  The red line is a straight line that approximates to the observed data.  It turns out 

that it is only the slope of the red line that is important and not its position.  The fitting 

procedure assumes an average value of ξ=1000 across the first interval. 

 

The bottom right panel shows the rotation curve again.  The black diamonds are the same 

observed velocities as in the top left panel.  Similarly, the blue line is the same expected 

velocities as in the top left panel.  The red line is the fitted rotation curve derived by applying 

the red line from the bottom left panel for ξ(x)  to the blue line from the top right panel for the 

mass dMe(x).  The fitted velocity is calculated by applying the ξ(x)  and dMe(x)  to equation 

(13). 

 

Panels for all the SPARC galaxies used in this paper are shown separately in paper JoKe23 

(2019). 

 

  



 

 

DDO 161 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Top left:  rotation curve from SPARC data 
Top right:  cumulative mass, converges by 10 kpc 
Bottom left:  ξ-function 
Bottom right:  fitted rotation curve 
 
Fit parameters 

ϒ, M-to-L 0.30 

ξ, slope -1.33 

DM factor 3.8 

Fit quality good 

Comments: 
Galaxy is gas rich; gas dominates over stellar disk. 
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NGC 2403 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Top left:  rotation curve from SPARC data 
Top right:  cumulative mass from SPARC data 
Bottom left:  ξ-function 
Bottom right:  fitted rotation curve 
 
Comments 

ϒ, M-to-L 0.45 

ξ, slope -1.02 

DM 6.1 

quality good 

Red line is a pretty good fit all the way to 21 kpc.  There is an obvious deviation around 3 
kpc, and a smaller deviation around 10 kpc. 
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NGC 5033 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Top left:  rotation curve from SPARC data 
Top right:  cumulative mass 
Bottom left:  ξ-function 
Bottom right:  fitted rotation curve 
 
Fit parameters 

Bulge, M-to-L 0.22 

Disk, M-to-L 0.32 

ξ, slope -0.77 

DM factor 6.0 

Fit quality OK 

Comments: 
Galaxy has a central bulge. 
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UGC 128 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Top left:  rotation curve from SPARC data 
Top right:  cumulative mass 
Bottom left:  ξ-function 
Bottom right:  fitted rotation curve 
 
Fit parameters 

ϒ, M-to-L 1.85 

ξ, slope -0.96 

DM factor 3.7 

Fit quality good 
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4 A  power  law  relationship 

 

The surprising result that comes out of the above analysis of SPARC galaxies is that they all 

show a power law relationship between the ξ(r) function and the radial distance.  This is clear 

from the linear relationships that are apparent in all the bottom left panels.  This result is 

completely unexpected. 

 

The linear approximation revealed in the bottom left panels does not cover the whole rotation 

curve.  Often the galaxy centre and the outermost parts deviate from a straight line.  Also, 

some galaxies have structure in their rotation curves that also does not fit.  Nevertheless, a 

straight line is a good approximation to the logarithm of the ξ-function. 

 

In equation (13) we can split the integral into two parts to give: 

 

 
𝒗𝟐(𝒓) =   

𝑮 

𝒓
 

𝟏

𝝃(𝒓)
 {∫ 𝝃(𝒙) 𝒅𝑴𝒆(𝒙)

𝒓𝟏

𝒙=𝟎

 +   ∫ 𝝃(𝒙) 𝒅𝑴𝒆(𝒙)
𝒓

𝒙=𝒓𝟏

 } (20) 

 

 
           =   

𝑮 

𝒓
 

𝟏

𝝃(𝒓)
 {𝑷(𝒓𝟏)  +  ∫ 𝝃(𝒙) 𝒅𝑴𝒆(𝒙)

𝒓

𝒙=𝒓𝟏

 } (21) 

 

where 

 
𝑷(𝒓𝟏) =  ∫ 𝝃(𝒙) 𝒅𝑴𝒆(𝒙)

𝒓𝟏

𝒙=𝟎

 =   
𝒓𝟏 𝝃(𝒓𝟏) 𝒗𝟐(𝒓𝟏)

𝑮
 =   constant (22) 

 

This shows that we can normalise our fit to the rotation curve at an arbitrary point, 𝒓𝟏, and 

continue to work our way outwards.  This is useful for galaxies where we do not have good 

data for the inner regions.  We can simply start at a point some way out from the centre.  

This has no effect on our determination of the shape of the ξ(r) function beyond the 

normalisation point. 

 

The linear approximation apparent in the bottom left panels means we can express the ξ(r)  

function as 

 

 𝝃(𝒓)

𝝃𝟎
 =   {

𝒓𝟎

𝒓
}

𝜶

 (23) 

 

where  𝝃𝟎  is the value of the ξ-function at some normalisation distance, 𝒓𝟎.  The slope of the 

line in the bottom left panel is negative with a value of order -1.  This means that the α  

exponent in equation (23) is positive with a value of order +1. 

 

Equation (23) is clearly divergent at the origin, where the ξ  function becomes infinite.  

However, we are working numerically and do not have a data point at the origin.  For the 

analysis we set an average of ξ=1000 across the first interval, and ξ=500 at the first data 

point.  When constructing our predicted rotation curve, we assume the average value of  ξ  

across the first interval is double its value at the first data point.  In this way the divergence of  

ξ  at the origin is not a problem. 

 

Substituting equation (23) into equation (13) gives 



 

 

 

 
𝒗𝟐(𝒓) =   

𝑮

𝒓
 𝒓𝜶  ∫

𝟏

𝒙𝜶
  𝒅𝑴𝒆(𝒙)

𝒓

𝒙=𝟎

 =    
𝑮

𝒓
 ∫ {

𝒓

𝒙
}

𝜶

 𝒅𝑴𝒆(𝒙)
𝒓

𝒙=𝟎

 (24) 

 

We note that, because there are ξ(r)  terms in both the numerator and denominator of 

equation (13), equation (24) does not contain  𝝃𝟎 or  𝒓𝟎; they cancel out.  For the SPARC 

galaxies it is found that  α  lies in the range  +𝟎. 𝟓 ≤ 𝜶 ≤ +𝟏. 𝟖. 

 

It is interesting to compare equation (24) with equation (12), repeated below, for the 

expected velocity 

 

 
𝒖𝟐(𝒓)  =   

𝑮

𝒓
∫ 𝒅𝑴𝒆(𝒙)

𝒓

𝒙=𝟎

  (12) 

 

The similarities and differences are strikingly apparent. 

 

We do not expect equation (24) to fit the entire rotation curve, just that section where there 

appears to be a linear relation between log(ξ)  and log(r).  In particular we expect departures 

to occur at large distances because, at some point, the rotational velocity should return to 

being proportional to the inverse root of the distance, 𝒗 ∝ 𝟏 √𝒓⁄ .  Also, we expect departures 

at the origin as discussed in 4.5 above. 

 

We have arrived at equation (24) from the observational data of disk galaxies in the SPARC 

catalogue and the assumption that equation (13) holds.  We did not expect to come up with 

such a simple relation with only one adjustable parameter.  There is a different value of the  

α-parameter for every galaxy; α  is not a universal constant.  The rotation curves for different 

galaxies are different simply because the mass distributions, dMe(x), are different (and 

because the energy scale variations, as characterised by  α, are different). 

 

 

 

 

5 Fitting  procedure 

 

In this section we look at how we use equation (24) to fit the observed rotation curves of 

SPARC galaxies. 

 

When we come to fit the observed rotation curve using equation (24) with our power law for 

the ξ-function, equation (23), we have just two adjustable parameters: 

(a) ϒ, the mass-to-light ratio of the stellar disk.  Typically, ϒ  lies in the range 0.3 to 1.0.  

By varying ϒ we vary the distribution of the stellar mass across the galaxy and so 

vary the dM(x)  term in equation (24). 

(b) the exponent, α, of the power law relation for the ξ-function, as defined by equation 

(23).  Typically, α  lies in the range +0.5 to +1.8. 

 

It is a straightforward matter to use a brute force approach and carry out a grid search for the 

best fit. 

 



 

 

We start by choosing a value for the mass-to-light ration, ϒ, in the range 0.20 to 2.00.  

Equation (16) then gives us the expected rotational velocity using the values in the SPARC 

catalogue. 

 

Next, we by derive the mass distribution, 𝒅𝑴𝒆(𝒙), by inverting equation (12); essentially 

using equation (17) for the expected rotational velocity as given in step 5.4 above. 

 

We now choose a value for the exponent, α, in the range +0.20 to +2.10, and calculate our 

prediction for the observed velocity using equation (24). 

 

We define the fit as the sum of the squares of the differences between our predicted velocity 

and the observed velocity in the SPARC catalogue. 

 

The best fit is simply the numerically smallest value of the fit across our grid of values. 

 

We do not blindly accept this but plot out the rotation curve of the SPARC values and our 

predicted values.  We then inspect the plots to check that our predicted curve does indeed fit 

the observations. In most cases the fit is quite acceptable, and we can end the process 

there. 

 

However, occasionally we have a troublesome galaxy, and the visual inspection shows that 

something is not right.  In these cases, we can delete some of the SPARC data points and 

attempt to fit a reduced part of the rotation curve.  It is invariably points in the outer part of 

the galaxy where we have to delete points.  But this is exactly where we expect our adoption 

of equation (24) to break down. 

 

For most galaxies the best fit is clear and unambiguous.  There is usually a unique choice of 

ϒ and α  that gives the best result. 

 

A few galaxies have a central bulge with its own mass-to-light ratio.  These are fitted by 

treating this mass-to-light ratio as an additional parameter and extending the grid search to 

cover it as well. 

 

We should stress that in using equation (24) to fit the observed rotation curves we are using 

the actual mass distribution for the galaxy as inferred from observations.  There is no 

approximation or assumed functional form; we simply plug in the actual masses as given by 

the SPARC data. 

 

As an example we can consider galaxy NGC 2403, shown earlier in one of the panels.  The 

grid search results in the mass-to-light ratio, ϒ=0.45, and the exponent,  α=+1.02 (i.e. 

slope=-1.02).  With these two values we can construct our predicted rotation curve.  We start 

at the innermost data point, add in the galaxy's actual mass increment, and integrate our way 

outwards.  The fitted rotation curve, the red line in the bottom right panel, works all the way 

from the innermost data point at 0.2kpc out to 21kpc.  There are bumps and kinks in the 

observed rotation curve that are not reproduced in the fitted curve.  Nevertheless, the overall 

fit, while not perfect, is astonishing. 

 

  



 

 

 

6 Hybrid  test 

 

Stacy McGaugh (2018) has pointed out that, given a rotation curve and a mass distribution, it 

is always possible to find a dark matter halo that fits the data.  For example, a good dark 

matter fit can be found using the rotation curve of NGC 2403 and the mass distribution of 

UGC 128. 

 

The panels on the next page show what happens when we try this same test with our fitting 

procedure.  The data for NGC 2403 and UGC 128 are mapped onto a 2kpc grid and only 

extend to 20kpc (the limit of NGC 2403).  The hybrid panel can be compared to the individual 

panels for the two galaxies displayed earlier. 

 

The top left panel shows the observed rotation curve of NGC 2403 (black diamonds) and 

expected rotation curve for the mass distribution of UGC 128 (blue line). 

 

The top right panel shows the cumulative mass distributions matching the velocity 

distributions of the top left panel. 

 

The bottom left panel shows the ξ-function.  A modest linear fit can be found for part of the 

data.  However, it does not look like any of the plots for actual galaxies. 

 

The bottom right panel shows the best fit we can obtain (red line).  The mass-to-light ratio 

has to be set at the unphysically high value of ϒ=6.0.  Even with this the fit is bad and shows 

large systematic differences from the actual rotation curve. 

 

No satisfactory fit can be found.  Overall, we should be pleased with this result.  It shows that 

our procedures cannot be fooled by a hybrid galaxy; not in the same way that dark matter 

can be fooled. 

 

  



 

 

Hybrid1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Top left:  rotation curve: black diamonds NGC 2403; blue line UGC 128. 
Top right:  cumulative mass: black diamonds NGC 2403; blue line UGC 128 
Bottom left:  ξ-function 
Bottom right:  fitted rotation curve 
 
Fit parameters 

ϒ, M-to-L 6.00 

ξ, slope -0.60 

DM factor 0.2 

Fit quality bad 

Hybrid test showing what happens when we use the rotation curve of NGC 2403 and the 
mass distribution of UGC 128.  No satisfactory fit can be found. 
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7 Correlations 

 

We can look at the results of applying the above analysis to the SPARC galaxies and see if 

there are correlations between the  α  exponent and any other parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Plot of the slope of the ξ-function against galaxy mass.  The α  exponent is 

the negative of this slope.  Blue points are good fits; red points poor fits. 

 

 

Figure 1 shows the plot of the slope of the ξ-function (that describes the energy scale 

variation) against galaxy mass, for 64 galaxies in the SPARC catalogue.  This slope is 

obtained from the bottom left panels of the galaxy displays.  The  α  exponent, in equation 

(24), is the negative of this slope.  The blue points are galaxies where there is a good fit to 

the observed rotation curve; the red points are poor fits.  There is a clear correlation between 

galaxy mass and the  α  exponent, as indicated by the straight line fit.  The correlation 

coefficient (for the blue points) has a value of 0.75, indicating a reasonably good correlation. 
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We are now in the position where we can generate the observed rotation curve from 

observations of the mass distribution alone.  Figure 1 gives us an estimate for the value of  

the α  exponent from the total mass of the galaxy.  Equation (24) then gives the observed 

rotation curve from the mass distribution.  There is no need to add in any dark matter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Plot of dark matter ratio against galaxy mass.  Blue points are good fits; red 

points poor fits. 

 

 

Figure 2 shows the plot of dark matter ratio, as given by equation (24), against the mass, for 

64 galaxies in the SPARC catalogue.  The blue points are galaxies where there is a good fit 

to the observed rotation curve; the red points are poor fits.  There is a weak correlation 

between dark matter ratio and the galaxy mass, as indicated by the straight line fit.  The 

correlation coefficient (for the blue points) has a value of 0.26, indicating a weak correlation. 

 

  

 

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

8 9 10 11 12

D
a

rk
 M

a
tt

e
r 

R
a

ti
o

log(mass)



 

 

 

In terms of dark matter: the weak correlation in Figure 2 suggests that massive galaxies have 

little dark matter and low mass galaxies have a lot of dark matter.  However, our overall 

position is that dark matter does not exist. 

 

The average value of the dark matter ratio in Figure 2 is 3.8.  This is some way away from 

the usually quoted value of 5 for the ratio of dark matter to normal matter in galaxies.  The 

value would be even lower if we left out the few high value galaxies that somewhat skew the 

ratio. 

 

Figures 1 & 2 are based on 64 galaxies from the 175 in the SPARC catalogue.  No deliberate 

selection criteria have been used; essentially, we worked with all the NGC galaxies.  We are 

continuing to plough our way through the entire catalogue, but do not expect any changes to 

Figures 1 & 2 to arise. 

 

 

 

 

8 Limiting  cases 

 

We noted earlier that the linear behaviour of the logarithm of the ξ-function in the bottom left 

panels was unexpected.  In this section we look at a couple of limiting scenarios that go 

some way to explaining this. 

 

First, we consider the somewhat artificial case of a central mass, 𝑴𝟎, and a flat rotation 

curve with constant velocity, vc.  Equation (5) reduces to 

 

 
𝒗𝒄

𝟐  =   
𝑮 

𝒓
 

𝟏

𝝃(𝒓)
  𝝃𝟎 𝑴𝟎  (25) 

 

This can be written as 

 

 
𝝃(𝒓) =   {

𝑮 𝝃𝟎 𝑴𝟎

𝒗𝒄
𝟐 }  

𝟏 

𝒓
=   {𝝃𝟎  𝒓𝒐} 

𝟏

𝒓
   (26) 

or 

 

 𝝃(𝒓)

𝝃𝟎
=   {

𝒓𝟎

𝒓
}   (27) 

 

This is equation (23) with the  α-parameter having the value  α =+1.0. 

 

So, we should, perhaps, have anticipated the power law relationship between the ξ-function, 

ξ(r), and distance, r .  We also note that the observed range of the α-parameter from +0.5 to 

+1.8 spans this limiting value of +1.0. 

 

The other limiting case is the behaviour at large distances.  At some distance, R, the galaxy 

ends, and the mass of the galaxy converges to some final value.  Also, in equation (13), the 

increments in mass, dMe(x), are weighted with the ξ-function, which we now know decreases 



 

 

with distance.  So, the inner parts of the galaxy are weighted more heavily than the outer 

regions.  Together these mean 

 

 
∫ 𝝃(𝒙) 𝒅𝑴𝒆(𝒙) =   𝑴𝑻  =   constant

𝑹

𝒙=𝟎

  (28) 

 

at some distance R. 

 

Also, we do not expect the ξ-function to continue decreasing for ever, but to reach some 

terminal value, ξT, at large distances.  For some SPARC galaxies the observed log(ξ) vs 

log(r)  plots do show signs of levelling off at large distances, indicating the ξ-function is 

tending towards a terminal value.  In these circumstances, equation (13) becomes 

 

 
𝒗𝟐(𝒓) =  {

𝑮 𝑴𝑻

𝝃𝑻
} 

𝟏 

𝒓
  (29) 

 

where the bracketed term on the right-hand side is constant.  We are now back with the 

rotation curve declining with the inverse root of the distance.  So, at large distances, we have 

the normal fall off for Newtonian gravity; this is exactly what we want to see. 

 

So, we expect the rotation curve to be covered by equation (24) out to some large distance 

where it transitions to equation (29).  Where this transition occurs depends on the observed 

data; we cannot predict this point (at the present time). 

 

The effective terminal mass,  MT, in equation (28) is much greater than the galaxy's actual 

mass.  This means at large distances the galaxy behaves gravitationally as if it had a much 

greater mass; typically, at least 5 times greater.  This effect applies to other scenarios where 

gravity is involved and explains why dark matter is not needed in those scenarios.  These 

scenarios are covered in other papers in this series. 

 

 

 

 

9 Theoretical  consideration 

 

We started with the theoretical conjecture that the energy scale can vary from location to 

location.  This gave us equation (13).  Analysis of the SPARC observational data then led 

directly to equation (24). 

 

Currently we have no theoretical understanding as to why equation (24) should hold, even as 

an approximation: 

 

 
𝒗𝟐(𝒓) =   

𝑮

𝒓
 𝒓𝜶  ∫

𝟏

𝒙𝜶
  𝒅𝑴𝒆(𝒙)

𝒓

𝒙=𝟎

  (24) 

 

 

Equation (24) can be integrated by parts to give 

 



 

 

 
𝒗𝟐(𝒓)  =   

𝑮 𝑴𝒆(𝒓)

𝒓
  +   

𝟏

𝒓
 𝒓𝜶 ∫ {

𝑮 𝑴𝒆(𝒙)

𝒙
} 

𝜶

𝒙𝜶
  𝒅𝒙

𝒓

𝒙=𝟎

  (30) 

 

 

For our exponential disk with effective mass, M(x),  the gravitational potential, φ(x), at x  is 

given by: 

 

 
𝝋(𝒙)  =   

𝑮 𝑴𝒆(𝒙)

𝒙
  (31) 

 

 

This means we can write equation (24) in terms of the gravitational potential: 

 

 
𝒗𝟐(𝒓)  =   𝝋(𝒓)   +  

𝜶

𝒓
 ∫ {

𝒓

𝒙
}

𝜶

 𝝋(𝒙)  𝒅𝒙
𝒓

𝒙=𝟎

  (32) 

 

 

We have no further insights into equations (24) or (32): but other researchers might. 

 

 

 

 

10 Acceleration 

 

If we divide equations (12) and (24) by the radial distance, r , we end up with the radial 

acceleration 

 

 
𝒈𝒖(𝒓)  =  − 

𝒖𝟐(𝒓)

𝒓
 =  − 

𝑮

𝒓𝟐
∫ 𝒅𝑴𝒆(𝒙)

𝒓

𝒙=𝟎

  (33) 

 

 
 𝒈𝒗(𝒓)  =  − 

𝒗𝟐(𝒓)

𝒓
  =  − 

𝑮

𝒓𝟐
 ∫ {

𝒓

𝒙
}

𝜶

 𝒅𝑴𝒆(𝒙)
𝒓

𝒙=𝟎

  (34) 

 

McGaugh et al (2016) have found a universal relation between  𝒈𝒖(𝒓)  and  𝒈𝒗(𝒓)  for disk 

galaxies; the so-called radial acceleration relation.  Researchers, more able than us, may be 

able to derive this mathematically from equations (33) & (34).  We would expect a new 

relation between McGaugh's curve and our  α  exponent. 

 

The modified gravity hypothesis (MOND) also works with acceleration and suggests that 

Newton's law of gravity takes a different form at the very low accelerations encountered in 

disk galaxies.  Again, other researchers may be able to arrive at the MOND equation from 

equations (33) & (34). 

 

We leave these two ideas to researchers more able than ourselves. 

 

  



 

 

 

11 Cosmological  connection 

 

Despite what we have said earlier about not understanding equations (23) & (24), we notice 

a similarity with the equations of cosmic dynamics as set out in Ryden (2017). 

 

The fluid equation (Ryden, equation 4.44) is 

 

 
�̇� +  𝟑 

�̇�

𝒂
(𝜺 + 𝑷) =   𝟎 

̇
  (35) 

 

where ε  is the energy density;  a  the scale factor;  P  the pressure; dots represent 

differentiation with respect to time. 

 

The equation of state (Ryden, equation 4.55) is 

 

 𝑷 =   𝒘 𝜺 ̇   (36) 

 

where  w  is a dimensionless number. 

 

These lead to (Ryden, equation 5.9) 

 

 𝜺

𝜺𝟎
  =   (

𝒂

𝒂𝟎
)

−𝟑(𝟏+𝒘)̇
  (37) 

 

where, by convention,  𝒂𝟎 = 𝟏. 

 

This can be compared directly to our equation (23) 

 

 𝝃(𝒓)

𝝃𝟎
 =   {

𝒓

𝒓𝟎
}

−𝜶

 (23) 

 

 

Equations (37) and (23) have an identical form. 

The left-hand sides of both equations relate to energy. 

The right-hand sides of both equations relate to distance. 

 

This connection is somewhat speculative, and we leave further investigations to others. 

 

 

 

 

12 Summary 

 

The conjecture that the energy scale can vary from location to location leads directly to 

equation (13) for the rotational velocity of a disk galaxy: 

 

 
𝒗𝟐(𝒓) =   

𝑮 

𝒓
 

𝟏

𝝃(𝒓)
 ∫ 𝝃(𝒙) 𝒅𝑴𝒆(𝒙)

𝒓

𝒙=𝟎

  (13) 



 

 

 

where ξ(r) is the function that describes the energy scale variation. 

 

The application of equation (13) to the data in the SPARC catalogue leads to the  ξ(r)  

function being found to have the simple form of equation (23): 

 

 𝝃(𝒓)

𝝃𝟎
 =   {

𝒓𝟎

𝒓
}

𝜶

 (23) 

 

i.e.  ξ(r)  is simply the inverse distance raised to some (small) power. 

 

Equation (23) drops out of the data in the SPARC catalogue.  It is an observational result.  Its 

simple form was not anticipated at all. 

 

Equations (13) and (23) combine to give equation (24) for the observed rotation curve. 

 

 
𝒗𝟐(𝒓) =   

𝑮

𝒓
 ∫ {

𝒓

𝒙
}

𝜶

 𝒅𝑴(𝒙)
𝒓

𝒙=𝟎

  (24) 

 

Good fits to the observed rotation curves of SPARC galaxies are found using equation (24).  

The only adjustable parameter is the α  exponent, which is found to take values in the range 

+0.5 to +1.8. 

 

It is presumed that there is some deeper underlying significance to these equations; this 

significance is not fully understood at the present time. 

 

 

 

 

13 Discussion 

 

The conjecture that the energy scale can vary from location to location led us to our starting 

point of equation (13).  This conjecture also means that the gravitational constant, G, is an 

absolute constant and has the same value everywhere.  Also, the equivalence principle holds 

with the gravitational mass being equal to the inertial mass everywhere.  For example: 

identical A-type stars can exist equally well in the galaxy centre as in the outer spiral arms, 

despite the energy scale having different values.  These and other matters are discussed in 

other papers in this series. 

 

Whether you believe in dark matter, energy scale variations, or rolling fudge factors, the 

existence of equation (24) and its ability to reproduce the observed rotation curves of disk 

galaxies is both surprising and astonishing.  And all with only one adjustable parameter, 

which can itself be estimated knowing just the total mass of the galaxy. 

 

Equation (24) is an observational result.  It arises from applying equation (13) to the data in 

the SPARC catalogue.  It is supported by the fact that, using it, good fits can be found to the 

rotation curves of SPARC galaxies. 

 



 

 

The rotation curves can be reproduced using equation (24) and the observed distribution of 

baryonic mass in the galaxies.  There is no need to add in any additional mass in the form of 

dark matter. 

 

This paper demonstrates that there is no requirement for dark matter to exist in disk galaxies. 

 

It should be possible to apply the analysis presented in this paper to certain clusters of 

galaxies.  The observed mass distribution may be available from observations of the galaxy 

members and X-ray emissions from the hot gas.  The expected mass distribution may be 

available from the dynamics of galaxy members and gravitational lensing. 

 

Other papers in this series show how variations in the energy scale can explain all other 

scenarios where dark matter is invoked, including: cosmic microwave background; baryon 

acoustic oscillations; structure formation; galaxy collisions; galaxy clusters; gravitational 

lensing. 
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