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Summary

This survey treats the Hilbert Book Model Project. The projectarmis a weHounded, purely
mathematical model of physical reality. The maijrelies on the conviction that physicaktigy owns
its own kind of mathematics and that this mathematics guides and restricts the extension of the
foundation to more complicated levels of the structure and the behavior of physical reality. This
results in a model that more and more resembles piwgsical reality that humans can observe.
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1 The initiator of the project

The Hilbert Book Model Project is an ongoing project. Hans van Léstteninitiator of this project.

The initiator was born in the Netherlands in 1941. He will not live forever. This project will contain his
scientificinheritance.

The project is introduced in\ikiversity project [1]. In the opinion of thenitiator, a Wikiversity
project is a perfect wagf introducing new science. It especially serves the needs of independent or
retired scientific authors.

The initiator maintains &esearchGate project that considers the Hilbert Book Model Project.
TheResearchGate site supports a flexible wagf discussing scientific subjed® [3].

The initiator has generated some documents that contain highlights as excerpts of the project,
and he stored these papers on his personal e-print
archive http://vixra.org/author/|_a_j van_leunen [4].

The private websitéttp://www.e-physics.eu contains most documents both in pdf as well as in
docx format5]. None of these documents claims copyright. Everybody is free to use the
content of these papers.

1.1 Trustworthiness
Introducing new science always introduces controversial and unorthodox text. The Hilbert Book
Model Project is an ongoing enterprise. Its content is dynamic and is revised regularly.

The content of this project is ngeerreviewed It is the task of thew@hor to ensure the correctness
of what he writes. In the vision of the author, the reader is responsible for checking the validity of
what he/she reads. The peer review process cannot cope with the dynamics of revisions and
extensions that becomes posshtia publishing in freely accessiblgmint archives. In comparison

to openly accessible publication ¢ime internet, the peer review process is a rather slow process. In
addition, it inhibits the usage of revision services, such as offeredxoy.org and byarxiv.org/

Reviewers are always biased, and they are never omniscient. The peer review process is expensive
and often poses barriers tive renewalof sciene.

One way to check the validity of the text is to bring parts of the text to open scientific discussion sites
such aRkesearchGate. [2]

The initiator challenges everybody to disprove the statements made in this report. He
promises a fine bottle of XO cognac to anyone that finds a significant flaw in the presented
theories.

This challenge stands already for several yef8k Up to so faynobody claimed the bottle.

1.2 The author
Hansis born in Helmond in 1941 and visitdwe Eindhoven HTS in chemistry from 195960.

After his military service in960-1963, Hans started @he TechnicalHighshoolEndhoven (THE)
which is now callethe Technical Universitiginchoven(TUE) for a study in applied physics.

Hans finished this study in 1970 and then joined Philips Elcoma EOD in the development of image
intensifier tubes. Later this became a department of Philips Medical Systems division.

In 1987 Hans switched to an inteirsoftware house. In 1995 Hans joined the Semiconductor division
of Philips. In this period Hans designed a system for modular software generation.


https://en.wikiversity.org/wiki/Hilbert_Book_Model_Project
https://www.researchgate.net/project/The-Hilbert-Book-Model-Project
https://www.researchgate.net/
http://vixra.org/author/j_a_j_van_leunen
http://www.e-physics.eu/
http://vixra.org/author/j_a_j_van_leunen
https://arxiv.org/
https://www.researchgate.net/project/The-Hilbert-Book-Model-Project
http://www.e-physics.eu/#_Challenge

In 2001 Hans retired.

From 1983 until 2006 Hans owned a software company "Technische en Wetenschappelijke
Programmatuur" (TWP).

A private website treats my current activities].
| store my papers at a freely accessible e-print archive [4].

To investigate the foundations and the lower levels of physezllty, Hans started in 2009 a
personal research project that in 2011 got its current nadffiee Hilbert Book Modd?roject”

The Hilbert Book Model is a purely mathematical unorthodox and controversial model of the
foundations and the lower levels of the structure of physical reality.

1.3 Early encounters
| am born with a deep curiosity about my living environment. When | became aware of this, | was
astonished why this environment appeared to be so complicated, and at the same time, it behaved in
such a coherent way. In my childhood, | had no clue. Lataeamique experiences offered me
some indications. After my retirement, | started in 2009 a personal research project to discover and
F2NNdzZE 0SS a2YS 2F GKS OfdzsSad ¢KS dal AfoSNI . 221 a

My interest in the stucture and phenomena of physical reality started in the third year of my physics

study when the configuration of quantum mechanics confronted me for the first time with its special
approach. The fact that its methodology differed fundamentally from the tlay physicists did

classical mechanics astonished me. So, | asked my very wise lecturer on what origin this difference is
based. His answer was that the superposition principle caused this difference. | was not very happy

with this answer because the seiposition principle was indeed part of the methodology of

quantum mechanics, but in those days, | did not comprehend how that could present the main cause

of the difference between the two methodologies. | decided to dive into literature, and after some
SSFNOK> L SyO2dzyiSNBR GKS 0221€tS0 2Fmoed8neS NI aA(idS
t KEarlé ompcoOd ¢KA& 0221tSG O2ydFAYySR I OKIF LJG SN
contain a more appropriate answer. Later, this appeared a fagtook conclusion. In 1936 Garrett

Birkhoff and John von Neumann published a paper that described their discovery of what they called

G lj dzi y ( dzy7] Quan@rh IOgie és since then in mathematical terminology known as an

orthomodular lattice[8]. The reléional structure of this lattice is to a large extent quite like the
NBflFGA2Y It aGNHzO0GdzZNBE 2F Of I aaAl0rt t23A00 ¢KIFG Aa
f23A00¢ ¢KAA YIYS gl a |y dzyf dzO1 & OK2rhonsoduiaS O dza S
lattice as a system of logical propositions. In the same paper, the duo indicated that the set of closed
subspaces of a separable Hilbert space has exactly the relational structure of an orthomodular

lattice. John von Neumann long doubted be®wmeHilbert spaces and projective geometries. In the

end, he selected Hilbert spaces as the best platform for developing quantum physical theories. That
appears to bene of the main reasonshy quantum physicists prefer Hilbert spaces as a realm in

which they do their modeling of quantum physical systems. Another habit of quantum physicists also
intrigued me. My lecturer thought me that all observable quantum physical quantities are

eigenvalues of Hermitian operators. Hermitian operators feature real emjaes. When | looked

around, | saw a world that had a structure that configures from a tulieeensional spatial domain

and a onedimensional and thusscalar time domain. In the quantum physics of that time, no

operator represents the time domain, and nperator was used to deliver the spatial domain in a

compact fashion. After some trials, | discovered a-dianensional number system that could

provide an appropriate normal operator with an eigenspace that represented the fuH four
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dimensional represeition of my living environment. At that moment, | had not yet heard from
quaternions, but an assistant professor quickly told me about the discovery of Rowan Hamilton that
happened more than a century earlier. Quaternions appear to be the number systeimio€ for
offering the structure of physical reality its powerful capabilities.

The introductory paper of Birkhoff and von Neumann already mentioned quaternions. Much later
Maria Pia Solér offered a hard prove that Hilbert spaces can only cope with meofta
associativalivision ring. Quaternions form the most extensive associative division ring. To my
astonishment, | quickly discovered that physicists preferred a spacetime structure that features a
Minkowski signature instead of the Euclidean signatof the quaternions. The devised Hilbert Book
Model shows that in physical realithe Euclidean structureas well as the spacetime structure,

appear in parallel. Observers only see the spacetime structure. Physics is a science that focusses on
observale information. My university, the TUE, targeted applied physics, and there was not much
time nor support for diving deep into the fundamentals of quantum physics. After my study, | started
a career irthe highttechindustry where | joined the development image intensifier devices. There
followed my confrontation with optics and with the actual behavior of elementary particles. See:
http://www.ephysics.eu/# What_image_intensifiers reveal.

In the second part of mgareer, | devoted my time taestablisha better way of generating software. |

saw howthe industrywas very successful in the modular construction of hardwahe. ®ftware

was still developed as a monolithic system. My experiences in thisiteéaéported inthe chapter
6StoryofaWarAggia G { 2 T 6 NBndthechapfer8 8 A VEAXY I (GKS {2FG 6 NX
t N2 Q Sttadghtme the power of modular design and modular constructiéh

Only after my retirement, | got enough time to dive deep into the foundations of physicalrdalit
2009 after the recovery afeveredisease, | started my personal research project that in 2011 got its
OdzZNNByYy G y I YS & ¢ K SFol the frest 5fNE lifethe2aithor tak@sRn® freddom to
upgrade the related papers at a steady rate.
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2 Intention

Theoretical physics still contains unresolved subjects. These deficiencies of the theory are caused by
the way that physics was developed and by the attitude of the physicists that designed the current
theory. Scientists take great care to secure the wsthiness of their work, which ends in the
publication of the results. They take measures to prevent that their publications get intermingled
with badly prepared publications or even worse, with descriptions of fantasies. Faetisdn they
invented the scientific method7]. In appliedphysicsthe scientific methodoundson observations.
Applied physics flourishes because the descriptions of observations help to explore these findings
especially when formulas extend the usability of the observations beyond direct observation.
theoreticalphysicsthis is not always possible because not all aspects of physical reality are
observable. The only way of resolving this blockade is to fstart a proper foundation that can be
extended via trustworthy methods that rely on deductidrhis approach can only be successful if the
deduction process is guided and restricted such that the extensions of the foundation still describe
physical realityThus, ifamathematicaldeduction is applied, then mathematics must guide and
restrict this process such thatmathematicdl consistentextension of the model is again a valid
model of physical reality. After a series of developm&sps this approach must lead to a structure
and behavior of the model that more and more conforms to the reality that we can observe.

This guidance and reasgttion are not seHevident. On the other hand, we knowatwhen we
investigate deepeltthe structure becomes simplemnd easier comprehensihl&o finally, we come

to afundamentalstructure that can be considered as a suitable foundation. The waytbankre
complicated levels of the structure cannot be selected freely. Mathematics must pose restrictions
onto the extension of théundamentalstructure. This happens to be true for a foundation that was
discovered about eighty years ago by two schol@hey called their discovenguantum logid8]. The
scholar duo selected the name of this relational structure because its relational structure resembled
closely the relational structure of therahdy known classical logi@arrett Birkhoff was an expert in
relationalstructures. These are sets that precisely define what relations are tolefagtsieen the
elements of the setMathematicians call these relational structures latticeisd they classified
quantum logic as aarthomodular lattice[9]. John von Neumann was a broadly oriented scientist
that together with others was searching for a platform thds suitable for thenodelingof

quantum mechanical systems. He long doubted betweenrvealeling platformsOne was a
projective geometryandthe other was &dilbert spacq10] [11] [12].Finally he selected Hilbert
spaces. In their introductory papghe duo showed that quantum logic emerges into a separable
Hilbert space. The set of closed subspansgile a separable Hilbert space has exactly the relational
structure of an orthomodular latticelhe union of these subspaces equals the Hilbert space.
separable Hilbert space applies an underlyiagtor spacg13], andbetween every pair ofectors it
defines arinner product[14]. This inner product can only apply humbers that are taken from an
associative division rind5] [16]. In a divisiorring, every nonzero member owns a unique inverse.
Only three suitable division rings exist. These are the real numbers, the complex nyanukise
quaternions. Depending on their dimension these number systems exist in several versions that
differ in the way that Cartesian and polar coordinate systems sequence their me[iG¢f$8].

In the Hilbert space, operators exist that can map the Hilbpace onto itself. In this way, the
operatorcan map some vectors along themselves. The inner product of a normalized vector with
suchamap produces an eigenvalug€histurnsthe vectorinto an eigenvector. Together the
eigenvalues of an operator forrtsieigenspacerhis story indicates that mathematics guides and
restricts the extension of the selected foundation into more complicated levels of the structure. It
shows that the scholar duo started a promising development project.
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However, this initial dvelopment was not pursued much furthéxiomatic models of physical
reality are not popular. Most physicists mistrust this approdiobably these physicists consider it
naive to suspect that an axiomatic foundation can be discovered thahkkeray hata seed evolves
in a certain type of planwill evolve into the model of the physical reality that we can observe.

Most guantumphysicistadecided to take another route that much more followed the line of the
physical version of the scientific metho#dis could be suspected this route geempered by the fact
that not every facet of physical reality can be verified by suitable experiments.

Mainstream giantum physics took theoute [20] of guantum field theory21], which diversified into
guantum electrodynamicf22] andquantum chromodynamici3]. It bases on theyrinciple of least
action[24], the Lagrangianequation[25] and thepath integral[26] However, none of these tlgies

apply a proper foundation.

In contrast, he Hilbert Book Model Project intends to provide a purely ands®ikistent
mathematicaimodel of physical realitfd] [20]. It uses the orthomodular lattice as its axiomatic
foundation and applies somgeneral characteristics of reality as guiding lines. An important
ingredient is the modular design of most of the discrete objects that exist in the univensther
difference is that the Hilbert Book Model relies on the control of coherence and bibglistpchastic
processes that own a characteristic function instead of the weak and strong forces and the force
carriers that QFT, QED, and QCD afgdy[22] [23].

Crucial to the Hilbert Book Model is that reality applies quaternionic Hilbert spac#sietsised

read-only archives of the dynamic geometric data of the discrete objectsakiatin the model. The

model stores these data before they can be accessed by observers. This fact makes it possible to

interpret the model as the creator of the unirgz. The classification of modules as observers
AYGUNRBRdAzOS&a (62 RAFTFSNBY(I @OASsaT GKS ONBIG2NRa GA
L2aaAroftsS Ay GKS ONBFrG2NDa GASgd LG OFyyz2dG 0SS LISN
with the scanning time window.
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3 The Hilbert BooBaseViodel

The Hilbert Book Model Project deviates considerably frormthénstreamapproaches. It tries to
stayinside apurely mathematical model that can be deduced from the selected foundatianst it
designs a base model that is configured from a huge sgtiafernionic separable Hilbert spaces that
all share the samanderlyingvector space. One of these separable Hilbert spaces takes a special role
and acts as a background platform. It laasnfinite dimension andit owns a unigue nofseparable
Hilbert space that embeds its separable companidogether these companion Hilbert spaces form
the background platform of the base modél.reference operator manages the private parameter
space of each separable Hilbert spatke elements of the version of the mbber system that the
Hilbert space uses for specifying its inner products constituite garameter spacé.heseprivate
parameter spaces float with their geometric center over pgrvate parameter space of the
backgroundplatform. Via the applied coordate systems,he parameter spaces determine the
symmetry of the corresponding Hilbert spaéen elementary module residesi@ach floating

separable Hilbert spac@he eigenspace ofdedicated footprint operator archives the complete life
story of this eémentary module. After sequencing the real parts of these eigenvalues, the archive
tells the life story of the poinlike object as an ongoing hopping path that recurrently regenerates a
coherent hop landing location swarm. The location density distriloutiat describes the swarm
equals the square of the modulus of what physicists would call the wavefunction of the elementary
module.Mainstream quantum physics calls the elementary modules elemeptantycles. They

behave as elementary modules, but manestm physicgloesnot exploit that interpretation.In

contrast, the Hilbert Book Model Project exploits the modular design of the model.

In fact, the sequencing defines a subspace of the underlying vector space that scans as a function of
progression over the whole model. This scanning window divides the model into a historic part, a
window that represents the current static status quo, anfliture part. In thisvay, the dynamic

model resembleshe pagingof a bookin which each page tells a univeragde story of what
currentlyhappens in thig€ontinuum This explains the name of the Hilbert Book Modelgether

with the requirement that 8 applied separable Hilbert spaces share the same vector space the fact
that a window scans the Hilbert Book Base Model as a function of a progression parameter results in
the fact that these quaternionic separable Hilbert spaces share the same real nbuaxed

separable Hilbert space. After sequencing the eigenvalues, the eigenspace of the reference operator
of this Hilbert space acts as a model wide proper time clock.

In contrast to the Hilbert Book Model, most other physical theories apply only & sitiglert space
that applies complex numbers for defining its inner product, or they applyck spac§7], which is
a tensor product of complex number based Hilbert spacésnfor product of quaternionic Hilbert
spaced28] results in a reahumber basedilbert spaceln the Hilbert BooBaseModel, the
guaternionic separable Hilbert spaces share the same real number based Hilbert space.

The coherence of thhop landing locatioswarmthat configures the footprint of an elementary
moduleis ensured by the fact that the mechanism that generates the hop landing locations is a
stochastic process that owns a characteristic function. This cterstic function is the Fourier
transform of the location density distribution of the hop landing location swarm. The mechanism
reflects the effect of the ongoing embedding of the separable Hilbert space of the elementary
module into the background neseparable Hilbert space. A continuum eigenspace of a dedicated
operator registers the embedding of the hop landings of all elementary modules into this continuum.
The continuum corresponds to the dynamic field that physicists call the univiensefield ats as

the living space of all discrete objects that exist in the universe.
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3.1 Open mestions
The suggested Hilbert Book Base Model raises some questions. The fact that the set of rational
numbers is countable is used to suggest that a proper time clocts exid that this clock ticks with a
fixed and model wide minimal period. The Hilbert Book Model does not offexalanation or a
suggestion for this minimal period. The known value of the frequency of the photon that is generated
at the annihilation of a elementary particle offers some indication. For the electron that means a
frequency of about 18 Hertz. However, this elementary particle category exists in three known
generations: electron, muqgrand tau.

Further, it is suggested that the private shastic process generates a new hop landing location at
each clock tick. It is possible that the stochastic process acts slower than the proper time clock and its
rate differs for each generation.

Also, the mass of different type categories of elementangiples differs. Currently, the Hilbert Book
Model has no detailed explanation for that difference.
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4 Modelingdynamic fields and discrete sets

The eigenspace @f dedicated footprinbperator ina quaternionic separable Hilbert spacan

represent the dynamic geometric datathie point-like oljectthat resides on this Hilbert spac&he
eigenspace of operators in a quaternionic regparable Hilbert space caim addition represent the
description of a dynamic continuum. We already met the eigenspace of the reference operator,
which representshe private parameter space of the Hilbert space. In the separable Hilbert space
this eigenspace is countable and contains only the rational values of the version of the quaternionic
number system that theeparable Hilbert space can apply as eigenvalrethe nonseparable

Hilbert space, the eigenspace of the reference operator also contains all the limits of the congruent
series ofrationalvalues. Consequently, this eigenspace is no longer countable. In each of the applied
Hilbert spacesit is possilte to use the reference operator to define a categoryweiy defined

operators by taking for each eigenvector of the reference operator a new eigenvalue that equals the
target value of a selected quaternionic function for the parameter value that edoals

corresponding eigenvalue of the reference operator. In the quaternionic separable Hilbert space the
new eigenspace represents the sampled field that is described by the selected quaternionic function.
In the quaternionic norseparable Hilbert space theew eigenspace represents the full continuum

that is described by the selected quaternionic functi@ontinuumeigenspacesanrepresent the
mathematical equivalent of a dynamic physical fidlde private parameter space of a quaternionic
Hilbert spaceepresents a flat fieldThe dynamics dadfield can be described by quaternionic

differential equations.

Quaternionic second order partial differential equations describe the interaction between-fiaint
actuators and a dynamic field. Physical fieldedifrom mathematical fields by the fact that the
value of the physical field is represented in physical unitdasikcfields obey the same quaternionic
differential and integral equations. The basic fields differ in their start and boundary conditions

4.1 Quaternionic differential calculus
The first order partial differential equations divide the change of a field in five different parts that
each represent a new field. We will represent the field change operator by a quaternionic nabla
operator. Thioperator behaves as a quaternionic multiplier.

A quaternion can store a timgtamp in its real part and three-dimensionalkpatial location in its
imaginary part. The quaternionic naldaacts as a quaternionic multiplying operat@uaternionic
multiplication obeys the equation

c=¢ 4 ab (a %(er *9) +rarb=<ﬁ,5>3- .ab #&b ar 4.1.1)

The ° sign indicates the freedom of choice of the handedness of the product rulegistswhen
selecting a version of the quaternionic number system. The first order partial differential follows
from

S—,—,—,— U=, : 4.1.2)
The spatial nabtB is weltknown as the del operator and is treated in detailfikipedia [30] [31]

au

1= oy B R 2 - M S22 (R

O
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The differentialD ) describes the change of fieJd . The five separate terms in the firstder

partial differential have a separate physical meaning. All basic fields feature this decomposition. The
terms may represent new fields.

f=Py {0y (4.1.4)
f=Dy + ° DRE B (4.1.5)
Df is the gradient off .
<{§, f> is the divergence off .
D 3f is the curl of f .

The conjugate of the quaternionic nabla operator defines another type of field change.

p'=p - (4.1.6)

z= Df%% ”—@)rf*)# o= {5*>+ p T+l 4.17)

4.2 Field excitations
Field excitations are solutions of second order partial differential equations.

One of the second order partial differential equations results from combining thditateorder
partial differential equations’ = Dyandz = D .

z=Dj =D ®p 208, =)p, +B( Py
(o P (. B)e
Integration over the time domain results in the Poisson equation

r=(® py (4.2.2)

4.2.1)

Under isotropic conditions, avery specials dzi A 2y 2F (GKA & S| dzl-;&:ﬁ; DY Aad UK
a-q

the affected field. This solution is the spatial Diné(a) pulse response of the field under strict
isotropic conditions.

(4.2.3)
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(E),Q‘qé a,E”)—#BlT 5;@ 4 48 q) (4.2.4)

Under these conditions, the dynamic spherical pulse response of the field is a solutiGpedial
form ofthe equation(4.2.1)

(Dr B {,F)));) apl@ q)-(g o) (4.2.5)
Here g( ) is a step function and/(q) is a Dirac pulse respon§gs] [34].
After the instant £ ', this solution is described by

tfoat o
o]

(4.2.6)

The normalized vecton can be interpreted as the spin of the solutidrhe spherical pulse response

acts either as an expanding or as atcacting spherical shock front. Over time this pulse response
AYyGiSaNIGSa Ayia2 GKS DNBSyQa FdzyOlAzyd ¢KA& YSIya
DNB Sy Qa 7T dzy O iSuBsgquehtitiiedrontisiréadstihis SdluR&over the fielchel

O2y (NI OlAy3d aK201 FNRyld O2ffSOGa (GKS @2ThdzyS 27
* sign in equatior{4.2.5) selects between injection and subtraction.

Apart from the spherical pulse response equat{ér2.5) supports a onalimensional pulse response
that acts as a ondimensional shock front. This solution is described by

y:f(‘q o &1 '-)‘ﬁ) (4.2.7)

Here, the normalized vectaf can be interpreted as the polarization of the solution. Shock fronts
only occur in one anthree dimensions. A pulse response can also occur in two dimenbiotis

that case, the pulse response is a complicated vibration that looks like the result of a throw of a
stone in the middle of a pond.

2

Equationg4.2.1) and (4.2.2) show that the operatorsu—2 and <E3, ;E; are valid second order partial

ue
differential operators. These operators combine in the quaternionic equivalent oi/éhe equation
[35].

J =%5‘—22 {P >D§/ (4.28)

This equation also offers orsimensional and thee-dimensional shock fronts as its solutions.

y = f(‘q- d OE([ -r)) (4.2.9)
a- a
y =f(‘€| -a" & ¢t ')f) (4.2.10)

18


https://en.wikipedia.org/wiki/Wave_equation

These pulse responses do not contain the normed vetoApartfrom pulse responseshe wave
eguation offers waves as its solutiof#. [35].

By splitting the field intahe time-dependent partT (¢ ) and a location dependent part\(q) , the
homogeneous version of the wave equation can be transformed intéitflenholtz equatiorf36].

bY /e _
e -< ) p =1% ) (4.2.11)
y (@, §=A0QT( ) (4212
1T _ 1) .
T A( ) }DA W (4.2.13)
<E),i)>A P A (4.2.14)

Thetime-dependentpart T(¢#) depends on initial condition®r it indicates the switch of the
oscillation modeThe switch of the oscillation mode means that temporarily the oscilldtion

stopped and instead an object is emitted or absorbed that compensates the difference in potential

energy.Thelocation-dependentpart of the field A(G) describes the possible oscillation modes of

the field and depends on boundargrditions. The oscillations have a binding effethey keep the
moving objects within a bounded regi¢87].

For three-dimensional isotropic spherical conditions, the solutions have the form

A(rg. )=8 &{(ani (k) 8. ( )} w219

I=0m =1I-

Here j, and Y, are the spherical Bessel functions, and Y™ are the spherical harmonics [38] [39].
These solutions play a role in the spectra of atomic modules.

Planar and spherical waves are the simpler wave solutidghe @fuation(4.2.11)

y(a f):exp{ﬁ(ﬁ(ﬁ Q) -wt )} (4.2.16)
y (a, f):exp{ﬁ(R'(?- ff) s +)} (4.2.17)
- o

A more general solution is a superpasitiof these basic types.

The paper treats quaternionic differential equations more extensively in chagter 1
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5 Photons

Photons are objects that still offer significant confusion among physicists. The mainstream
interpretation is still that photons arelectromagnetic waveptO]. This interpretation conflicts with
the knownbehavior of photons. Photons that are emitted by a nearby star can be detected by a
human eye. Since the space between the star and the earth does not cavaaeguideswaves
cannotdo this trick. Electromagnetic fields require the nearby presence of electric charges. Both
conditions forbid that photons are implemented by electromagnetic waves.

5.1 Photon structure
Photons are on@limensional objects that are strings of equidistant energy packages, such that the
string obeys the EinsteiRlanck relation

E=m (5.1.1)

The energy packageseimplemented by onelimensional shock fronts that possess a polarization
vector.

5.2 Onedimensional pulse responses
Onedimensional pulse responses that act as-glimensional shock fronts and possess a
polarization vector are solutions tie equation(4.2.5) and are described biyhe equation(4.2.7).

y =f(‘q o ¢ ')‘ﬁ) (5.1.2)

Duringtravel, the front f (G) keeps its shape and its amplitude. So also, during-fangetrips, the

shock front does nabseits integrity. The onalimensional pulse response represents an energy
package that travels with speed c through its carrier field. The energy of the package has a standard
value.

In the animationof this left handed
circular polarized photon, the black
arrows represent the moving shock
fronts [41]. The red line connects the
vectors that indicate the amplitudes
of the separée shock fronts. Here thg
picture of aguidedwave is borrowed
to show the similarity wittsuchEM
waves.However,

photons are not EM waves!

5.3 Photon integrity
Except for its speed, the photon emitter determines the properties of the photon. Tregerties
are its frequency, its energgndits polarization. The energy packages preserve their own integrity.
They traveht a constant speed and follow a worldline. Photon emisgiossessea fixed duration. It
IS not an instant process. Duriegnisson, the emitter must not move and can only rotate around the
direction of travel. Failing these requirements will compromise the integrity of the photon and make
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it impossible for aistant, tiny absorber to capture the full photon. In thease the enegy packages
will spray and fly to multiple locations. Consequently, they willigetdark energy objects.

The absorption of a photon by an atom requires an incredible aiming precision of the emiteat, In

this emission can only be comprehended whigis interpreted as the time reversal of the
corresponding emission process. If the absorbing atom cannot cope with the full energy of the
photon, then it might absorb only part of the energy packages of the photon. The rest will stay on its
route to the nextabsorber. Absorbing individual energy packages will resaltincreasen the

kinetic energy of the absorber. Absorbing the full photon or a paittwill result in an increasm

the potential energy of the absorbedsually this results in a lgher oscillation mode of oner more

of the components of the absorber.

5.4 Light
Light is a dynamic spatial distribution of photons. Often the location density distribution of photons
owns a Fourier transformn that caselight may show wavbehavior Fhotons are onedimensional
particlesthat featureprivate frequency and energysingle photons do not show wave behavior.
Photons and light waves will feature different frequencies.

5.5 Optics
Optics is the science of imaging distributions of pltichat can be characterized by a location
density distribution and a corresponding Fourier transform of that location density distribuicen
thoughphotons have a fixed nerero spatial length, optics will treat these particles as pbka
objects. Another name for the location density distribution is point spread function (PSF). Another
name for the Fourier transform of the PSF is dipéical transfer functiofOTF]42]. Apatt from a
location density distribution, the swarm of the particles is also characterized by an angular
distribution and by an energy distribution. time caseof photons the energy distribution iglsoa
chromatic distribution.

A linearly operating imagindevice can be characterized by its point spread function or alternatively

by its OTFThis point spread function is an image of a pdike& object.The FF represents the blur

that is introduced by the imaging device. For a homogeneous distributioarttie properties, the

h¢eC 2F  OKFAY 2F fAYSIENI@& 2LISNFYGAYy3I AYF3IAy3T RSC
devices.

The imaging properties of an imaging device may vary as a function of the location and the
orientation in the imagingurface

Without the presence of the traveling particles, the imaging devices keep their OTF. Small apertures
and patterns of apertures feature an OTF. That OTF handles single particles similarly as this feature
handles distributions of particles.
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5.6 Modular design and construction
The discrete objects that exist the universeshow a modular design. In modular configurations,
elementary particles behave as elementary modules. Together they constitute all modules that exist
in the universe. Some modules constitute modular systems.

Also,photons show a modular structure.

5.7 Elementary radules

5.7.1 Symmetryrelated charge
Elementary modules are very complicated objects that reside on a private platform, which possesses
some of the characteristic properties of the elementary module. These properties establish the type
of elementarymodule.

Elementary modules reside on a faig Hilbert space, which uses a selected version of the
quaternionic number system to specify its inner products. Consequently, the operators in this Hilbert
space apply members of this version to specify its eigenvalues. The eigenspace of this operator
reflects the properties of this version. Thus, the eigenspace of the reference operator reflects the
symmetry of the Hilbert space. Its geometric center floats over the background parameter space. The
symmetry is defined relative to the symmetry of the backmd platform. Mathematics can

compare these differencaghenthe axes of the Cartesian coordinate systems in these parameter
spaces are parallel to each oth@he model applies th€tokes heoremand theGauss theorento
determine the effect of the symmetry differencdd3] [44]. See section@.3. The only freedoms that

are left are the locations of the geometric centers of fharameter spaces and the way that the
elements of the versions of the number systems are sequenced along the axes. These restrictions
reduce the list of symmetry differences to a short list. It means that the elementary modules exist in
a small number oflifferent symmetryrelated categories. The symmetry difference is represented by

a symmetryrelated charge that resides at the geometric center of the private parameter space. The
opposed restrictions that determine the allowable versions of the quat@inioumber system

restrict the list of values dfymmetryrelatedchargeso -3, 2, 10, 1+ 2,+. The isotropic

symmetry differences are represented by, 0, 8

The symmetnyrelated charges correspond symmetryrelatedfields. At the location of theharge
a source or a sink generates a corresponding potential.

The anisotropic differences spread over the three coordinate axes and are indicated by
correspondig RGB color charges. If we extend this distinguishing to the real axis of the parameter
spaces, then the antiolor charges add to the three RGB color charges. Further, the product rule of
the quaternions introducediversityin the handiness of the versiof the number system. The polar
coordinate system also allows the polar angle and the azimuth to run up or down. The range of the
polar angle ia radians. The range of the azimuth isfadians. This freedom of choice adds to the
freedom that is left bythe Cartesian coordinate system.

The first conclusion is that elementary modules exist in a short list of categories that differ in their
symmetryrelated properties, in their angular range propertiaadin their arithmetic properties.
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5.8 Modularconfiguration
Theelementary modules can combine into composed moduisme modules combine into
modular systems. However, not all modules can compose with arbitrary other modules. For example,
symmetryrelated charges that have the same sign wifiel each other, while symmetnglated
charges witha different sign will attract. Composition applies internal oscillation of the components
of the module.This is explained in the next secti@nly elementary modules with the proper
angular symmetrgan take part in the modular composition process. These elementary modules are
called fermions. The other elementary modules are called bodnsisle a composed module,
fermions cannot share the same oscillation maahel cannot share the same angular peoiies,
such as spinThe binding via internal oscillation must be supported by the attraction that is caused
by deformation of the embedding fiel@hesymmetryrelatedcharges also influence the efficiency
of the bond.The anisotropic elementary moduleannot themselves deform the embedding field.
They must first combine into colorless hadrons before their combination can deform the embedding
field. Physicists call this phenomenon color confinement.

The hop landings of isotropic elementary modutasiproduce spherical pulse responses that
deform the embedding field. Similarithe hop landings of hadrons can produce such spherical pulse
responses.

5.8.1 Open question
The Hilbert Book Model does not explain why fermions feature an exclusion principle, wilesbo
do not possess such property. This phenomenon determines the structure of atoms and is known as
the Pauli exclusion principle.
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5.9 Stochastic control
For each elementary module, a private stochastic process generates the hop landing locations in the
ongoing hopping path that recurrently regenerates the coherent hop landing location swarm that
constitutes the footprint of the elementary module. Only feotropic elementarynodules the hop
landings can deform the embedding field. The footprints of anisotropic elementary modules must
first combine into colorless hadrons before these footprints can deform the embeddingTiakd.
phenomenon is known as loy confinement.

The type of stochastic procedbat generates the footprint of elementamoduesowns a

characteristic function that equals the Fourier transform of the location density distribution of the
coherent hop landing location swarrt.is posdile to interpret the stochastic process asatial

Poisson point procesn 4 3 [45]. Theintensity function of this proceds implemented by a spatial

point spread function that equals the location density distribution of the generated hop landing
location swarmThe eigenspace of the footprint operator archives the target values of a quaternionic
function, whose spatial partiescribes the point spread functioA.cyclic random distribution

describes the real parts of these target valuafter sequencing these real parthe eigenspace
describes the ongoing hopping path of the elementary module.

The location density distribign can be interpreted as a detection probability density distributién.
it has a Fourier transform, then a kindwicertainty principleexists between the standard deviation
of the detection probability density distribution and the standard deviation of the modulus of this
Fourier transforni{46]. F the standard deviatiorof the modulus of this Fouridransformincreases,
then thestandard deviatiorof the detection probability densjtdistribution decrease@nd vice
versa)

Thesecondtype of stochastic process controls composed modules. This process also owns a
characteristic function. This characteristic function is a dynamic superposition of the characteristic
functions of the components of the module. The superposition coefficiactas displacement
generators. In thisvay, these coefficients control the internal positions of the components. Inside
atoms these components perform their own oscillation mode. All modules attach an extra
displacement generator to their characteristimction. This displacement generator determines the
location of the full module.

This analgis tells that the characteristic functions, which reside in Fourier space define the
constitution of the module. In Fourier space spatial locality has no mgaltimeans that the
components of a module can be far aparhe phenomenon is known astanglemen{47]. Only the
attracting influences of potentials can keep components closely together

5.9.1 Superposition
The way that superposition is implemented in the Hilbert Book Model explains the most important
difference between classical physics and quantum physics. Superposition of field excitations occurs in
Fourier space and is controlled by theachcteristic functions of stochastic processes. Color
confinement inhibits the generation and subsequent superposition of the field excitation for quarks.
They must first combine into colorless hadrons before they can generate the required pulse
responsesAlso, this combination is controlled by oscillations that are managed by the characteristic
functions of the corresponding stochastic processes.

Since the definition of a composed module is defined in Fourier spiaedocation of the components

of the modules in configuration space is not important for this definition. This definition does not
depend on this location. Entanglement is the phenomenon that allows components of a module to
locate far apart. This fact becomes observable when these compopesggss exclusive properties.
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5.9.2 Open questions
The Hilbert Book Model offers no detailed explanatdmvhy the ongoing embedding of elementary
modules is represented by a private stochastic process that owns a characteristic function. Similarly,
the Hilbert Book Model offers no explanation for the fact that binding of modules inside composed
modules is cotmolled by a stochastic process that owns a characteristic function that is a dynamic
superposition of the characteristic functions of its components. In effect, this means that the HBM
does not explain whthe superposition of modules is defined in Fourspace.
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5.10 Benefits of modular design and construction
The nodular design hides relations that are only relevant inside the module from the outside of the
module. In thisvay, the modulardesign reduces the relational complexity of the construction of
composed modules. This is further improved by the possibility to gather relations in standard
interfaces. This standardization promotes the reusability of modules. The fact that composed
modules can be generated from lower level modules hasramrmousy beneicial effect on the
reduction of the relational complexity of the modular composition process.

By applying radular designthe creator has prepared the universe for modular construction, which is
a very efficient way of generating new objects. However, atadconfiguration of objects involves

the availability of modules that can be joined to become higher level modules or modular systems.
This means that enough resources must be available at the proper place and the proper time. The
generation of a moduleut of composing modules makes sense when the new module has a
profitable functionality. An advantage can be that the new module or modular system has a better
chance of survival in a competitive environment. In that case, stochastic modular design itan eas
win from monolithic desigrEvolution can evolve with a pure stochastic modular design. However, as
soon as intelligent species are generated as modular systems, then these individuals can take part in
the control of evolution by intelligent modular dign. Intelligent modular design and construction
occur much fastethan stochastic modular design and constructiblowever, intelligent modular

design and construction only occur where intelligent species exist. These locations are not
widespread in thainiverse.

5.10.1 Modular hierarchy
The modular hierarchy starts with elementary modules. Elementary modules exist in several types
that differ in their basic properties.

These basic properties are their symmeteyated charge, their spjrandtheir regeneration cycle.

5.10.2 Compound modules
Compound modules areomposedmodules for which the geometric centers of the platforms of the
components coincide. The charges of the platforms of the elementary modules establish the binding
of the correspondingplatforms. Physicists and chemists call these compound modules atoms or
atomic iong48].

In free compound modules, treymmetryrelated charges do not take part in the oscillations. The
targets of the private stochastic processes of the elementaogules oscillate. This means that the
hopping path of the elementamnodulefolds around the oscillation path and the hop landing
location swarm gets smeared along the oscillation path. The oscillation path is a solution of the
Helmholtz equatiorj36]. Each femion must use a different oscillation mode. A change of the
oscillation mode goes together with the emission or the absorption of a photon. The center of
emission coincides with the geometrical center of the compound module. During the emission or
absorpton, the oscillation mode and the hopping path halt, such that the emitted photon does not
lose its integrity. Since all photons share the same emission duration, that duration must coincide
with the regeneration cycle of the hop landing location swarm.ofjiison cannot be interpretego
easily In fact, it can only be comprehended as a tirmeersed emission acDtherwise the

absorption would require an incredible aiming precision for the photon.

The type of stochastic process that controls the bindihgomponents appears to be responsible for
the absorption and emission of photons and the change of oscillation modes. If photons arrive with
too low energy, then the energy is spent on ieeticenergy of the common platform. If photons

27



arrive with toohigh energy, then the energy is distributed over the available oscillation madds,
the rest is spent on thkineticenergy of the common platforpor it escapes into free spac&he
process must somehow archive the modes of the components. It can tqgppyrivate platform of
the components for that purpose. Most probably the current value of the dynamic superposition
coefficient is stored in the eigenspace of a special superposition operator.

5.10.2.1 Open questions
The Hilbert Book Model does not reveal theefidetails of the photon emission, and consequetitly
does not reveal the fine details of photon absorption.

5.10.3 Molecules
Molecules are conglomerates of compound modules that each keep their private geometrical center
[49]. However, electron oscillations are shared among the compound modules. Together with the
symmetryrelated chargesthis binds the compound modulésto the molecule

5.10.4 Consciousness and intelligence
In the Hilbert Book Model, all modules are considereddbas observers. That does not mean that
these modules readb the perceived information in a conscious or intelligent way. In the hierarchy
of modular systems, compared to intelligence, consciousness already enters at lower levels of
complexity[50] [51]. However, consciousness cannot be attributed to4igimg modular systems.
Primitive life forms have primitive degrees of consciousness.

Intelligent species show sakflection and can create strategies that guard thgjpe-community or
their socialcommunity. Conscious species can also develop such guarding measures, but that is
usually a result of trial and error instead of a developed strategy. The strategy is then inherited via
genes.

For intelligentspeciesthe modular design strategy of the creatcan be an inspiration.

T Modular design is superior to monolithic design.

1 Modular construction works economically with resources.

1 Itis advantageous to have access to a large number and a large diversity of suitable modules.

1 Create modulegype communities

1 Type communities survive far longer than the corresponding individual modules.

1 Members must guard their module type community.

I Type communities may inheidind cultivatethe culture of their members.

1 Modular systems must care about thygpe communities on which they depend.

1 Modular systems must care about their living environment.

1 5INBAYQa adl dSYSyld G kdrvivemiiskidgrepraged liptBesstateniegt RA A R dzl

that the module-type community survives that cares best for itembers, its resources and
its environment.

In modern human activityhardware is often designed and constructed in a modular way. In
contrast,the software is typically designed and constructed in a-nadular way. In
comparisonsoftware is far less rakst than hardware.
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6 Dark objectand progression zigzag

The effects of theshock fronts that are caused by pulses are so tiny that no measuring instrument
will ever be able to detect the presence of the single shock fronts. Thus, these field excitations can
rightfully be called dark objects or more in detail dark energy and wiatker [52] [53]. These

objects become noticeable in huge coherent ensembles that may contain ab8eidfents. The
one-dimensional shock fronts combine in photgoasdthe spherical shock fronts combine in the
footprints of elementary particles. Thegm exchange roles in pair production and pair annihilation
events. Fopbbserversthese events pose interpretation problems. However, the model can interpret
these events as time reversal that converts a patrticle into its antiparticle or vice versa. This
interpretation relies on the massnergy equivalence and on the fact that during the conversion each
one-dimensional shock front is exchanged against a spherical shock front. iménjsetation,
elementary particles can zigzag through the time domaliis Vision suggests that elementary
particles never die, but at the utmost change the direction of their life story and turn into its
antiparticle.The conversion does not happen instantaneously. It takes the full regeneration cycle of
the hop landing lodgon swarm of the elementary particle. Thiversewide proper time clock ticks
with a frequency of about Pdticks per secondand the regeneration then takes about*®@roper

time clock ticks

In huge numbers, spurious dark objects may still cause@alble influences. The halo of dark matter
around galaxies is known to produce gravitational lensing effects.

Even though the Hilbert Book Model does not consider the shock fronts as the lowest level of
modules, the shock fronts together constitute allsdirete objects that exist in the universe.

The Hilbert Book model considers elementary modules as the lowest level modulgarghe
complicated constructs that consist of a quaternionic separable Hilbert space, a selected version of
the quaternionic number system and a private stochastic process that generates their life story.
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7 Graviy

Mainstream physics considers the origintloé deformation ofour livingspace as an unsolved
problem[54]. It presents the Higgs mechanism as éxelanationof why some elementary patrticles
get their mas$55] [56]. The Hilbert Book Model relates mass to deformation of the field that
representsour universe. This deformation causée mutual attraction of massive objec{&7].

7.1 A deforming field excitation
A spherical pulse response is a solution of a homogeneous second order partial differential equation
that was triggered by an isotropic pulse. The corresponding field equation and itessgonding
solution are repeated here.

(DrD {,5})37 apla q)-(g o) 8.1.1)

Here thet sign represents time inversion.
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This means that locally the pulse pumps some volume into the field, or it subtracts volume out of the
field. The selection between injection and subtraction depends on the sign in the step functlom in
equaion (8.1.1). The dynamics of the spherical pulse response shows that the injected volume
quickly spreads over the field. fine caseof volume subtraction,he front first collects the volume
and finally subtracts it at the trigger location. Gravitation considers the case in which the pulse
response injects volume into the field.

Thus, locally and temporarily, the pulse deforms the fiatjthe injected volmme persistently
expands the field.

This paper postulates that the spherical pulse response is the only field excitation that temporarily
deforms the field, while the injected volume persistently expands the field.

The effect of the spherical pulse response is so tiny and so temporarily that no instrument can ever
measure the effect of a single spherical pulse response in isolation. However, when recurrently
regenerated in huge numbers in dense and coherent swalmptilse responses can cause a
significant and persistent deformation that instruments can detect. This is achieved by the stochastic
processes that generate the footprint elementary moduls.

The spherical pulse responses ateightforwardcandidatesor what physicists call dark matter
objects. A halo of these objects can cause gravitational lensing.
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7.2 Gravitation potential
The gavitation potential that arelementary moduleauses can be approached by the convolution of
G§KS DNBSyQa TFdzyOGA2y 2F GKS TA StioRlandingfocatiok S t 2 OF G A
swarm. This approximation isfluencedby the fact that the dformations,whichare due to the
individual pulse responses quickly fade away. Further, the density of the location distribution affects
the efficiency of the deformation.
¢ KS DNBSyQa Tdzy Ol A2y k8 pubBddhdsSraspdnde Basidd afisfovn. 2 F | L
We know how to compute thenass of a distribution of point massfs8]. At some distance of the
center of theswarm,the gravitationpotential can be approximated bHyp9]

g(r)°

Gm (8.2.1)
r

wheremis the mass of the object arrcequals the distance to theenter of massHere we omit the
physical unitsGisthe gravitational constantThe fact that a distribution of poiditke masses cause
the gravitation potential makes this simple approximation possible.

More exactly, the gravitation potential of the elementary module can be approximated by taking the
convolution of the location density distribution of the hop landing location swarm. If we do this for
example for a Gaussian location density distribution, then the convolution resyg]in

g(r)° Gm

ERF(1)
— (8.2.2)

Where ERF(r) is the wellknown errorfunction. Here the gravitation potential is a perfectly

smooth function that at some distance from the center equals the approximated gravitation
potential that was described abowe equation(8.2.1). The convolution only offers an approximation
because this computation does not account for the influeatthe density of the swarm and it does
not compensate for the fact that the deformation by the individual puls@oeses quickly fades
away. Thus, the exact result depends on the duration of the recurrence cycle of the swarm.

In the example we applya normalized location density distribution, bilie actuallocation density
distribution might have a highemmplitude.

This might explain whgomeelementarymoduletypes existin three generation$61] [62] [63].

ERF(r)/rand 1/r
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7.3 Regeneration
The generation of the hopping path is an ongoing process. The generated hop landing location
swarm contains a huge number of elements. Each elementary module type is controlled by a
corresponding type of stochastic proceBsr the stochastic process, only the Fourier transform of
the location density distribution of the swarm is important. Consequently, for a selected type of
elementary module, it does not matter at what instant of the regeneration of the hop landing
location swarm the location density distribution is determined. Thus, even when different types are
bonded into composedodules there is no need to synchronize the regeneration cycles of different
types. This freedom also means that the number of elementshiopalanding location swarm may
differ between elementary module types. This means that the strength of the deformation of the
embedding field can differ between elementary module typEse strength of deformation relates
to the mass of the elementary matkes according to formulgs.2.1).

The requirement for regeneration introduces a great mystery. All generated mass appears to dilute
away and must be recurrély regenerated.This fact conflictsvith the conservation laws of

mainstream physics. The deformation work done by the stochastic processes vanishes completely.
What results is the ongoing expansion of the field. Thus, these processes must keep getteeating
particle to which they belong. The stochastic process accurately regenerates the hop landing location
swarm, such that its rest mass stays the same.

Only the ongoing embedding of the content that is archived in the floating platform into the
embeddingdfield can explain the activity of the stochastic process. This supposes that at the instant of
creation, the creator already archived the dynamic geometric data of his creatures into the
eigenspaces of the footprint operators. These data consist of ardirale-stamp and a three

dimensional spatial location. The quaternionic eigenvalues act as storage bins.

After the instant of creation, the creator left his creation alofe set of floating separable Hilbert
spaces, together with thbackground Hilbert space, act as a ready repository After sequencing

the time-stamps, the stochastic processes read the storage bins and trigger the embedding of the
location into the embedding field in the predetermined sequence.

7.3.1 Open question
If the instant of archival proceeds the passage of the window that scans the Hilbert Book Base Model
as a function of progression, then the behavior of the model does not chamhgeindicates a
freedom of the model.

7.4 Inertia
The relation between inertia and mass is complicdt [65]. It assumes that a fieldexists that
tries to compensatgor the change of the field when its vector part suddenly changes with time.

Thisspecial field supports the hop landing location swarm that resides on the floating platform. It
reflects the activity of the stochastic proceasdit floats with the platformover the background
platform. It is characterized by a mass value and by the uniform velocity of the platform with respect
to the background platform. The real part conforms to the deformation that the stochastic process
causes. The imaginary part conf@1o thespeed of movement of the floating platfornthe main
characteristic of this field is that it tries to keep its overall change zero. Wetbaldeformation

field.
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The first order change of a field contains five terms. Mathematically, the statement that in first
approximation nothing in the fielgchangesindicates that locally, the first order partial differential

P.x will be equal to zero.
z=0Px=bx(- Px +B +8 0 (8.4.1)
The terms that are still eligible for change must together be equal to zero. These terms are.

b x + B G (8.4.2)

In the following text pIaysP? the role of the vector field and; plays the role of the scalar

gravitational potential of the consided object.We approximate this potential by using formula
(8.2.1).

€M : : L .
The new fieldx = lT,V iconsiders ainiformly moving mass as a normal situation. It is a
| \

combination of the scalar potentialrn and the uniform speed .
r

m._ |
If this object accelerates, then the new fiei?dr—,v (tries to counteract thechange of the fieldi by
| \

compensating this with an equivalent change of the real pﬂrbf the new field According tahe
r
equation(8.4.2), this equivalent change is the gradient of the real part of the field.
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This generated vector field acts on masses that appear in its realm.

Thus, iftwo masseBl andM, SEA &G Ay SFOK 20KSNNa ySAIKo2NK22RXI
situation will cause the gravitational force

F(r-r,) ma —mw(?' %) (8.4.4)
r

— 3
n-r)

The disturbance by the ongoing expansion of the field suffices to put the gravitational force into
action. The description also holds when the figltescribes a conglomerate of platforms aRd
represents the mass of the conglomerate.

In compound modules such as ions and atoms, the fiabdl a component oscillates with the
deformation rather than with the platform.

Inertia bases mainly on the definition of mass that applies to the region outside the sphere where

(KS INIGAGIGAZY LRGSYGAlt oSKI Bfaformuax &S DNBSyQa
r

applies. Further, it bases in the intention of modules to keep the gravitation potential inside the

33



mentioned sphere constant. At least that holds when this potential is averaged over the regeneration
period. In thatcase the overall changez of the deformation fieldkequals zero. Next, the definition

of the deformation field supposes that the swarm which causes the deformation moves as one unit.
Further, the fact is ugkthat the solutions of the homogeneous second order partial differential
eguation can superpose in new solutions of that same equation.

The popular sketch in which the deformation of our living space is presented by smooth dips is
obviously false. The stpthat is represented in this paper shows the deformations as local
extensions of the field, which represents the universe. In lsk#tchesthe deformations elongate

the information path, but none of the sketches explain why two masses attract each aihe

above explanatiofoundson the habit of the stochastic process to recurrently regenerate the same
time average of the gravitation potential, even when that averaged potential moves uniformly.
Without the described habit of the stochastic processesrttia would not exist.

Similar tricks can be used to explain the electrical force from the fact that the electrical field is
LINE RdzOSR o0& a2dz2NOSa |yR aiAyla GakKF-G OFy 6S R
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8 In the beginning

Before the stochastic processes started their action, the content of the universe was empty. It
was represented by a flat field that in its spatial part was equal to the parameter space. In the
beginning, a huge number of these stochastic processes started their triggering of the dynamic
field that represents the universe. From that moment on the universe started expanding. This did
not happen at a single point. Instead, it happened at a huge number of locations that were
distributed all over the spatial part of the parameter space of the quaternionic function that
describes the dynamic field.

Close to the begin of time, all distances were equal to the distances in the flat parameter space.
Soon, these islands were uplifted with volume that was emitted at nearby locations. This flooding
created growing distances between used locations. After some time, all parameter space
locations were reached by the generated shock waves. From that moment on the universe
started acting as an everywhere expanded continuum that contained deformations which in
advance were very small. Where these deformations grew, the distances grew faster than in the
environment. A uniform expansion appears the rule and local deformations form the exception.
Deformations make the information path longer and give the idea that time ticks slower in the
deformed and expanded regions. This corresponds with the gravitational red-shift of photons.

Composed modules only started to be generated after the presence of enough elementary
modules. The generation of photons that reflected the signatures of atoms only started after the
presence of these compound modules. However, the spurious one-dimensional shock fronts
could be generated from the beginning.

This picture differs considerably from the popular scene of the big bang that started at a single
location.
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9 Life of arelementary module

Anelementary modulés a complicated construct. First, the particle resides on a private quaternionic
separable Hilbert space that uses a selected version of the quaternionic number system to specify
the inner products of pairs of Hilbert vectors and the eigenvalues of egexalhe vectors belong to

an underlying vector space. &lementary module share the same underlying vector space. The
selected version of the number system determines the private parameter space, which is managed
by a dedicated reference operatdrhecoordinate systems that sequence the elements of the
parameter space determine the symmetry of the Hilbert space ancimentary modulenherits

this symmetry The private parameter space floats over a background parameter space that belongs
to a backgound platform. The background platform is a separable Hilbert space that also applies the
same underlying vector space. The differencthgnsymmetry between the private parameter space
and the background parameter space gives rise sgrametryrelated (electric) charge and a related
color charge. The electric charge raises a corresporgyimgnetryrelatedfield. The corresponding
source or drain locates at the geometric center of the private parameter space.

The eigenspace of a dedicated footprint operacontains the dynamic geometric data that after
sequencing of the timatamps form the completéfe-story of the elementary module A subspace of

the underlying vector space acts as a window that scans over the private Hilbert space as a function
of aprogression parameter that corresponds with the archived tsteemps. This subspace
synchronizes alementary module that exist in the model.

Elementaryparticlesare elementary modulegndtogether these elementary modules form all
modules and modulagystems that exist in the universe.

The complicated structure @lementary moduls indicates that these particles never die. This does
not exclude the possibility thatlementary module can zigzag over the progression parameter.
Observers will perceivine progression reflection instants as pair creation and pair annihilation
SoSyidad ¢KS TAIT A gAft 2yt &hus Snly2hw BotprintdfIneNS v (i
elementary module is recurrently recreated. Its platform persists.

Probably the igzag events correspond to an organized replacement of quaternions by two complex
numbersor its reversahs is described in the CayiByckson doubling77].

A private stochastic process will recurrently regenerate the footprint ofefleenentary modulen a

cyclic fashion. During@ycle,the hopping path of thelementary modulewill have formed a

coherent hop landing location swarm. A location density distribution describes this swarm. This
location density distribution equals the Faer transform of the characteristic function of the
stochastic process that generates the hop landing locations. The location density distribution also
equals the squared modulus of the wavefunction of the particle. This stochastic process mimics the
mechanism that the creator applied when he created #lementary module The stochastic process
also represents the embedding of the eigenspace of the footprint operator into the continuum
eigenspace of an operator that resides in the remparable companionf the background platform.

This continuum eigenspace represents the universe.

The differences between the symmetry of the private parameter space and the background
parameter space give rise iymmetryrelatedcharges that locate at the geometric centdrthe
private parameter space. These charges give risgtometryrelatedfields. Via the geometric
center of the platform, thessymmetryrelatedfields couple to the field that represents the
universe.
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The kinetic energy of the platform is obtainedrfrghe effects of onedimensional shock front$n
manycasesthese energy packages are combined in photons.
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10 Relational structures
Lattice theory is a branch of mathemat{€§].

10.1 Lattice
A lattice is a set of elements, b, ¢, ... that isclosed for the conections 4=z andc . These
connections obey:

1 The set ipartially ordered
0 This means thawith each pair of elementg, bbelongsto an elemenf, such
that aE CandbE c.
1 The set is aa=half lattice.
o This means that with each pair of elemergsban elementC exists, such that
c=a /b.
I The setis ac half lattice.
o This means that with each pair of elemergsban elementCexists, such that
c=a (b.
1 The setis #attice.
0 This means that the set is both.ae half lattice and ac half lattice.

The following relations hold in a lattice:

afb=b A& (11.1.1)

(asbb) A = (B & (111.2)

aAaCh) = (11.1.3)

aCb=b @ (11.1.4)

(aCh)Gc =a (b € (11.1.5)

aC(am) = (11.1.6)

The lattice has partial order inclusione :

aEbUasb = (111.7)

10.2 Lattice types
Acomplementary latticecontains two elementdland €, andwith each elemeng; it contains a
complementary elementa such tha [67]:

a/Ea =n (112.1)
as£n =n (11.2.2)
ase =a (11.2.3)
aCa =e (112.4)
ace=e (11.2.5)
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acn =a (11.2.6)

Anorthocomplemented latticecontains two elementdland € ,andwith each element; it contains
an elementa” such that[68]:

aCa =e (11.2.7)
a/Ea =n (11.2.8)
(a) =a (11.2.9)
aEbUB Ea (11.2.10)

€ is theunity element nis thenullelementof the lattice

Adistributive lattice supports the distributive law9]:

adbCo fa & (@ ¢ (11.2.11)
aC(b/&) fa § (& ¢ (11.2.12)

Amodular lattice supports{70]:
(a/b) Qa ) = (& (@ W (11213

Every distributive lattice isiodular.
An orthomodular lattice supports instead71]:

There exists an elemerdl such that

aEcU(aCh &£ = (O ¢¥E(C ¢ (112.14)
where d obeys:
(aCh) A =d (11.2.15)
a/Ed =n (11.2.16)
bAEd =n (11.2.17)
(aE g)and bEg UdE¢ (11.2.18)

In anatomic lattice holds[72]

${p 'y {x J{x pE xVi (112.19)

{a'y {x L'}{(a xi (al A Y 3ofx a Pk (11.2.20)

P is an atom
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10.3 Well known lattices
Booleanlogic, also called classical logigs the structure of an orthocomplemented distributive and

atomic lattice[73] [74].
Quantum logichas the structure of an orthocomplemented weakly modular and atomic Igfisk

It is also called aarthomodular lattice [71].
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11 Quaternions
Quaternions were discovered by Rowan Hamilton in 1843[76]. Later, in the twentieth century
quaternions fell in oblivion.

Hilbert spaces can only cope with number systems whose members form a divisiofiglying
Quaternionic number systems represent the most versatilesitiniring. Quaternionic number
systems exist in many versions that differ in the way that coordinate systems can sequence them.
Quaternions can store a combination of a scalar tstemp and a threelimensional spatial location.
Thus, they are ideally seitl as storage bins for dynamic geometric data.

In thispaper,we represent quaternior| by areal onedimensioral part ¢, and a threedimensional
imaginary partg . The summation is commutative and associative

The following quaternionic multiplication rule describes most of the arithmetic properties of the
quaternions.

c=g % ab (& 3fp H +ab{ akp- ab &b aF (12.1.1)

The ° sign indicateshe freedom of choice of the handedness of the product rule thdstswhen
selecting a version of the quaternionic number system.

A guaternionic conjugation exists

qg=(q 9 9§ ¢ (12.1.2)
(ab) =ba (12.1.3)
The norm|q| equals
|q|: q2 {q_q> (12.1.4)
gi=t =9 (12.1.5)
a o

a_ g
q=|dexpg (12.1.6)

C el

% is the spatial direction of].
il
A gquaternion and its inverse can rotate a part of a third quaternion. The imaginary part of the rotated

quaternion that is perpendicular to the imaginary part of the first quaternion is rotated over an angle
that is twice the anig of the argumeny between the real part and the imaginary part of the first
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quaternion. This makes it possible to shift the imaginary part of the third quaternion to a different
dimension. For that reason, mugt= 4 4.

Each quaternion C can be written as a product of two complex numbers a and b of which the
imaginary base vectors are perpendicular
c=(a 4ai)(h B]
. ( 4.)( ; ) L (121.7)
=ah {a b)i (& bk abk c i ¢ ¢

>

Wherek =T 3

a = laexp(ip) The transform u."m-l rotates the

imaginary part b of b around an axis
along the imaginary part a of « over
an angle 2¢that is twice the
argument 2 of « in the complex field
spanned by o and 1

1 means perpendicular
|| means parallel
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12 Quaternionic Hilbert spaces

Around the turn of the nineteenth century into the twentieth century David Hilbert and others

developed the type of vector space that later got Hilbert's name [12].

The Hilbert space is a specific vector space because it defines an inner product for every pair of

its member vectors [13].

That inner product can take values of a number system for which every non-zero member owns a

unique inverse [14]. This requirement brands the number system as a division ring [14].

Only three suitable division rings existeE

1 The real numbers
1 The complex numbers
1 The quaternions

Hilbert spaces cannot cope with bi-quaternions or octonions
12.1 Bra's and ket's

Paul Dirac introduced a handy formulation for the inner product that applies a bra and a ket [78].

The bra < f | is a covariant vector, and the ket | g) is a contravariant vector. The inner product

< f g> acts as a metric.

For bra vectors hold

(fl+(gl 29| (| (£ d

((f+gl) h & (o H}+(f=g #

For ket vectors hold

[f)+lg) $9) ) [F 9
(f+a) 10 ) (& B} [f =0 B

For the inner product holds
(flg)=(gl f)

For quaternionic numbers a and b hold

(aflg)=(gl af) {(glf) g =&flg

(flbg)=(f|g) ¢

((a+ Bflg) =4flg) +¢flg) (= a){blg

Thus
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alf) (13.1.9)
(af|= a(f] (13.1.10)
|ag)=|g) ¢ (13.1.11)

We made a choice. Another possibility would (laef | = é(f | and |ag) =a

9)

In mathematics a topological space is called separable if it contains a countable dense subset;
that is, there exists a sequence {| f, >} °  of elements of the space such that every

nonempty open subset of the space contains at least one element of the sequence [11] [79].

Its values on this countable dense subset determine every continuous function on the separable
space n [80].

The Hilbert space u is separable. That means that a countable row of elements {| f, )} exists
that spans the whole space.

if (.| f,) =d(m, n) [1 if n=m; otherwise 0], then {| fn>} is an orthonormal base of Hilbert space
m.

A ket base {| k>} of n is a minimal set of ket vectors |k> that span the full Hilbert space un.

f). . . .
Any ket vector | > in N can be written as a linear combination of elements of {| k)} .

| fy=alk) (k| f) (13.1.12)
k
A bra base {<b|} of ndis a minimal set of bra vectors <b| that span the full Hilbert space nd.

Any bra vector < f | in ndcan be written as a linear combination of elements of {<b|} .
(f|=a (f Ib)(b| (13.1.13)
b

Usually, a base selects vectors such that their norm equals 1. Such a base is called an
orthonormal base
12.2 Operators

Operators act on a subset of the elements of the Hilbert space.

f
An operator L is linear when for all vectors| > and |g> for which L is defined and for all

quaternionic numbers a and ©

Llaf)+i] &) 4| 1) adfe) off) |a9+) =0 g} @320
The operator B is colinear when for all vectors | f> for which B is defined and for all

quaternionic numbers & there exists a quaternionic number § such that
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aB|f)=B|f) g &8  Yfy

If |a) is an eigenvector of the operator A with quaternionic eigenvalue @ ,

Alg)=|ga

then |ba) is an eigenvectoof A with quaternionic eigenvalue b a.

Abd)=Agd btd at=4b* |
A* is the adjoint of the normal operator A
(flagy=( 1&g % gl Ay
AM= A

(A+B)" =& B’
(AB)'= B*A

If A= A" then A isa self-adjoint operator.
A linear operator L is normal if L exists, and LLA = Lt

For the normal operator N holds

(NfINg)=(NN'f| ¢ £ f| NN*g

Thus

N =

NNA= NN =N N <+T\; T\) | #f

N is the Hermitian part of N .

N is the anti-Hermitian part of N .

For two normal operators A and B holds
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(132.2)

(132.3)

(13.2.4)

(13.2.5)

(13.2.6)
(13.2.7)

(13.2.8)

(13.2.9)

(13.2.10)

(13.2.11)

(13.2.12)

(13.2.13)

(13.2.14)



AB=AB {AB AB AB A (13.2.15)

For a unitary transformationU holds

(Uf [Ug) =(f |g) (132.16)
The closure of separable Hilbert space n means that converging rows of vectorsofu AT T OAOCA
A OAAOI O ET us8
12.2.1 Operator construction
| f)(g| is a constructed operator.
[9)(f1=( t)(gl)" (132.17)

For theorthonormal base{| q >} consisting of eigenvectors of thieferenceoperator, holds

(% | Gn) =,y (132.18)

The reversdra-ket method enables the definition of new operators that are defined by quaternionic
functions.

(gF |h)=§{(g|qi>F(q)<QIh>} (132.19)

i=1

The symboF is used badh for the operator= and the quaternionic functiorf (q) . This enables
the shorthand

F1|q)F(q)(q] (132.20)
Itis evident that
F* |a)F (a)(ql (13221)
For reference operatdR holds
R=|q)q(q| (132.22)

If {|q >} consists of all rational values of the version of the quaternionic number system thatH

applies then the eigenspace of R represents the private parameter space of the separable
Hilbert spaceH. It is also the parameter space of the function F (q) that definesthe operatorF in
the formula(13.2.20).

12.3 Nonseparable Hilbert space

Every infinite dimensional separable Hilbert space H owns a unique non-separable companion

Hilbert space ‘H . This is achieved by the closure of the eigenspaces of the reference operator
and the defined operators. In this procedure, on many occasions, the notion of the dimension of
subspaces loses its sense.
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Gelfand triple and Rigged Hilbert space are other names for the general non-separable Hilbert
spaces [81].

In the non-separable Hilbert space, for operators with continuum eigenspaces, the reverse bra-
ket method turns from a summation into an integration.

(glF I A o) F(a)(al N}dva (133.1)

Here we omitted the enumerating subscripts thagre used in the countable base of the separable
Hilbert space.

The shorthand for theperatorF is now

F*|q)F(a)(d (133.2)

For eigenvectors |q>, the function F (q) defines as

F(a)=(alFo i {{afa)fF(a) di ¢ dv d (133.3)

The reference operatorRthat provides the continuum background parameter space as its
eigenspace follows from

(9IRM* 7 offl) ff of N} avar (133.4)

The corresponithg shorthand is

R1|g)q(q (13.3.5)

The reference operator is a special kind of defined operator. Via the quaternionic functions that
specify definedperators,it becomes clear that every infinite dimensional separable Hilbert space
owns a unige nonseparable companion Hilbert space that can be considered to embed its
separable companion.

The reverse bracket method combines Hilbert space operator technology with quaternionic function
theory and indirectly with quaternionic differential and iigigal technology.
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13 Quaternionic differential calculus
The aiaternionicanalysis is not so well accepted as complex function analy@is [2

13.1 Field equations

Maxwell equations apply the three-dimensional nabla operator in combination with a time
derivative that applies coordinate time. The Maxwell equations derive from results of experiments.
For that reason, those equations contain physical units.

In this treatment, the quaternionic partial differential equations apply the quaternionic nabla. The
equations do not derive from the results of experiments. Instead, the formulas apply the fact that
the quaternionic nabla behaves as a quaternionic multiplying operator. The corresponding
formulas do not contain physical units. This approach generates essential differences between
Maxwell field equations and quaternionic partial differential equations.

The quaternionic partial differential equations form a complete and self-consistent set. They use
the properties of the three-dimensional spatial nabla.

The corresponding formulas are taken from Bo Thidé's EMTF book., section Appendix F4 [31].

Another online resource is Vector calculus identities [32].

The quaternionic differential equations play in a fledn setting that is formed by a continuum
quaternionic parameter space and a quaternionic target space. The parameter space is the
eigenspace of the reference operator of a quaternionic-separable Hilbert space. The target space

is eigenspace of a dakd operator that resides in that same Hilbert space. The defined operator is
specified by a quaternionic function that completely defines the field. Each basic field owns a private
defining quaternionic function. All basic fields that are treated in ¢higpter are defined in this way.

Physical field theories tend to use a rBnclidean setting, which is known as spacetime setting. This
is because observers can only perceive in spacetime format. Thus, Maxwell equations use coordinate
time, where the quaternionic differential equationsauproper time. In bottsettings,the observed
event is presented in Euclidean format. The hyperbolic Lorentz transform converts the Euclidean
format to the perceived spacetime format. Chapter 8 treats the Lorentz transform. The Lorentz
transform introducegime dilation and length contractiorQuaternionic differential calculus

describes the interaction between discrete objects and the continuum at the location where

events occur. Converting the results of this calculus by the Lorentz transform will describe the
information that the observers perceive. Observers perceive in spacetime format. This format

features a Minkowski signature. The Lorentz transform converts from the Euclidean storage

format at the situation of the observed event to the perceived spacetime format. Apart from this
coordinatetransformation,the perceived scents influencedoy the fact that the retrieved

information travels through a field that can be deformed and acts as the living space for both the
observed event and the observer.i@&equently, the information path deforms with its carrier field
and this affects the transferred information. In tlulsapter,we only treat what happens at the
observed event. So, we ignore the Lorentz coordinate transfandwe are not affected byhe
deformationsof the information path.

The Hilbert Book Model archives all dynamic geometric data of all discrete creatures that exist in the
model in eigenspaces of separable Hilbert spaces whose private parameter spaces float over the
background parametespace, which is the private parameter space of the-separable Hilbert

space. For example, elementary particles reside on a private floating platform that is implemented by
a private separable Hilbert space.

Quantum physicists use Hilbert spaces for the modeling of their theory. However, most quantum
physicists apply complex-number based Hilbert spaces. Quaternionic quantum mechanics

48


https://en.wikipedia.org/wiki/Vector_calculus_identities

appears to represent a natural choice. Quaternionic Hilbert spaces store the dynamic geometric
data in the Euclidean format in quaternionic eigenvalues that consists of a real scalar valued
time-stamp and a spatial, three-dimensional location.

In the Hilbert Book Model, the instant of storage of the event data is irrelevant if it coincides with
or precedes the stored time stamp. Thus, the model can store all data at an instant, which
precedes all stored timestamp values. This impersonates the Hilbert Book Model as a creator of
the universe in which the observable events and the observers exist. On the other hand, it is
possible to place the instant of archival of the event at the instant of the event itself. It will then
coincide with the archived time-stamp. In both interpretations, after sequencing the time-stamps,
the repository tells the life story of the discrete objects that are archived in the model. This story
describes the ongoing embedding of the separable Hilbert spaces into the non-separable Hilbert
space. For each floating separable Hilbert space this embedding occurs step by step and is
controlled by a private stochastic process, which owns a characteristic function. The result is a
stochastic hopping path that walks through the private parameter space of the platform. A
coherent recurrently regenerated hop landing location swarm characterizes the corresponding
elementary object.

Elementary particles are elementary modules. Together they constitute all other modules that
occur in the model. Some modules constitute modular systems. A dedicated stochastic process
controls the binding of the components of the module. This process owns a characteristic function
that equals a dynamic superposition of the characteristic functions of the stochastic processes
that control the components. Thus, superposition occurs in Fourier space. The superposition
coefficients act as gauge factors that implement displacement generators, which control the
internal locations of the components. In other words, the superposition coefficients may install
internal oscillations of the components. These oscillations are described by differential equations.

13.2 Fields

In the Hilbert Book Model fields are eigenspaces of operators that reside in the non-separable
Hilbert space. Continuous or mostly continuous functions define these operators, and apart from
some discrepant regions, their eigenspaces are continuums. These regions might reduce to
single discrepant point-like artifacts. The parameter space of these functions is constituted by a
version of the quaternionic number system. Consequently, the real number valued coefficients of
these parameters are mutually independent, and the differential change can be expressed in
terms of a linear combination of partial differentials. Now the total differential change df of field

f equals

df:Edt +—tlex ilﬁdy —f+ydz (14.2.1)
Vg K YU Tz
| . o f fuf .
In this equation, the partial differentials —,——,——,—— are quaternions.
I K yhy

The quaternionic nabla B assumes the special condition that partial differentials direct along
the axes of the Cartesian coordinate system. Thus

4
b =3 éi =H T+—“T+ K (14.2.2)

o KW M X yH 2

The Hilbert Book Model assumes that the quaternionic fields are moderately changing, such that
only first and second order partial differential equations describe the model. These equations can
describe fields of which the continuity gets disrupted by point-like artifacts. Spherical pulse
responses, one-dimensional pulse responses, and Green's functions describe the reaction of the
field on such disruptions.
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13.3 Field equations

Generalized field equations hold for all basic fields. Generalized field equations fit best in a
quaternionic setting.

Quaternions consist of a real number valued scalar part and a three-dimensional spatial vector
that represents the imaginary part.

The multiplication rule of quaternions indicates that several independent parts constitute the
product.

c=g 4 ab (a7 b H +ab<{ ap-,ab #b & (143.1)
The © indicates that quaternions exist in right-handed and left-handed versions.

The formula can be used to check the completeness of a set of equations that follow from the
application of the product rule.

We define the quaternionic nabla as

paf MK H- 57 (14.3.2)
i @ oynzy
oy _H_H (143.3)
iz
p, 1K (14.3.4)
;

f=f+f= E)y%% ) @By*) ¥, FP7T) -yD T p D yi (1435

fo=0y (.0 (14.3.6)
f=Dy + ° BRE B (143.7)
Further,
jE%)yr is the gradient of/,
<E§,}7> is the divergence of

D ¥ is the curl ofy”

The changeby divides into five terms that eadiasa separate meaning. That is why these terms in
Maxwell equations get different names and symbols. Every basic field offers these terms!

E=-P -y (14.3.8)

B= by (14.3.9)

It is also possible to construct higher order equations. For example
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J=b8 -H (14.3.10)

The equation (14.3.6) has no equivalent in Maxwell's equations. Instead, its right part is used as a
gauge.

2
Two special second-order partial differential equations use the terms % and <E3, ;E?y

2

f= ‘?LE‘Z {P >E1;Iy (143.11)
,=$ “22 {°p >Eﬂy (14.3.12)

|
i W y
The equatior(14.3.11) is the quaternionic equivalent of the wave equati@?].

The equatior(14.3.12) can be divided into twdirst-order partial differential equations.
c=b;, =B =bb, )P, + N ) 5( o +<*,3) E (14.3.13)

This composes fron€ = E)/ and/ = by

u2

-
LA

The operatorF +< B »:does not yet have an accepted name.

The Poisson equation equals

r= < ko) }) % (14.3.14)

o 1 iy
A very special solution of this equation is BNS S Yy Q a ——F—=dxyf thaiakfeztgd field
q-q

p-1_ = (qu (143.15)
-9 |g- qf
<E3,”E)% R :*;@ 4 4& q) (14316
a- d 9 -q a-

(DEra GKS ljdd GSNYA2YAO SlidadhiSyd 2F RQ!

S

¢CKS &LJGAFET AYydS3aINIE 20SNI DNBSyQa FdzyOlAzy Aa

Y O

143102 FFSNE | ReylFYAO Sljdzi &I t B g sphecal shbdk BontDiNEhS y Q &

be written as
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y = —— (14.3.17)
d- d
A onedimensional type of shock front solution is
y= f(ﬁ -6'\ e ¢t ?) (143.18)
The equation(14.3.11) is famous for its wave type solutions
bRy £.0)p - (14.3.19)
Periodic harmonic actuators cause the appearance of waves,
Planar and spherical waves are the simpler wave solutions of this equation.
y (g, ¢ :exp{ﬁ(R, q-9) -wt )}
( ) ( q) (14.3.20)
exp{ﬁ(l?,((q- Q) wt +)}
y(d, 9= — (14.3.21)
-
The Helmholtz equation considers the quaternionic function that defines the field separable [36].
y(a.d)=A9 T(q) (14.3.22)
B, bA
(&, 9 B BT _ (143.23)
A T
(E), ?E} A =IEA (14.3.24)
b BT =KT (14.3.25)
For three-dimensional isotropic spherical conditions, the solutions have the form
o |
A(rg. )=8 &{(anii(kr)) B.X"( 9)y (143.26)
I=0m =1-

Here j| and Y, are the spherical Bessel functions, and Y|m are the spherical harmonics. These

solutions play a role in the spectra of atomic modules [38] [39].
A more general solution is a superposition of these biygies.

(143122 FFSNE | ReylYAO SljdAa@dlfSyd 2F GKS DNBSyQa ¥
be written as
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y = f(q_ a +i([ -r)) (14.3.27)
a- df

A onedimensional type of shock front solution is
y=f(a-a ¢r Y (14.3.28)

Equation(14.3.12) offers no waves as part of its solutions.

—

f
Duringtravel,the amplitude and the lateral directior‘ﬁfr‘ of the onedimensional shock frontare

fixed. The longitudinal direction is alng—

The shock fronts that are triggered by pelike actuators are the tiniest field excitations that exist.

The actuator must fulfill significant restricting requirements. For example, a perfectly isotropic
actuator must trigger the spherical shock front€eTdrctuator can be a quaternion that belongs to
another version of the quaternionic number system than the version, which the background platform
applies. The symmetry break must be isotropic. Electrons fulfill this requirement. Neutiomomxt

break the gmmetry but have other reasons why they cause a valid trigger. Quarks break symmetry,
but not in an isotropic way.
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14 Line, surface and volume integrals

14.1 Line integrals
The curl can be presented as a line intedfs]

Lo . A1 .
(B 3y.7) m?&f‘%do (15.1.1)

14.2 Surface integrals
With respect to a local part of a closed boundary that is oriented perpendicular to vector i the
partial differentials relate as
Py = <.”,p> D TPA N, TR g F (15.2.1)
This is exploited in theurfacevolume integral equations that are known as Stokes and Gauss
theorems[43] [44].

A Y fy =onyds (15.2.2)
A @sfidv =o(n )fs (15.2.3)
A FivV ©n reg (15.2.4)
A By BV =Ony d§ (15.2.5)

This result turns terms in the differential continuity equation into a set of corresponding integral
balance equations.

The method also applies to other partial differential equatidfs: example
B Be) E)p(, )P D (UBA@ )y (AR (1526
rv1 ® 6 o) av cg;z{* ("B RS ?{(a) PE (152.7)
One dimension less, a similar relation exists.
g((ﬁ *3,7))ds ?<‘a &) (152.8)

14.3 Using volume integrals to determine tigmmetryrelatedcharges

In its simplest form in which no discontinuities occur in the integration domain W the generalized
Stokes theorem runs as

Aw= H=o I (153.1)

nWwW W

We separate all point-like discontinuities from the domain Wby encapsulating them in an extra
boundary. Symmetry centers represent spherically ordered parameter spaces in

regions H: that float on a background parameter space R . The boundaries |.1HnX separate the
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regions from the domain H:. The regions H :are platforms for local discontinuities in basic
fields. These fields are continuous in domain W -H .

N
H=JH) (15.3.2)
=1

X
The symmetry centers ~ " are encapsulated in regions H : and the encapsulating boundaryUH:

is not part of the disconnected boundary, which encapsulates all continuous parts of the
quaternionic manifold W that exists in the quaternionic model.

N dw= = WﬁN_ (15.3.3)

W-H HWIE p pow k=L

In fact, it is sufficient that |JHrT surrounds the current location of the elementary module. We will

select a boundary, which has the shape of a small cube of which the sides run through a region
of the parameter spaces where the manifolds are continuous.

If we take everywhere on the boundary the unit normal to point outward, then this reverses the

direction of the normal on |J-H:WhiCh negates the integral. Thus, in this formula, the contributions

of boundaries {uH X} are subtracted from the contributions of the boundary H V. This means

n

that M V also surrounds the regions {ul—l:}

This fact renders the integration sensitive to the ordering of the participating domains.

Domain Wcorresponds to part of the background parameter space R . As mentioned before the
X

symmetry centers " represent encapsulated regions {pH:} that float on the background

X
parameter space R . The Cartesian axes of ~ " are parallel to the Cartesian axes of background
parameter space R . Only the orderings along these axes may differ.

X
Further, the geometric center of the symmetry center ~"is represented by a floating location on
parameter space R .

X
The symmetry center ~"is characterized by a private symmetry flavor. That symmetry flavor
relates to the Cartesian ordering of this parameter space. With the orientation of the coordinate
axes fixed, eight independent Cartesian orderings are possible.

The consequence of the differences in the symmetry flavor on the subtraction can best be

comprehended when the encapsulation IJH: is performed by a cubic space form that is aligned
along the Cartesian axes that act in the background parameter space. Now the six sides of the

cube contribute differently to the effects of the encapsulation when the ordering of H: differs

from the Cartesian ordering of the reference parameter space R . Each discrepant axis ordering
corresponds to one-third of the surface of the cube. This effect is represented by the symmetry-
related charge, which includes the color charge of the symmetry center. It is easily
comprehensible related to the algorithm which below is introduced for the computation of the
symmetry-related charge. Also, the relation to the color charge will be clear. Thus, this effect
couples the ordering of the local parameter spaces to the symmetry-related charge of the
encapsulated elementary module. The differences with the ordering of the surrounding

55



parameter space determine the value of the symmetry-related charge of the object that resides
inside the encapsulation!

14.4 Symmetry flavor
TheCartesian orderingf its private parameter space determines the symmetry flavor of the
platform [18]. For that reason, this symmetry is compared with the reference symmetry, whioh is
symmetry of the background parameter space. Four arrows indicate the symmetry of the platform.
The background is represented by:

LE N

Now thesymmetryrelatedcharge follows in three steps.

1. Count the difference of the spatial part of the symmetry of thatform with the spatial part
of the symmetry of the background parameter space.

2. If the handedness changes frdRto L, then switch the sign of the count.

3. Switch the sign of the result for argarticles.

Symmetry flavor

Ordering ' sequence Handedness Color Electric Symmetry type
Xy z U Right/Left charge | charge * 3

4101 R N +0 neutrino

Aa B B} L R T1 down quark

L hd B} L G T 1 down quark
Ad B} L B T1 down quark
1490 R B +2 up quark

A B d ) R G +2 up quark
Lhad ) R R +2 up quark

A A L N T3 electron

LR N g R N +3 positron
349 L R T2 antiup quark

L d g L G T2 antirup quark
Al L B T2 antirup quark
*13¥ R B +1 antidown quark
N Aol R R +1 antidown quark
2339 R G +1 antidown quark
Al L N 10 anti-neutrino

The suggested particle names that indicate the symmetry arpdorrowedfrom the Standard

Model. In the table, compared to the standard model, some differences exist with the selection of
the antipredicate. All considered particles are elementary femmsiol he freedom of choice in the

polar coordinate systermight determine the spifil9]. The azimuth range is\2adians,andthe

polar angle range is radians. Symmetry breaking means a difference between the platform
symmetry and the symmetry of the background. Neutrinos do not break the symmetry. Instead, they
may cause conflicts with the handedness of the multiplication rule.

14.5 Derivation of physicahws

The quaternionic equivalents of Ampére's law are

J1 PB =P JUn!B 3 E (155.1)

r
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A(@°Bnds o BE) =3I pFEE o (155.2)
The quaternionic equivalents of Faraday's law are:
DB=DCy) =ED:BUM .3 * PE (155.3)
<ﬁ< >= <nDI'fF' n> ds :<. fBﬁ> <t (15.5.4)
J=bfB B FD2j-VE (155.5)
Ay A as o(7f)  =(v rf P o (155.6)
The equation$15.5.4) and(15.5.6) enable thederivation of thel orentz forcg82].
D3E = -B (155.7)
iﬁ (Bjn) ds= < o hr> ds+~ "(3 .1 ¢ (155.8)
dr S o) ’
The Leibniz integral equation states [83]
d - /=
pm A (% (o). m) ds
s . #q (155.9)
- (ﬁ)< (o) 7B () kM) dS o (i) £ 3% ). )
S(t,
with X =B and <D’B> =0 follows
dF d . /z ~
a1 (A s = (g 05 o (o b)Y
’) p (155.10)
- <fi(E()d) © 19 H )
C(to)
The electromotive force (EMF) € equals [84]
e= <ﬁ<F(r°),dT> ng
o)\ 9 - (155.11)
= iﬁ)<E(fo) dr) +§>)(ﬁ( ) B( oy di)
C(to c( ¢
F=qE #jv B (15.5.12)
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15 Polar coordinates
In polarcoordinatesthe nabla delivers different formulas.

Y=Yt +y g+ (16.1.1)
. 1 - 1 .
by, Hop 3 B0 g —+ Ug_' (16.1.2)
Vg r g rsin g
Lo 1 u(ry, 1 ul,sin 1 W,
<D,J/> = ( ) +— Vysin g +- . (16.1.3)
r g r sing ug rsin g p
Bay =1 au(yqsm 9 W, g
rsmqg Haq hj+
a a yy, oo
& H 50
A%, "y 9%
Caming 1 0 : (16.1.4)
& 0
(; -
tap(y,) wy, 0
—& y/
re W g -
T A L
B8y - H 7 ¢ B 51 Wy (16.1.5)
T r >sing ug r2sii’ g
In pure spherical conditions, the Laplacian reduces to:
(6, By =1—£2é2 K (16.1.6)

rPue wu

The Greends functi on distributios of théntmp landing éotation swarchefn s i t y
an elementary particle. If the location density distribution has the form of a Gaussian distribution,
thenthe blurredf uncti on is the convolution of this | ocatio
function. The Gaussian distribution is
é 2

r(r)= (S 2/3 expae ' (16.1.7)

The shape of the deformation of the field for this example is given by:

ERFae
[

T(r)=

In this function, every trace of the singularityof t he Gr eends function has di
the distribution and the huge number of participating hop locations. This shape is just an

16.1.8
4pr (16.1.8)
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example. Such extra potentials add a local contribution to the field that acts as the living space of
modules and modular systems. The shown extra contribution is due to the local elementary

module that the swarm represents. Together, a myriad of such bumps constitutes the content of
the living space.
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16 Lorentz transform
16.1 The transform

The shock fronts move with speed C. In the quaternionic setting, this speed is unity.
X+y +7 @t’ (17.1.2)

Swarms of spherical pulse response triggers move with lower speed V .

For the geometric centers of these swarms still holds:

X+y 7 €t° ¥ yF 2P+et (17.1.2)

If the locations {X, Y, 2} and {X', Y, Z} move with uniform relative speed V, then

ct'=ctcosh{w) -x sinff uy (17.1.3)
x'=xcosh(w) -ct sintf uy (17.1.4)
cosh(w) = exp(¥) +2exr( g CZC: = (17.15)
sinh(w) = exp(w) -Zexr( o \/sz_ v (17.1.6)
cosHw)”- sinff ' = (17.1.7)

This is a hyperbolic transformation that relates two coordinate systems.

This transformation can concern two platforms P and P' on which swarms reside and that
move with uniform relative speed .

However, it can also concern the storage location P that contains a timestamp ¢ and spatial
location {X, 2 2} and platform P' that has coordinate time tand location {X', Y, Z} .

In this way, the hyperbolic transform relates two individual platforms on which the private swarms
of individual elementary particles reside.

It also relates the stored data of an elementary particle and the observed format of these data for
the elementary particle that moves with speed relative to the background parameter space.

The Lorentz transform converts a Euclidean coordinate system consisting of a location {X, Y, 2}
and proper time stamps f into the perceived coordinate system that consists of the spacetime
coordinates {X', y',Z, Ct} in which t ' plays the role of proper time. The uniform velocity V causes

V2

time dilation Dt' =D—[ and length contraction DL' = 1 P
1-

Om‘ <I\J

16.2 Minkowski metric
Spacetime is ruled by the Minkowski metric.
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In flat field conditions, proper timeis defined by

;= O - -y P
c

17.2.1)

And indeformed fields, still

d=cd? =¢df dX dy di (17.2.2)

Here ds is the spacetime interval andf is the proper time intervaldt is the coordinate time
interval

16.3 Schwarzschild metric
Polar coordinates convert the Minkowski metric to the Schwarzschild m&tie proper time
interval df obeys [ 89] [90]

o ~ o -1 ~
cdr’=3 I gde -1 s ag rz(-d g sinxd }) (17.3.2)
c r = éﬁ— =
Under pure isotropic conditionghe last term on the right side vanishes.

Inthe environment of a black holéhe formula I'y stands for the Schwarzschild radius

_2GM

S C2

(17.3.2)

The variabler equals the distance to the poitike massV .
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17 Black holes

Black holes are regions from which nothing, not even photons can escape. Consequently, no
information exists about the interior of a black hole. Onlynething is known about the direct
environment of the black hole [86]. In this sectjare try to follow the findings of mainstream
physics.

17.1 Geometry
Mainstream physics characterizes the simplest form of black holes3whavarzschild radiu§87]
[88] It is supposed to be the radius where the escape speed of massive objects equals light speed.
The gravitational energl) of a massive object with maggin a gravitation field of an object with
massM s

GMm
r

U=

(18.1.1)

In nonrelativistic conditions, the escape velocity follows from the initial enéggy/ of the object
with massm and velocityv. At the torder, the kinetic energy is consumed by the gravitation energy.

GMm
Yo - r 23] (18.1.2)
0
This results in escape veloci%
.= o GM (18.1.3)
rO

It looks as if the Schwarzschild radius can be obtained by taking the speed of light for the escape
velocity. Apart fron the fact that this condition can never be tested experimentally, this violates the
non-relativity conditions. If we replacg&mv by the energy equivalent of the rest mass?, then

the wrong formula for the Setarzschild radius results.

We try another route and use the fact that photons cannot pass the Schwarzschild radius. Instead of
the escape velocity of massive objects, we investigate the gravitational redshift of photons.

Due to gravitation, the frequencyof photons with original frequencf, changes with the distance

r to a point mas$/ .

2GMm a, I
m=hp =57 Oé% = (18.1.4)

The brmula(18.1.4) is supposed to describe the gravitatiomatishiftof photons. According to this

formula, the radius at which the frequentyhas reduced to zero the Schwarzschild radiuk,

2GM
r =

S C2

(18.1.5)
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17.2 The border of the black hole
According to mainstream physics, for a Amtating neutral black hole, photons cannot pass the

sphere with the Schwarzschild radilis. The reasoning used the fact that the frequency of the

photons reduces to zero at this bord@me problem with this reasoning is that the frequency
reduction does not affect the energy of the energy packages that constitute the photons.

That is easily cured by replacing frequency reduction by energy reduction.

2GM A, T
E=E —ZEO Ed = (182.1)
rc C r
This also works for the ordimensional shock fronts thatonstitute the photon. It also means that
one-dimensional shock fronts and spherical shock fronts cannot pass this radius of this sphere.

First, we consider what happens if a spherical pulse response injects geometric volume into the
region of the black dle.

Spherical shock fronts can only add volume to the black hole when their actuator hovers over the
region of the black hole. The injection increases the Schwarzschild radius. The injection also increases
the massM An increasén the Schwarzschild radius means an incréaghe geometric volume of

this sphere. This is like the injection of volume into the volume of the field that occurs via the pulses
that generate the elementary modules. However, in ttase the volume stays whin the

Schwarzschild sphere. According to the formula of the Schwarzschild,iddivelume of the

enclosed sphere is not proportional to the mass of the sphere. The mass is proportional to the radius.
In bothcasesthe volume of the field expandsubsomething different happens.

The HBM postulates that thgeometriccenter of an elementary module cannot enter the region of

the black hole. This means that part of the active region of the stochastic process that produces the
footprint of the elementay module can hover over the region of the black hole. In this overlap
region,the pulses can inject volume into the black hdherwise the stochastic process cannot

inject volume into the black hole.

According to the HBM, the black hole region consaimstructured geometric volumé&lo modules
exist within that sphere.

17.3 An alternative explanation
The two modes in which spherical pulse responses can operate offers a second interpretation. This
explanation applies the volume sucking mode of the sphepiglsie response. This mode removes
0KS @2ftdzyS 2F (KS DNBSyQa TFdzyOiAz2y FNRY (GKS 20l
of the pulse into a continuum, such that only the rational value of the location of the pulse results. A
large series o$uch pulse responses will turn the local continuum into a discrete set of rational
location values. Thus, within the region of the blacdke,the pulsegurn the continuum field into a
sampled field Inside that discrete set, oscillation is no longergioie and shock fonts do not occur.
The elementary particles cannot develop in that region. However, the pulses appear to extend the
black hole region not in a similar way as the volume injection pulses in empty space would do. In
both cases, these pulsean extend the mass of the region. But in the black hole reg¢fienmass
increment is proportional to the radius of the sphere, while in free space the mass increment is
proportional to the injected volume. Also, this second approach does not give arprplkanation
for the different increase of the volume of the black hole region with the increase of its mass.

63



In the next chaptera more sensible explanation is given that introduces mixed fields, which contain
closed regions, which do not contain a tianum, but instead a compact discrete set of rational
numbers.

17.4 The Bekenstein bound
The Bekenstein bound relates the Schwarzddbiick hole to its entropy.

s¢kERy o AER_2 6M (183.1)
hc hc hc

This indicates that the entropgsis proportional to the area of the black hole. This only holds for the
entropy at the border of the black hole.
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18 Mixed fields

Usually a dynamic field is a continuum eigenspace of a normal operator that resides in a
guaternionic norseparable Hilbert space. In a quaternionic separable Hilbert space the field is
countable and is a sampled field that consists only of the rational tarde¢s®f the quaternionic
function that defines the eigenspace of the operator. This function uses the eigenspace of the
reference operator as its parameter space.

If a dense set of rational numbers in a version of the quaternionic number systemvsluted with

G§KS DNBSyQa FdzyOGA2y 2F | ljdzZ 6SNYA2yA0 FASERI (K
aeaitsSy NBad# Gad ¢KdzaAX FRRAY3I GKS IS2YSGNRO @2t dzv
converts its environment into a continuum. fieverse, sucking the volume in the surround of a

rational number that is embedded in a continuum will turn the rational number into its naked value.

This can only happen at a border that separates the continuum from a discrete set. It will move the

rationa number from the continuum to the discrete set.

It is possible to define functions that are continuous in most of the parameter space, but that takes
only discrete values in one or more closed regions of the parameter space. In tteeparable

Hilbert gace, the closed region corresponds to a subspace that encloses a separable Hilbert space.
The surface that encloses the closed region must be a continuum. Howévertatior only contains

a discrete set. All converging series of elements of this sestnf the limit exists, have this limit in

the enclosing surface. This surface has a minimal area that corresponds to the geometric volume of
the enclosed region. We can interpret the shift of a rational number from a discrete set to a nearby
continuum & the embedding of a separable Hilbert space into aseparable Hilbert space. The
reverse of this procedure is also possible.

A mechanism that injects geometric volume into this region must steal this volume from the

surrounding continuum. If this mechesm applies poinsized pulses, then the injection inserts a

rational number and the corresponding geometric volume increases. This inserted geometric volume
NBflGdSa (2 (GKS @2ftdzvyS 2F (GKS DNBSyQa FdzyeadiAzy 27
2F GAad LINBLRNIA2YIlf G2¢ 0SOFdzaS GKS. NBYXKAARYAE A a
theorem[89] [90].

In its simplest shapé¢he region is a spher@ndthe radius of the sphere is proportional to the mass
of the region.

Shock fronts and waves cannot pass the border of the enclosed region and cannot exist inside this
region.

The enclosed region deforms the continuous part of the field. This deformatiatesaio the
geometric volume of the enclosed region and thus relates to the number of injected rational
numbers. The deformation corresponds to the mass property of the enclosed region. According to
the equation(8.2.1), the massV/determines the gravitation potential energy of massat distantr
from the center of the region

Mm

U(r)oGT

(19.1.1)

Due to gravitation, a photon that started from a long distance and approaches the region the
contained energy reduces when the gravitation potential increases. Photons are strings of
equidistant onedimensional shock fronts. Athuge distance from the ceter of the black hole, the
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energy of the onedimensional shock front equals a masgnergy equivalent E, = mC. At the

border of the black hole, the gravitation potential energy reduces the total energy of the energy
package to zero.

e mMMG
r

E=m

€: (19.1.2)

The equivalent mass m plays no role in the value of the computation of the radius of the black hole.
Thus, the border of a simple black hole is given by
_GM

f
bh
c2

(19.1.3)

The energy of the standard energy packages changes with distance r from tienter of the black
hole as

M ~ o
G 850% %ﬂ (19.1.4)

cir =

E=E Y
G

For photons the initial energy isEO = mo- The photon energy changes proportiondl to the
energy of the onedimensional shock fronts.

&, I, 0O ar
E=Ed - 2, 15 (19.1.5)
¢ r = cr
Mainstream physics sees the border of the Bl&ole as the Schwarzschild radilis
r, = 2CM (19.1.6)
c

At that radiusthe packages are no longer capabfdransferringkinetic energy.

18.1 Open questions
The Hilbert Book Model uses a different radius for the borderldfiek hole than the Schwarzschild
radius that mainstream physics us@e difference is a fact@.

Mixed fields can contain regions that only contain a set of rational quaternions. The region is
encapsulated by a surface that represents a continuuns bbider separates the discrete region
from a continuum. The encapsulated region behdilesa black hole. The continuum can contain a
series of such regions. It is not clear whether and how these regions can merge.

It is possible that the continuum issaunded by a continuous border that separates it from a
discrete region. This discrete region can contain a series of regions that are surrounded by a
continuous border and that contain a continuum. In this waynultiverse can be established.

Inside the discrete regions. information transfer is blocked
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19 Material penetrating field
19.1 Field equations

Basic fields can penetrate homogeneous regions of the material. Within these regions, the fields
get crumpled. Consequently, the average speed of spherical fronts, One-dimensional fronts, and
waves diminish, or these vibrations just get dampened away. The basic field that we consider

here is a smoothed version J7 of the original field /' that penetrates the material.

—

f=DPy +& ° DRE B (20.1.1)

=Dy +® °BeC B (20.1.2)

The first order partial differential equation does not change much. The separate terms in the first
order differential equations must be corrected by a material-dependent factor and extra material
dependent terms appear.

These extra terms correspond to polarization P and magnetization M of the material, and the
factors concern the permittivity € and the permeability /77 of the material. This results in

corrections in the E and the B field and the average speed of one-dimensional fronts and

1
waves reduces from 1 to \/>
er

D=cE # (20.1.3)
1.
H=-—B -M (20.1.4)
m
r,= {,ﬂi) (20.1.5)
ro= 4 D) (20.1.6)
J=DPM +P (20.1.7)
J=DPH - (20.1.8)
r=2(eE) = (20.1.9)
e
j=1pg. ®EB J I 20.1.10
e m b i (20.1.10)
. . -
F=E-B= =(D ) -fH W 20.1.11
2(D -P) - M (2011

The subscript , signifies bounded. The subscript ; signifies free.

The homogeneous second order partial differential equations hold for the smoothed fieldy .

(.8 ("B o (20.1.12)
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19.2 Pointingvector

The Poynting vector represents the directional energy flux density (the rate of energy transfer
per unit area) of a basic field. The quaternionic equivalent of the Poynting vector is defined as:

S=E3H (20.2.1)

U is the electromagnetic energy density for linear, nondispersive materials, given by

<E, I§>+<B, FI>

u= 5 (202.2)
w _ - — — —
e {"8) (3.8 (20.2.3)
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20 Action

The set of basic fields that occur in the model form a system. These fields traeeafinite number
of discrete locations. TheymmetryrelatedA*fields always attach to the geometrical center of a
dedicated symmetry center. The€ field attaches at a stochastically determined locatiomswhere
in the vicinity of this geometric center. However, integrated over the regeneration cycle of the
corresponding particle the averaged attachment point coincides with the geometric center of the
symmetry center. Thus, in these averaged conditiongweefields can be considered as being
superposed. In the averaged mode thdield has weak extrema. The*fields always have strong
extrema. In the averaged mode the fields can be superposed into a new fi¢idthat sharesthe
symmetry center related extrema.

The path of the geometric center of the symmetry center is following the leaattion principle.
This is not the hopping path along which the corresponding particle can be detected.
The coherent location swarn{af} also represents gpath, which is ahopping path. Its coherence

means that the swarm owns a continuous location density distribution that characterizes this
swarm. A morefar-reaching coherence requirement is that the characterizing continuous
location density distribution also has a Fouriettransform. At first approximation, the swarm
moves as one unitThe swarm owns a displacement generatofihese facts have much impact on
the hopping path and on the movement of the underlying symmetry center. The displacement
generator that characterizespart of the dynamic behavior of the symmetry center is represented
by the momentum operator p . This displacement generator describes the movement of the

swarm as one unit. It describes the movement of the platform that carries théegnentary
particle. On theplatform, the hopping path is closed. In the embeddinfield, the platform moves.

We suppose that momentump is constant during the particle generation cycle. Every hop gives

a contribution to the path. These contributions can be divided into three steps per contributing
hop:

1. Change to Fourier space. This involves inner produé& |‘p>

2. Evolve during an infinitesimal progression step into the future.
a. Multiply with the corresponding displacement generatorp

b. The generated step in configuration spacks (ém - a) .
c. The action contribution in Fourier space i§ p.a.,- é.) :
d. This combines in a unitary factoexp((p 4., - a))
3. Change back to configuration space. This involves inner prodL(c’p|éT+1>

a. Thecombinedterm contributes a factor(4 | p) exp(< p.a,- 7??‘>)< A,

Two subsequent steps give:

(a|p)exp(( P.a,- @)(Pla.)(a.]p) exd({ i, -3)( fH..) 211.1)

The terms in the middle turn into unity. The otler terms also join.
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(aIp)exp((P.aa- @) ex{(Ppe -24)( b2y

o o R (211.2)
=(a|p)exp(( P.a., -2))( Ha.)
Over a full particle generation cycle with N steps this results in
Ncl
D (&|p)exp((p.aa- @)(Ha,)
=(a) )eXp€<Np 3 -a))( ﬁ@f) 2113
. Az /. o -
=(alp)exeaa (Pa. -3) g a)
=(alpjexp(L)(Ha)
Ld¢ :a (pa, -a) Epdg (21.1.4)
L=(p.q) (21.1.5)

L is known as the Lagrangian.

The equation (21.1.5) holds for the special condition in whichp is constant.If p is not constant,
then the HamiltonianH varies with location.

Al D (21.1.6)
MG,
A o (21.1.7)
MP
ML
—=p 21.1.8
MG ( )
“—I,' = P (21.1.9)
MG,
H_ _h (21.1.10)
ut i
dpur _p
— == 21.1.11
dr g g N
2
H+L A 4n (21.1.12)

i=1

Here we used proper timérather than coordinate time.
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This procedure derives the Lagrangian and the Hamilton equations from the stochastic hopping
path. Each term in the series shows that the displaceingenerator forces the combination of

terms to generate a closed hopping path on the platform that carries the elementary particle. The
only term that is left is the displacement generation of the whole hop landing location swarm. That
term describes thenovement of the platform.

In mainstream physics applies the Lagrangian as the base of the path integral. In the Hilbert Book
Model, the Lagrangian results from the analysis of the hopping path.

In mainstream physics applies the Lagrangian as the babke phth integral. In the Hilbert Book
Model, the Lagrangian results from the analysis of the hopping path.
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21 Dirac equation

In its originaform, the Dirac equation for the free electron and the freesitronis formulated by
using complex number based spinors and matr[€4§[92]. That equation can be split into two
equations, one for the electron and one for thesitron The matrices implement the functionality of
a biquaternionic number system. uaternions do not form a division ring. Thus, Hilbert spaces
cannot copewith bi-quaternionic eigenvalues. The Dirac equation plays an important role in
mainstream physics.

21.1 The Dirac equation in original format
In its originaform, the Dirac equation is a complex equation that uses spinors, mataoepartial
derivatives.

Dirac was searching for a split of the Ki&€ardon equation into two first order differential
equations.

A (22.1.1)
oK yh Zp

of=(p p (-, B)D mEf (221.2)
Hereuz(ap@j;);\é iKS RQ!f SYOSNI 2LISNI (2N

Dirac used a combination of matrices and spinors in order to reachethigt. He applied the Pauli
matrices in order to simulate the behavior of vector functions under differentig@3h

The unity matrixl and the Pauli matrice§;, S, 4 are given by

Q
o

=g g _0el e 08 a2 0 (22.1.3)
o 18 T1800 W & 7 1 B

Herei =~/ 4. For one of tle potential orderings of the quaternionic number system, the Pauli
matrices together with the unity matridelate to the quaternionic base vectops

—

1V 1,iYis, Vi sk Yi (22.1.4)
This results in the oitiplication rule
5:8- 5,52 35, 5§, IS 5,5 52 ¢ (22.1.5)

5,9 5,5 ;5 6k (22.1.6)

The different ordering possibilities tfe quaternionic number system correspond to different
symmetry flavors. Half of these possibilities offerighthandedexternal vector product. The other
half offersa left-handedexternal vector product.

We will regularly use:
i(s.B) = (22.1.7)
With
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Pr=d (22.1.8)
follow

p,S .~ ie ,t (22.1.9)

(ps)=4d (221.10)

21.25A NI OQa F2NXNdzf I (A 2y
The original Dirac equation uses 4x4 matrieésand 5 .

d and p arematrices that implement théi-quaternion arithmetic behavior including the possible
symmetry flavors obi-quaternionic number systems and continuums.

Y O S Y g
e b F i ! (22.2.1)
é5, 0 u d 0
~ 0 s ~ -
a, =Z ’ 3= ig? . (22.2.2)
&5, 0 u él 0
a _€0 s. g iSO K (22.2.3)
? 393 0 H QZ 0
s 0
_& (22.2.4)
0 -1
b b=l (22.2.5)

The interpretation of the Pauli matrices asepresentationof a special kind of angular momentum
has led to thehalf-integereigenvalue of the corresponding spin operator.

5AN} OQa aStS0GA2y €681 Ra §2
(p-(a.p -mo{ j & (222.6)

{/'} is a fourcomponent spinorwhich splits into

(p-(@p) -tmg 4 © (22.2.7)

and

(p-(a.p) +mg 4 ¢ (22.2.8)
e« ande are two component spinors. Thube original Dirac equation splits into:
(B, - "Bimc)j, 0 (22.2.9)

r
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(B, - Bimc)j, 0

r

(22.2.10)

This split does not lead easily to a second order partial differential equation that looks like the Klein

Gordon equation.

21.3 Relativistic formulation

LyadSIR 27 5ANF O@dallytheldl@ikisyid fdrmuBtbMidyudzid G A 2 y =

That formulation applies gamma matrices, instead of the alpha and beta matrices. This different
choice influences the form of the equations that resalthe two-componentspinors.

e0 slg_ifgoi
o &7 o

_e0 s, g e0 |

g_ -é?
? gsz 0 H &] 0
e0 s, ¢ ié,O k
= e .
: &s;, 0 H gk O
& o
9 g) 1
Thus
9,= § A 12,3
%= b
Further

. 0 1
g = ylgsg:gi] 0

The matri¥ anti-commutes with all other gammmatrices.

{ SOSNItf RAFFSNByd asSda 2F 3AFYYl!
of the form

More extended:
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(22.3.1)

(223.2)

(223.3)

(22.3.4)

(22.3.5)

(22.3.6)

O
(s}
ax

Y G NR

(223.7)

(22.3.8)

(22.3.9)

NB

LJ2 a



Bl 0&@ 0 ($8) fm 160 §a o,
f@ 1B ¢ (s,")p o Uih 0% Bau
agl 0 €0 ®m 1e0 §po

te . Uh 6 &
20 1hEoo0 i of1 40§

iﬁ?A+ B, + /O

. . - . m

I&/B_FD/AFd G

(22.3.10)

(223.11)

(223.12)

(22.3.13)

Alsq this split does not easily lead to a sedoorder partial differential equation that looks like the
Klein Gordon equation.

21.4 A better

choice

Another interpretation of the Dirac approach repla¢eswithT :

a u,. U u m 0
—t g— to, g K9G —
?ﬁ K 2yu32wh§

& &0 1§+G‘;0 %ﬂléo é',gra@

; i ! L L

& ol & oo h o1 §U Y
iﬁ%5+-3@ %]A o
i&/A-_./A %d G

(22.4.1)

(22.4.2)

(22.4.3)

(22.4.4)

(22.4.5)

(22.4.6)

Thisversioninvites splitting of the foulcomponent spinor equation into two equations fwvo-

componentspinors:

aM,p8 _m,
giem /93 h Ia
a -0 m .
éé&' D/QA :—h‘/B

(22.4.7)

(22.4.8)

This looks far more promising. We dagert the right part of the first equation into the left part of
the second equation.
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%&- k) 8% * Pugrr Jn (224.9)
X i} .
SEI'T?+< B P/SA -r:z Jn (22.4.10)
A, K 5N .
Z&bﬁ-'- b 8% - pB 8? Is (22.4.11)
2 2
8{?% B P/gs —% Jo (224.12)

This is what Dirac wanted to achieve. The two first order differential equations couple into a second
order differential equationbut that equation is hoéquivalent tothe Klein Gordon equatiorit is
equivalent tothe equation(4.2.1).

The nabla operator acts differently onto th&o—componentspinors/ Aand/ B-

21.5 The Dirac nabla
The Dirac nabld) differs from the quaternionic nabla .

pa H_H H-p" (225.1)

(225.2)

(225.3)

(22.5.4)

(225.5)

(2255.6)
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