
 

  
 

 

 

THE HILBERT BOOK MODEL  

PROJECT SURVEY 

 

 

 

 

 

 

 

 
 

Hans van Leunen 

 



2 
 

 

 

Colophon 

 

Written by Msc J.A.J. van Leunen 

The subject of this book is a purely mathematical model of physical reality. 

 

This book is written as an e-book. It contains hyperlinks that become active in the electronic version, 

which is archived at http://vixra.org/author/j_a_j_van_leunen.  

The most recent version can be accessed at http://www.e -physics.eu.  

At this site the same file is available as .docx file. 

Last update of this (published) version: maandag, april 15, 2019 

 

©2019 Msc J.A.J. (Hans) van Leunen 

 

All rights reserved. Nothing of these articles may be copied or translated without the written 

permission of the publisher, except for brief excerpts for reviews and scientific studies that refer to 

this resource. 

For personal use, you can bring this file to a local print shop, so that they can turn it 

into an A4 book 
 

L{.bΥ xxx-x-xxx-xxxx-x978-1-4477-16 

http://vixra.org/author/j_a_j_van_leunen
http://www.e-physics.eu/


3 
 

 

¢ƘŜ IƛƭōŜǊǘ .ƻƻƪ aƻŘŜƭ tǊƻƧŜŎǘ ǎǳǊǾŜȅ 
by Hans van Leunen 

15-4-2019 

Summary 

This survey treats the Hilbert Book Model Project. The project concerns a well-founded, purely 

mathematical model of physical reality. The project relies on the conviction that physical reality owns 

its own kind of mathematics and that this mathematics guides and restricts the extension of the 

foundation to more complicated levels of the structure and the behavior of physical reality. This 

results in a model that more and more resembles the physical reality that humans can observe.  
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1 The initiator of the project 
The Hilbert Book Model Project is an ongoing project. Hans van Leunen is the initiator of this project. 

The initiator was born in the Netherlands in 1941. He will not live forever. This project will contain his 

scientific inheritance. 

The project is introduced in a Wikiversity project [1].  In the opinion of the initiator, a Wikiversity 

project is a perfect way of introducing new science. It especially serves the needs of independent or 

retired scientific authors. 

The initiator maintains a ResearchGate project that considers the Hilbert Book Model Project. 

The ResearchGate site supports a flexible way of discussing scientific subjects [2] [3]. 

The initiator has generated some documents that contain highlights as excerpts of the project, 

and he stored these papers on his personal e-print 

archive http://vixra.org/author/j_a_j_van_leunen [4]. 

The private website http://www.e-physics.eu contains most documents both in pdf as well as in 

docx format [5]. None of these documents claims copyright. Everybody is free to use the 

content of these papers. 

1.1 Trustworthiness 
Introducing new science always introduces controversial and unorthodox text. The Hilbert Book 

Model Project is an ongoing enterprise. Its content is dynamic and is revised regularly. 

The content of this project is not peer-reviewed. It is the task of the author to ensure the correctness 

of what he writes. In the vision of the author, the reader is responsible for checking the validity of 

what he/she reads. The peer review process cannot cope with the dynamics of revisions and 

extensions that becomes possible via publishing in freely accessible e-print archives. In comparison 

to openly accessible publication on the internet, the peer review process is a rather slow process. In 

addition, it inhibits the usage of revision services, such as offered by vixra.org and by arxiv.org/ 

Reviewers are always biased, and they are never omniscient. The peer review process is expensive 

and often poses barriers to the renewal of science. 

One way to check the validity of the text is to bring parts of the text to open scientific discussion sites 

such as ResearchGate. [2] 

The initiator challenges everybody to disprove the statements made in this report. He 
promises a fine bottle of XO cognac to anyone that finds a significant flaw in the presented 
theories. 

This challenge stands already for several years [6]. Up to so far, nobody claimed the bottle. 

1.2 The author 
Hans is born in Helmond in 1941 and visited the Eindhoven HTS in chemistry from 1957-1960. 

After his military service in 1960-1963, Hans started at the Technical Highschool Eindhoven (THE) 

which is now called the Technical University Eindhoven (TUE) for a study in applied physics. 

Hans finished this study in 1970 and then joined Philips Elcoma EOD in the development of image 

intensifier tubes. Later this became a department of Philips Medical Systems division. 

In 1987 Hans switched to an internal software house. In 1995 Hans joined the Semiconductor division 

of Philips. In this period Hans designed a system for modular software generation. 

https://en.wikiversity.org/wiki/Hilbert_Book_Model_Project
https://www.researchgate.net/project/The-Hilbert-Book-Model-Project
https://www.researchgate.net/
http://vixra.org/author/j_a_j_van_leunen
http://www.e-physics.eu/
http://vixra.org/author/j_a_j_van_leunen
https://arxiv.org/
https://www.researchgate.net/project/The-Hilbert-Book-Model-Project
http://www.e-physics.eu/#_Challenge
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In 2001 Hans retired. 

From 1983 until 2006 Hans owned a software company "Technische en Wetenschappelijke 

Programmatuur" (TWP). 

A private website treats my current activities [5]. 

I store my papers at a freely accessible e-print archive [4]. 

To investigate the foundations and the lower levels of physical reality, Hans started in 2009 a 

personal research project that in 2011 got its current name "The Hilbert Book Model Project." 

The Hilbert Book Model is a purely mathematical unorthodox and controversial model of the 

foundations and the lower levels of the structure of physical reality. 

1.3 Early encounters 
I am born with a deep curiosity about my living environment. When I became aware of this, I was 

astonished why this environment appeared to be so complicated, and at the same time, it behaved in 

such a coherent way. In my childhood, I had no clue. Later some unique experiences offered me 

some indications. After my retirement, I started in 2009 a personal research project to discover and 

ŦƻǊƳǳƭŀǘŜ ǎƻƳŜ ƻŦ ǘƘŜ ŎƭǳŜǎΦ ¢ƘŜ άIƛƭōŜǊǘ .ƻƻƪ aƻŘŜƭέ ƛǎ ǘƘŜ ƴŀƳŜ ƻŦ Ƴȅ ǇŜǊǎƻƴŀƭ ǊŜǎŜŀǊŎƘ ǇǊƻƧŜŎǘΦ  

My interest in the structure and phenomena of physical reality started in the third year of my physics 

study when the configuration of quantum mechanics confronted me for the first time with its special 

approach. The fact that its methodology differed fundamentally from the way that physicists did 

classical mechanics astonished me. So, I asked my very wise lecturer on what origin this difference is 

based. His answer was that the superposition principle caused this difference. I was not very happy 

with this answer because the superposition principle was indeed part of the methodology of 

quantum mechanics, but in those days, I did not comprehend how that could present the main cause 

of the difference between the two methodologies. I decided to dive into literature, and after some 

sŜŀǊŎƘΣ L ŜƴŎƻǳƴǘŜǊŜŘ ǘƘŜ ōƻƻƪƭŜǘ ƻŦ tŜǘŜǊ aƛǘǘŜƭǎǘŜŀŘǘΣ άtƘƛƭƻǎƻǇƘƛǎŎƘŜ tǊƻōƭŜƳŜ ŘŜǊ modernen 

tƘȅǎƛƪέ όмфсоύΦ ¢Ƙƛǎ ōƻƻƪƭŜǘ ŎƻƴǘŀƛƴŜŘ ŀ ŎƘŀǇǘŜǊ ŀōƻǳǘ ǉǳŀƴǘǳƳ ƭƻƎƛŎ ŀƴŘ ǘƘŀǘ ŀǇǇŜŀǊŜŘ ǘƻ ƳŜ ǘƻ 

contain a more appropriate answer. Later, this appeared a far too quick conclusion. In 1936 Garrett 

Birkhoff and John von Neumann published a paper that described their discovery of what they called 

άǉǳŀƴǘǳƳ ƭƻƎƛŎΦέ [7] Quantum logic is since then in mathematical terminology known as an 

orthomodular lattice [8]. The relational structure of this lattice is to a large extent quite like the 

ǊŜƭŀǘƛƻƴŀƭ ǎǘǊǳŎǘǳǊŜ ƻŦ ŎƭŀǎǎƛŎŀƭ ƭƻƎƛŎΦ ¢Ƙŀǘ ƛǎ ǿƘȅ ǘƘŜ Řǳƻ ƎŀǾŜ ǘƘŜƛǊ ŘƛǎŎƻǾŜǊȅ ǘƘŜ ƴŀƳŜ άǉǳŀƴǘǳƳ 

ƭƻƎƛŎΦέ ¢Ƙƛǎ ƴŀƳŜ ǿŀǎ ŀƴ ǳƴƭǳŎƪȅ ŎƘƻƛŎŜ ōŜŎŀǳǎŜ ƴƻ ƎƻƻŘ ǊŜŀǎƻƴ ŜȄƛǎǘǎ ǘƻ ŎƻƴǎƛŘŜǊ ǘƘŜ ƻrthomodular 

lattice as a system of logical propositions. In the same paper, the duo indicated that the set of closed 

subspaces of a separable Hilbert space has exactly the relational structure of an orthomodular 

lattice. John von Neumann long doubted between Hilbert spaces and projective geometries. In the 

end, he selected Hilbert spaces as the best platform for developing quantum physical theories. That 

appears to be one of the main reasons why quantum physicists prefer Hilbert spaces as a realm in 

which they do their modeling of quantum physical systems. Another habit of quantum physicists also 

intrigued me. My lecturer thought me that all observable quantum physical quantities are 

eigenvalues of Hermitian operators. Hermitian operators feature real eigenvalues. When I looked 

around, I saw a world that had a structure that configures from a three-dimensional spatial domain 

and a one-dimensional and thus, scalar time domain. In the quantum physics of that time, no 

operator represents the time domain, and no operator was used to deliver the spatial domain in a 

compact fashion. After some trials, I discovered a four-dimensional number system that could 

provide an appropriate normal operator with an eigenspace that represented the full four-

http://www.e-physics.eu/
http://vixra.org/author/j_a_j_van_leunen
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dimensional representation of my living environment. At that moment, I had not yet heard from 

quaternions, but an assistant professor quickly told me about the discovery of Rowan Hamilton that 

happened more than a century earlier. Quaternions appear to be the number system of choice for 

offering the structure of physical reality its powerful capabilities.  

The introductory paper of Birkhoff and von Neumann already mentioned quaternions. Much later 

Maria Pia Solèr offered a hard prove that Hilbert spaces can only cope with members of an 

associative division ring. Quaternions form the most extensive associative division ring. To my 

astonishment, I quickly discovered that physicists preferred a spacetime structure that features a 

Minkowski signature instead of the Euclidean signature of the quaternions. The devised Hilbert Book 

Model shows that in physical reality, the Euclidean structure, as well as the spacetime structure, 

appear in parallel. Observers only see the spacetime structure. Physics is a science that focusses on 

observable information. My university, the TUE, targeted applied physics, and there was not much 

time nor support for diving deep into the fundamentals of quantum physics. After my study, I started 

a career in the high-tech industry where I joined the development of image intensifier devices. There 

followed my confrontation with optics and with the actual behavior of elementary particles. See: 

http://www.ephysics.eu/#_What_image_intensifiers reveal.  

In the second part of my career, I devoted my time to establish a better way of generating software. I 

saw how the industry was very successful in the modular construction of hardware. The software 

was still developed as a monolithic system. My experiences in this trial are reported in the chapter 

άStory of a War Agaiƴǎǘ {ƻŦǘǿŀǊŜ /ƻƳǇƭŜȄƛǘȅέΤ  and the chapter  άaŀƴŀƎƛƴƎ ǘƘŜ {ƻŦǘǿŀǊŜ DŜƴŜǊŀǘƛƻƴ 

tǊƻŎŜǎǎέ.  It taught me the power of modular design and modular construction [4]. 

Only after my retirement, I got enough time to dive deep into the foundations of physical reality. In 

2009 after the recovery of severe disease, I started my personal research project that in 2011 got its 

ŎǳǊǊŜƴǘ ƴŀƳŜ ά¢ƘŜ IƛƭōŜǊǘ .ƻƻƪ aƻŘŜƭΦέ For the rest of his life, the author takes the freedom to 

upgrade the related papers at a steady rate. 
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2 Intention 
Theoretical physics still contains unresolved subjects. These deficiencies of the theory are caused by 

the way that physics was developed and by the attitude of the physicists that designed the current 

theory. Scientists take great care to secure the trustworthiness of their work, which ends in the 

publication of the results. They take measures to prevent that their publications get intermingled 

with badly prepared publications or even worse, with descriptions of fantasies. For that reason, they 

invented the scientific method [7]. In applied physics, the scientific method founds on observations. 

Applied physics flourishes because the descriptions of observations help to explore these findings, 

especially when formulas extend the usability of the observations beyond direct observation. In 

theoretical physics, this is not always possible because not all aspects of physical reality are 

observable. The only way of resolving this blockade is to start from a proper foundation that can be 

extended via trustworthy methods that rely on deduction. This approach can only be successful if the 

deduction process is guided and restricted such that the extensions of the foundation still describe 

physical reality. Thus, if a mathematical deduction is applied, then mathematics must guide and 

restrict this process such that a mathematically consistent extension of the model is again a valid 

model of physical reality. After a series of development steps, this approach must lead to a structure 

and behavior of the model that more and more conforms to the reality that we can observe. 

This guidance and restriction are not self-evident. On the other hand, we know that when we 

investigate deeper, the structure becomes simpler and easier comprehensible. So, finally, we come 

to a fundamental structure that can be considered as a suitable foundation. The way back to more 

complicated levels of the structure cannot be selected freely. Mathematics must pose restrictions 

onto the extension of the fundamental structure. This happens to be true for a foundation that was 

discovered about eighty years ago by two scholars. They called their discovery quantum logic [8]. The 

scholar duo selected the name of this relational structure because its relational structure resembled 

closely the relational structure of the already known classical logic. Garrett Birkhoff was an expert in 

relational structures. These are sets that precisely define what relations are tolerated between the 

elements of the set. Mathematicians call these relational structures lattices, and they classified 

quantum logic as an orthomodular lattice [9]. John von Neumann was a broadly oriented scientist 

that together with others was searching for a platform that was suitable for the modeling of 

quantum mechanical systems. He long doubted between two modeling platforms. One was a 

projective geometry, and the other was a Hilbert space [10] [11] [12].Finally, he selected Hilbert 

spaces. In their introductory paper, the duo showed that quantum logic emerges into a separable 

Hilbert space. The set of closed subspaces inside a separable Hilbert space has exactly the relational 

structure of an orthomodular lattice. The union of these subspaces equals the Hilbert space. A 

separable Hilbert space applies an underlying vector space [13], and between every pair of vectors, it 

defines an inner product [14]. This inner product can only apply numbers that are taken from an 

associative division ring [15] [16]. In a division ring, every non-zero member owns a unique inverse. 

Only three suitable division rings exist. These are the real numbers, the complex numbers, and the 

quaternions. Depending on their dimension these number systems exist in several versions that 

differ in the way that Cartesian and polar coordinate systems sequence their members [17] [18]. 

In the Hilbert space, operators exist that can map the Hilbert space onto itself. In this way, the 

operator can map some vectors along themselves. The inner product of a normalized vector with 

such a map produces an eigenvalue. This turns the vector into an eigenvector. Together the 

eigenvalues of an operator form its eigenspace. This story indicates that mathematics guides and 

restricts the extension of the selected foundation into more complicated levels of the structure. It 

shows that the scholar duo started a promising development project. 

https://en.wikipedia.org/wiki/Scientific_method
https://en.wikipedia.org/wiki/Quantum_logic
https://en.wikipedia.org/wiki/Complemented_lattice#Orthomodular_lattices
https://en.wikipedia.org/wiki/Projective_geometry
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Inner_product_space
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However, this initial development was not pursued much further. Axiomatic models of physical 

reality are not popular. Most physicists mistrust this approach. Probably these physicists consider it 

naïve to suspect that an axiomatic foundation can be discovered that like the way that a seed evolves 

in a certain type of plant, will evolve into the model of the physical reality that we can observe. 

Most quantum physicists decided to take another route that much more followed the line of the 

physical version of the scientific method. As could be suspected this route gets hampered by the fact 

that not every facet of physical reality can be verified by suitable experiments. 

Mainstream quantum physics took the route [20] of quantum field theory [21], which diversified into 

quantum electrodynamics [22] and quantum chromodynamics [23]. It bases on the principle of least 

action [24], the Lagrangian equation [25] and the path integral [26] However, none of these theories 

apply a proper foundation. 

In contrast, the Hilbert Book Model Project intends to provide a purely and self-consistent 

mathematical model of physical reality [1] [20]. It uses the orthomodular lattice as its axiomatic 

foundation and applies some general characteristics of reality as guiding lines. An important 

ingredient is the modular design of most of the discrete objects that exist in the universe. Another 

difference is that the Hilbert Book Model relies on the control of coherence and binding by stochastic 

processes that own a characteristic function instead of the weak and strong forces and the force 

carriers that QFT, QED, and QCD apply [21] [22] [23].  

Crucial to the Hilbert Book Model is that reality applies quaternionic Hilbert spaces as structured 

read-only archives of the dynamic geometric data of the discrete objects that exist in the model. The 

model stores these data before they can be accessed by observers. This fact makes it possible to 

interpret the model as the creator of the universe. The classification of modules as observers 

ƛƴǘǊƻŘǳŎŜǎ ǘǿƻ ŘƛŦŦŜǊŜƴǘ ǾƛŜǿǎΤ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ŀƴŘ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿΦ ¢ƛƳŜ ǊŜǾŜǊǎŀƭ ƛǎ ƻƴƭȅ 

ǇƻǎǎƛōƭŜ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΦ Lǘ Ŏŀƴƴƻǘ ōŜ ǇŜǊŎŜƛǾŜŘ ōȅ ƻōǎŜǊǾŜǊǎ ōŜŎŀǳǎŜ ƻōǎŜǊǾŜǊǎ Ƴǳǎǘ ǘǊŀǾŜƭ 

with the scanning time window. 

  

https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_field_theory
https://en.wikipedia.org/wiki/Quantum_electrodynamics
https://en.wikipedia.org/wiki/Quantum_chromodynamics
https://en.wikipedia.org/wiki/Principle_of_least_action
https://en.wikipedia.org/wiki/Principle_of_least_action
https://en.wikipedia.org/wiki/Lagrangian_(field_theory)
https://en.wikipedia.org/wiki/Path_integral_formulation
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3 The Hilbert Book Base Model 
The Hilbert Book Model Project deviates considerably from the mainstream approaches. It tries to 

stay inside a purely mathematical model that can be deduced from the selected foundation. First, it 

designs a base model that is configured from a huge set of quaternionic separable Hilbert spaces that 

all share the same underlying vector space. One of these separable Hilbert spaces takes a special role 

and acts as a background platform. It has an infinite dimension, and it owns a unique non-separable 

Hilbert space that embeds its separable companion. Together these companion Hilbert spaces form 

the background platform of the base model. A reference operator manages the private parameter 

space of each separable Hilbert space. The elements of the version of the number system that the 

Hilbert space uses for specifying its inner products constitute this parameter space. These private 

parameter spaces float with their geometric center over the private parameter space of the 

background platform. Via the applied coordinate systems, the parameter spaces determine the 

symmetry of the corresponding Hilbert space. An elementary module resides on each floating 

separable Hilbert space. The eigenspace of a dedicated footprint operator archives the complete life 

story of this elementary module. After sequencing the real parts of these eigenvalues, the archive 

tells the life story of the point-like object as an ongoing hopping path that recurrently regenerates a 

coherent hop landing location swarm. The location density distribution that describes the swarm 

equals the square of the modulus of what physicists would call the wavefunction of the elementary 

module. Mainstream quantum physics calls the elementary modules elementary particles. They 

behave as elementary modules, but mainstream physics does not exploit that interpretation. In 

contrast, the Hilbert Book Model Project exploits the modular design of the model. 

In fact, the sequencing defines a subspace of the underlying vector space that scans as a function of 

progression over the whole model. This scanning window divides the model into a historic part, a 

window that represents the current static status quo, and a future part. In this way, the dynamic 

model resembles the paging of a book in which each page tells a universe-wide story of what 

currently happens in this continuum. This explains the name of the Hilbert Book Model. Together 

with the requirement that all applied separable Hilbert spaces share the same vector space the fact 

that a window scans the Hilbert Book Base Model as a function of a progression parameter results in 

the fact that these quaternionic separable Hilbert spaces share the same real number based 

separable Hilbert space. After sequencing the eigenvalues, the eigenspace of the reference operator 

of this Hilbert space acts as a model wide proper time clock. 

In contrast to the Hilbert Book Model, most other physical theories apply only a single Hilbert space 

that applies complex numbers for defining its inner product, or they apply a Fock space [27], which is 

a tensor product of complex number based Hilbert spaces. A tensor product of quaternionic Hilbert 

spaces [28] results in a real number based Hilbert space. In the Hilbert Book Base Model, the 

quaternionic separable Hilbert spaces share the same real number based Hilbert space. 

The coherence of the hop landing location swarm that configures the footprint of an elementary 

module is ensured by the fact that the mechanism that generates the hop landing locations is a 

stochastic process that owns a characteristic function. This characteristic function is the Fourier 

transform of the location density distribution of the hop landing location swarm. The mechanism 

reflects the effect of the ongoing embedding of the separable Hilbert space of the elementary 

module into the background non-separable Hilbert space. A continuum eigenspace of a dedicated 

operator registers the embedding of the hop landings of all elementary modules into this continuum. 

The continuum corresponds to the dynamic field that physicists call the universe. This field acts as 

the living space of all discrete objects that exist in the universe.  

https://en.wikipedia.org/wiki/Fock_space
https://arxiv.org/pdf/1101.5690.pdf
https://arxiv.org/pdf/1101.5690.pdf
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3.1 Open questions 
The suggested Hilbert Book Base Model raises some questions. The fact that the set of rational 

numbers is countable is used to suggest that a proper time clock exists and that this clock ticks with a 

fixed and model wide minimal period. The Hilbert Book Model does not offer an explanation or a 

suggestion for this minimal period. The known value of the frequency of the photon that is generated 

at the annihilation of an elementary particle offers some indication. For the electron that means a 

frequency of about 1020 Hertz. However, this elementary particle category exists in three known 

generations: electron, muon, and tau. 

Further, it is suggested that the private stochastic process generates a new hop landing location at 

each clock tick. It is possible that the stochastic process acts slower than the proper time clock and its 

rate differs for each generation. 

Also, the mass of different type categories of elementary particles differs. Currently, the Hilbert Book 

Model has no detailed explanation for that difference.  
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4 Modeling dynamic fields and discrete sets 
The eigenspace of a dedicated footprint operator in a quaternionic separable Hilbert space can 

represent the dynamic geometric data of the point-like object that resides on this Hilbert space. The 

eigenspace of operators in a quaternionic non-separable Hilbert space can, in addition, represent the 

description of a dynamic continuum. We already met the eigenspace of the reference operator, 

which represents the private parameter space of the Hilbert space. In the separable Hilbert space 

this eigenspace is countable and contains only the rational values of the version of the quaternionic 

number system that the separable Hilbert space can apply as eigenvalues. In the non-separable 

Hilbert space, the eigenspace of the reference operator also contains all the limits of the congruent 

series of rational values. Consequently, this eigenspace is no longer countable. In each of the applied 

Hilbert spaces, it is possible to use the reference operator to define a category of newly defined 

operators by taking for each eigenvector of the reference operator a new eigenvalue that equals the 

target value of a selected quaternionic function for the parameter value that equals the 

corresponding eigenvalue of the reference operator. In the quaternionic separable Hilbert space the 

new eigenspace represents the sampled field that is described by the selected quaternionic function. 

In the quaternionic non-separable Hilbert space the new eigenspace represents the full continuum 

that is described by the selected quaternionic function. Continuum eigenspaces can represent the 

mathematical equivalent of a dynamic physical field. The private parameter space of a quaternionic 

Hilbert space represents a flat field. The dynamics of a field can be described by quaternionic 

differential equations. 

Quaternionic second order partial differential equations describe the interaction between point-like 

actuators and a dynamic field. Physical fields differ from mathematical fields by the fact that the 

value of the physical field is represented in physical units. All basic fields obey the same quaternionic 

differential and integral equations. The basic fields differ in their start and boundary conditions. 

4.1 Quaternionic differential calculus 
The first order partial differential equations divide the change of a field in five different parts that 

each represent a new field. We will represent the field change operator by a quaternionic nabla 

operator. This operator behaves as a quaternionic multiplier. 

A quaternion can store a time-stamp in its real part and a three-dimensional spatial location in its 

imaginary part. The quaternionic nablaÐ acts as a quaternionic multiplying operator. Quaternionic 

multiplication obeys the equation  

 ( )( ) ,r r r r r r rc c c ab a a b b a b a b a b ab a b= + = = + + = - + + ° ³  (4.1.1) 

The ° sign indicates the freedom of choice of the handedness of the product rule that exists when 

selecting a version of the quaternionic number system. The first order partial differential follows 

from 

 , , , r
x y zt

ë ûµ µ µ µ
Ð= =Ð +Ðì ü

µ µ µ µí ý
  (4.1.2) 

The spatial nablaÐis well-known as the del operator and is treated in detail in Wikipedia. [30] [31] 

 ( ) ,r r r r rf y y y y y y y y
t

µå õ
=Ð = +Ð + =Ð - Ð +Ð +Ð °Ð³æ ö

µç ÷
  (4.1.3) 

https://en.wikipedia.org/wiki/Del
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The differential yÐ  describes the change of field y. The five separate terms in the first order 

partial differential have a separate physical meaning. All basic fields feature this decomposition. The 

terms may represent new fields. 

 ,r r rf y y=Ð - Ð   (4.1.4) 

 
r r E Bf y y y=Ð +Ð °Ð³ =- °  (4.1.5) 

fÐ  is the gradient of f . 

, fÐ is the divergence of f . 

fÐ³  is the curl of f . 

The conjugate of the quaternionic nabla operator defines another type of field change. 

 *

rÐ =Ð -Ð  (4.1.6) 

 ( )* ,r r r r rz f f f f f f f f
t

µå õ
=Ð = -Ð + =Ð + Ð +Ð -Ð Ð³æ ö

µç ÷
  (4.1.7) 

 

4.2 Field excitations 
Field excitations are solutions of second order partial differential equations.  

One of the second order partial differential equations results from combining the two first-order 

partial differential equations f y=Ð and *z f=Ð . 

 
( )( )( )

( )

* * *

,

r r r

r r

z j y y y y

y

=Ð =ÐÐ =ÐÐ = Ð +Ð Ð -Ð +

= Ð Ð + Ð Ð
  (4.2.1) 

Integration over the time domain results in the Poisson equation 

 ,r y= Ð Ð  (4.2.2) 

Under isotropic conditions, a very special sƻƭǳǘƛƻƴ ƻŦ ǘƘƛǎ Ŝǉǳŀǘƛƻƴ ƛǎ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ
1

'q q-
  of 

the affected field. This solution is the spatial Dirac()qd   pulse response of the field under strict 

isotropic conditions. 

 
( )

3

'1

' '

q q

q q q q

-
Ð =-
- -

  (4.2.3) 
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( )

( )3

'1 1
, , , 4 '

' ' '

q q
q q

q q q q q q
pd

-
Ð Ð ¹ Ð Ð =- Ð = -

- - -
  (4.2.4) 

Under these conditions, the dynamic spherical pulse response of the field is a solution of a special 

form of the equation (4.2.1)  

 ( ) ( )( ), 4 ' 'r r q qy pd q t tÐÐ + ÐÐ = - °  (4.2.5) 

Here ()q t is a step function and ()qd  is a Dirac pulse response [33] [34].  

After the instant 't, this solution is described by 

 
( )( )' '

'

f q q c n

q q

t t
y

- ° -
=

-
  (4.2.6) 

The normalized vector n  can be interpreted as the spin of the solution. The spherical pulse response 

acts either as an expanding or as a contracting spherical shock front. Over time this pulse response 

ƛƴǘŜƎǊŀǘŜǎ ƛƴǘƻ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΦ ¢Ƙƛǎ ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ ŜȄǇŀƴŘƛƴƎ ǇǳƭǎŜ ƛƴƧŜŎǘǎ ǘƘŜ ǾƻƭǳƳŜ ƻŦ ǘƘŜ 

DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƛƴǘƻ ǘƘŜ ŦƛŜƭŘΦ Subsequently, the front spreads this volume over the field. The 

ŎƻƴǘǊŀŎǘƛƴƎ ǎƘƻŎƪ ŦǊƻƴǘ ŎƻƭƭŜŎǘǎ ǘƘŜ ǾƻƭǳƳŜ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ŀƴŘ ǎǳŎƪǎ ƛǘ ƻǳǘ ƻŦ ǘƘŜ ŦƛŜƭŘΦ The 

±  sign in equation (4.2.5) selects between injection and subtraction. 

Apart from the spherical pulse response equation (4.2.5) supports a one-dimensional pulse response 

that acts as a one-dimensional shock front. This solution is described by 

 ( )( )' 'f q q c ny t t= - ° -   (4.2.7) 

Here, the normalized vector ncan be interpreted as the polarization of the solution. Shock fronts 

only occur in one and three dimensions. A pulse response can also occur in two dimensions, but in 

that case, the pulse response is a complicated vibration that looks like the result of a throw of a 

stone in the middle of a pond. 

Equations (4.2.1) and (4.2.2) show that the operators 
2

2t

µ

µ
and ,Ð Ð are valid second order partial 

differential operators. These operators combine in the quaternionic equivalent of the wave equation 

[35]. 

 
2

2
,j y

t

å õµ
= - Ð Ðæ ö
µç ÷

   (4.2.8) 

This equation also offers one-dimensional and three-dimensional shock fronts as its solutions. 

 
( )( )' '

'

f q q c

q q

t t
y

- ° -
=

-
  (4.2.9) 

 ( )( )' 'f q q cy t t= - ° -  (4.2.10) 

https://en.wikipedia.org/wiki/Wave_equation


19 
 

These pulse responses do not contain the normed vector n . Apart from pulse responses, the wave 

equation offers waves as its solutions [31 [35]. 

By splitting the field into the time-dependent part ( )Ttand a location dependent part, ( )A q , the 

homogeneous version of the wave equation can be transformed into the Helmholtz equation [36]. 

 
2

2

2
,

y
y wy

t

µ
= Ð Ð =-

µ
   (4.2.11) 

 ( , ) ( ) ( )q A q Ty t t=    (4.2.12) 

 
2

2

2

1 1
,

T
A

T A
w

t

µ
= Ð Ð =-

µ
   (4.2.13) 

 
2, A AwÐ Ð +    (4.2.14) 

The time-dependent part ( )Tt depends on initial conditions, or it indicates the switch of the 

oscillation mode. The switch of the oscillation mode means that temporarily the oscillation is 

stopped and instead an object is emitted or absorbed that compensates the difference in potential 

energy. The location-dependent part of the field ( )A q  describes the possible oscillation modes of 

the field and depends on boundary conditions.  The oscillations have a binding effect. They keep the 

moving objects within a bounded region [37].  

For three-dimensional isotropic spherical conditions, the solutions have the form 

 ( ) ( )( ) ( ){ }
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Yq j q j
¤

= =-

= +ää   (4.2.15) 

Here 
lj  and 

ly  are the spherical Bessel functions, and 
m

lY  are the spherical harmonics [38] [39]. 

These solutions play a role in the spectra of atomic modules. 

Planar and spherical waves are the simpler wave solutions of the equation (4.2.11) 

  

 ( ) ( )( ){ }0, exp ,q n k q qy t wt j= - - +  (4.2.16) 

 ( )
( )( ){ }0

0

exp ,
,

n k q q
q

q q

wt j
y t

- - +
=

-
  (4.2.17) 

A more general solution is a superposition of these basic types. 

The paper treats quaternionic differential equations more extensively in chapter 14. 

  

https://en.wikipedia.org/wiki/Helmholtz_equation
https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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5 Photons 
Photons are objects that still offer significant confusion among physicists. The mainstream 

interpretation is still that photons are electromagnetic waves [40]. This interpretation conflicts with 

the known behavior of photons. Photons that are emitted by a nearby star can be detected by a 

human eye. Since the space between the star and the earth does not contain waveguides, waves 

cannot do this trick. Electromagnetic fields require the nearby presence of electric charges. Both 

conditions forbid that photons are implemented by electromagnetic waves. 

5.1 Photon structure 
Photons are one-dimensional objects that are strings of equidistant energy packages, such that the 

string obeys the Einstein-Planck relation 

 E hn=   (5.1.1) 

The energy packages are implemented by one-dimensional shock fronts that possess a polarization 

vector. 

5.2 One-dimensional pulse responses 
One-dimensional pulse responses that act as one-dimensional shock fronts and possess a 

polarization vector are solutions of the equation (4.2.5) and are described by the equation (4.2.7).  

 ( )( )' 'f q q c ny t t= - ° -   (5.1.2) 

During travel, the front ( )f q  keeps its shape and its amplitude. So also, during long-range trips, the 

shock front does not lose its integrity. The one-dimensional pulse response represents an energy 

package that travels with speed c through its carrier field. The energy of the package has a standard 

value. 

 

 

 

5.3 Photon integrity 
Except for its speed, the photon emitter determines the properties of the photon. These properties 

are its frequency, its energy, and its polarization. The energy packages preserve their own integrity. 

They travel at a constant speed and follow a worldline. Photon emission possesses a fixed duration. It 

is not an instant process. During emission, the emitter must not move and can only rotate around the 

direction of travel. Failing these requirements will compromise the integrity of the photon and make 

In the animation of this left handed 

circular polarized photon, the black 

arrows represent the moving shock 

fronts [41]. The red line connects the 

vectors that indicate the amplitudes 

of the separate shock fronts. Here the 

picture of a guided wave is borrowed 

to show the similarity with such EM 

waves. However,  

photons are not EM waves! 

https://en.wikipedia.org/wiki/Circular_polarization
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it impossible for a distant, tiny absorber to capture the full photon. In that case, the energy packages 

will spray and fly to multiple locations. Consequently, they will act like dark energy objects. 

The absorption of a photon by an atom requires an incredible aiming precision of the emitter. In fact, 

this emission can only be comprehended when it is interpreted as the time reversal of the 

corresponding emission process. If the absorbing atom cannot cope with the full energy of the 

photon, then it might absorb only part of the energy packages of the photon. The rest will stay on its 

route to the next absorber. Absorbing individual energy packages will result in an increase in the 

kinetic energy of the absorber. Absorbing the full photon or a part of it will result in an increase in 

the potential energy of the absorber. Usually, this results in a higher oscillation mode of one or more 

of the components of the absorber. 

5.4 Light 
Light is a dynamic spatial distribution of photons. Often the location density distribution of photons 

owns a Fourier transform. In that case, light may show wave behavior. Photons are one-dimensional 

particles that feature private frequency and energy. Single photons do not show wave behavior. 

Photons and light waves will feature different frequencies. 

5.5 Optics 
Optics is the science of imaging distributions of particles that can be characterized by a location 

density distribution and a corresponding Fourier transform of that location density distribution. Even 

though photons have a fixed non-zero spatial length, optics will treat these particles as point-like 

objects.  Another name for the location density distribution is point spread function (PSF). Another 

name for the Fourier transform of the PSF is the optical transfer function (OTF) [42]. Apart from a 

location density distribution, the swarm of the particles is also characterized by an angular 

distribution and by an energy distribution. In the case of photons, the energy distribution is also a 

chromatic distribution. 

A linearly operating imaging device can be characterized by its point spread function or alternatively 

by its OTF. This point spread function is an image of a point-like object. The PSF represents the blur 

that is introduced by the imaging device. For a homogeneous distribution of particle properties, the 

h¢C ƻŦ ŀ ŎƘŀƛƴ ƻŦ ƭƛƴŜŀǊƭȅ ƻǇŜǊŀǘƛƴƎ ƛƳŀƎƛƴƎ ŘŜǾƛŎŜǎ Ŝǉǳŀƭǎ ǘƘŜ ǇǊƻŘǳŎǘ ƻŦ ǘƘŜ h¢CΩǎ ƻŦ ǘƘŜ ǎŜǇŀǊŀǘŜ 

devices. 

The imaging properties of an imaging device may vary as a function of the location and the 

orientation in the imaging surface. 

Without the presence of the traveling particles, the imaging devices keep their OTF. Small apertures 

and patterns of apertures feature an OTF. That OTF handles single particles similarly as this feature 

handles distributions of particles. 

  

https://en.wikipedia.org/wiki/Optical_transfer_function
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5.6 Modular design and construction 
The discrete objects that exist in the universe show a modular design. In modular configurations, 

elementary particles behave as elementary modules. Together they constitute all modules that exist 

in the universe. Some modules constitute modular systems. 

Also, photons show a modular structure. 

5.7 Elementary modules 

 Symmetry-related charge 
Elementary modules are very complicated objects that reside on a private platform, which possesses 

some of the characteristic properties of the elementary module. These properties establish the type 

of elementary module. 

Elementary modules reside on a private Hilbert space, which uses a selected version of the 

quaternionic number system to specify its inner products. Consequently, the operators in this Hilbert 

space apply members of this version to specify its eigenvalues. The eigenspace of this operator 

reflects the properties of this version. Thus, the eigenspace of the reference operator reflects the 

symmetry of the Hilbert space. Its geometric center floats over the background parameter space. The 

symmetry is defined relative to the symmetry of the background platform. Mathematics can 

compare these differences when the axes of the Cartesian coordinate systems in these parameter 

spaces are parallel to each other. The model applies the Stokes theorem and the Gauss theorem to 

determine  the effect of the symmetry differences [43] [44]. See section 16.3. The only freedoms that 

are left are the locations of the geometric centers of the parameter spaces and the way that the 

elements of the versions of the number systems are sequenced along the axes. These restrictions 

reduce the list of symmetry differences to a short list. It means that the elementary modules exist in 

a small number of different symmetry-related categories. The symmetry difference is represented by 

a symmetry-related charge that resides at the geometric center of the private parameter space. The 

opposed restrictions that determine the allowable versions of the quaternionic number system 

restrict the list of values of symmetry-related charges to 3, 2, 1,0, 1, 2, 3- - - + + +. The isotropic 

symmetry differences are represented by 3,0, 3- +  

 The symmetry-related charges correspond to symmetry-related fields. At the location of the charge, 

a source or a sink generates a corresponding potential.  

The anisotropic differences spread over the three coordinate axes and are indicated by 

corresponding RGB color charges. If we extend this distinguishing to the real axis of the parameter 

spaces, then the anti-color charges add to the three RGB color charges. Further, the product rule of 

the quaternions introduces diversity in the handiness of the version of the number system. The polar 

coordinate system also allows the polar angle and the azimuth to run up or down. The range of the 

polar angle is ʌ radians. The range of the azimuth is 2ʌ radians. This freedom of choice adds to the 

freedom that is left by the Cartesian coordinate system. 

The first conclusion is that elementary modules exist in a short list of categories that differ in their 

symmetry-related properties, in their angular range properties, and in their arithmetic properties. 

  

https://en.wikipedia.org/wiki/Stokes%27_theorem
https://en.wikipedia.org/wiki/Divergence_theorem
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5.8 Modular configuration 
The elementary modules can combine into composed modules. Some modules combine into 

modular systems. However, not all modules can compose with arbitrary other modules. For example, 

symmetry-related charges that have the same sign will repel each other, while symmetry-related 

charges with a different sign will attract. Composition applies internal oscillation of the components 

of the module. This is explained in the next section. Only elementary modules with the proper 

angular symmetry can take part in the modular composition process. These elementary modules are 

called fermions. The other elementary modules are called bosons. Inside a composed module, 

fermions cannot share the same oscillation mode and cannot share the same angular properties, 

such as spin. The binding via internal oscillation must be supported by the attraction that is caused 

by deformation of the embedding field. The symmetry-related charges also influence the efficiency 

of the bond. The anisotropic elementary modules cannot themselves deform the embedding field. 

They must first combine into colorless hadrons before their combination can deform the embedding 

field. Physicists call this phenomenon color confinement.  

The hop landings of isotropic elementary modules can produce spherical pulse responses that 

deform the embedding field. Similarly, the hop landings of hadrons can produce such spherical pulse 

responses. 

 Open question 
The Hilbert Book Model does not explain why fermions feature an exclusion principle, while bosons 

do not possess such property. This phenomenon determines the structure of atoms and is known as 

the Pauli exclusion principle. 
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5.9 Stochastic control 
For each elementary module, a private stochastic process generates the hop landing locations in the 

ongoing hopping path that recurrently regenerates the coherent hop landing location swarm that 

constitutes the footprint of the elementary module. Only for isotropic elementary modules, the hop 

landings can deform the embedding field. The footprints of anisotropic elementary modules must 

first combine into colorless hadrons before these footprints can deform the embedding field. This 

phenomenon is known as color confinement. 

The type of stochastic process that generates the footprint of elementary modules owns a 

characteristic function that equals the Fourier transform of the location density distribution of the 

coherent hop landing location swarm. It is possible to interpret the stochastic process as a spatial 

Poisson point process in ᴙ3 [45] . The intensity function of this process is implemented by a spatial 

point spread function that equals the location density distribution of the generated hop landing 

location swarm. The eigenspace of the footprint operator archives the target values of a quaternionic 

function, whose spatial part describes the point spread function. A cyclic random distribution 

describes the real parts of these target values. After sequencing these real parts, the eigenspace 

describes the ongoing hopping path of the elementary module. 

The location density distribution can be interpreted as a detection probability density distribution. If 

it has a Fourier transform, then a kind of uncertainty principle exists between the standard deviation 

of the detection probability density distribution and the standard deviation of the modulus of this 

Fourier transform [46].  If the standard deviation of the modulus of this Fourier transform increases, 

then the standard deviation of the detection probability density distribution decreases (and vice 

versa).  

The second type of stochastic process controls composed modules. This process also owns a 

characteristic function. This characteristic function is a dynamic superposition of the characteristic 

functions of the components of the module. The superposition coefficients act as displacement 

generators. In this way, these coefficients control the internal positions of the components. Inside 

atoms, these components perform their own oscillation mode. All modules attach an extra 

displacement generator to their characteristic function. This displacement generator determines the 

location of the full module. 

This analysis tells that the characteristic functions, which reside in Fourier space define the 

constitution of the module.   In Fourier space spatial locality has no meaning. It means that the 

components of a module can be far apart. The phenomenon is known as entanglement [47]. Only the 

attracting influences of potentials can keep components closely together. 

 Superposition 
The way that superposition is implemented in the Hilbert Book Model explains the most important 

difference between classical physics and quantum physics. Superposition of field excitations occurs in 

Fourier space and is controlled by the characteristic functions of stochastic processes. Color 

confinement inhibits the generation and subsequent superposition of the field excitation for quarks. 

They must first combine into colorless hadrons before they can generate the required pulse 

responses. Also, this combination is controlled by oscillations that are managed by the characteristic 

functions of the corresponding stochastic processes. 

Since the definition of a composed module is defined in Fourier space, the location of the components 
of the modules in configuration space is not important for this definition. This definition does not 
depend on this location. Entanglement is the phenomenon that allows components of a module to 
locate far apart. This fact becomes observable when these components possess exclusive properties. 

https://en.wikipedia.org/wiki/Poisson_point_process
https://en.wikipedia.org/wiki/Poisson_point_process
https://en.wikipedia.org/wiki/Uncertainty_principle
https://en.wikipedia.org/wiki/Quantum_entanglement
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 Open questions 
The Hilbert Book Model offers no detailed explanation of why the ongoing embedding of elementary 

modules is represented by a private stochastic process that owns a characteristic function. Similarly, 

the Hilbert Book Model offers no explanation for the fact that binding of modules inside composed 

modules is controlled by a stochastic process that owns a characteristic function that is a dynamic 

superposition of the characteristic functions of its components. In effect, this means that the HBM 

does not explain why the superposition of modules is defined in Fourier space. 
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5.10 Benefits of modular design and construction 
The modular design hides relations that are only relevant inside the module from the outside of the 

module. In this way, the modular design reduces the relational complexity of the construction of 

composed modules. This is further improved by the possibility to gather relations in standard 

interfaces. This standardization promotes the reusability of modules. The fact that composed 

modules can be generated from lower level modules has an enormously beneficial effect on the 

reduction of the relational complexity of the modular composition process. 

By applying modular design, the creator has prepared the universe for modular construction, which is 

a very efficient way of generating new objects. However, modular configuration of objects involves 

the availability of modules that can be joined to become higher level modules or modular systems. 

This means that enough resources must be available at the proper place and the proper time. The 

generation of a module out of composing modules makes sense when the new module has a 

profitable functionality. An advantage can be that the new module or modular system has a better 

chance of survival in a competitive environment. In that case, stochastic modular design can easily 

win from monolithic design. Evolution can evolve with a pure stochastic modular design. However, as 

soon as intelligent species are generated as modular systems, then these individuals can take part in 

the control of evolution by intelligent modular design. Intelligent modular design and construction 

occur much faster than stochastic modular design and construction. However, intelligent modular 

design and construction only occur where intelligent species exist. These locations are not 

widespread in the universe. 

 Modular hierarchy 
The modular hierarchy starts with elementary modules. Elementary modules exist in several types 

that differ in their basic properties. 

These basic properties are their symmetry-related charge, their spin, and their regeneration cycle. 

 Compound modules 
Compound modules are composed-modules for which the geometric centers of the platforms of the 

components coincide. The charges of the platforms of the elementary modules establish the binding 

of the corresponding platforms. Physicists and chemists call these compound modules atoms or 

atomic ions [48]. 

In free compound modules, the symmetry-related charges do not take part in the oscillations. The 

targets of the private stochastic processes of the elementary modules oscillate. This means that the 

hopping path of the elementary module folds around the oscillation path and the hop landing 

location swarm gets smeared along the oscillation path. The oscillation path is a solution of the 

Helmholtz equation [36]. Each fermion must use a different oscillation mode. A change of the 

oscillation mode goes together with the emission or the absorption of a photon. The center of 

emission coincides with the geometrical center of the compound module. During the emission or 

absorption, the oscillation mode and the hopping path halt, such that the emitted photon does not 

lose its integrity. Since all photons share the same emission duration, that duration must coincide 

with the regeneration cycle of the hop landing location swarm. Absorption cannot be interpreted so 

easily. In fact, it can only be comprehended as a time-reversed emission act. Otherwise, the 

absorption would require an incredible aiming precision for the photon.  

The type of stochastic process that controls the binding of components appears to be responsible for 

the absorption and emission of photons and the change of oscillation modes. If photons arrive with 

too low energy, then the energy is spent on the kinetic energy of the common platform. If photons 
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arrive with too high energy, then the energy is distributed over the available oscillation modes, and 

the rest is spent on the kinetic energy of the common platform, or it escapes into free space. The 

process must somehow archive the modes of the components. It can apply the private platform of 

the components for that purpose. Most probably the current value of the dynamic superposition 

coefficient is stored in the eigenspace of a special superposition operator. 

5.10.2.1 Open questions 

The Hilbert Book Model does not reveal the fine details of the photon emission, and consequently, it 

does not reveal the fine details of photon absorption. 

 Molecules 
Molecules are conglomerates of compound modules that each keep their private geometrical center 

[49]. However, electron oscillations are shared among the compound modules. Together with the 

symmetry-related charges, this binds the compound modules into the molecule. 

 Consciousness and intelligence 
In the Hilbert Book Model, all modules are considered to act as observers. That does not mean that 

these modules react to the perceived information in a conscious or intelligent way. In the hierarchy 

of modular systems, compared to intelligence, consciousness already enters at lower levels of 

complexity [50] [51]. However, consciousness cannot be attributed to non-living modular systems. 

Primitive life forms have primitive degrees of consciousness. 

Intelligent species show self-reflection and can create strategies that guard their type-community or 

their social-community. Conscious species can also develop such guarding measures, but that is 

usually a result of trial and error instead of a developed strategy. The strategy is then inherited via 

genes. 

For intelligent species, the modular design strategy of the creator can be an inspiration. 

¶ Modular design is superior to monolithic design. 

¶ Modular construction works economically with resources. 

¶ It is advantageous to have access to a large number and a large diversity of suitable modules. 

¶ Create module-type communities. 

¶ Type communities survive far longer than the corresponding individual modules. 

¶ Members must guard their module type community. 

¶ Type communities may inherit and cultivate the culture of their members. 

¶ Modular systems must care about the type communities on which they depend. 

¶ Modular systems must care about their living environment. 

¶ 5ŀǊǿƛƴΩǎ ǎǘŀǘŜƳŜƴǘ ǘƘŀǘ ǘƘŜ ŦƛǘǘŜǎǘ ƛƴŘƛǾƛŘǳŀƭ ǿƛƭƭ survive must be replaced by the statement 

that the module-type community survives that cares best for its members, its resources and 

its environment.  

In modern human activity, hardware is often designed and constructed in a modular way. In 

contrast, the software is typically designed and constructed in a non-modular way. In 

comparison, software is far less robust than hardware. 
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6 Dark objects and progression zigzag 
The effects of the shock fronts that are caused by pulses are so tiny that no measuring instrument 

will ever be able to detect the presence of the single shock fronts. Thus, these field excitations can 

rightfully be called dark objects or more in detail dark energy and dark matter [52] [53]. These 

objects become noticeable in huge coherent ensembles that may contain about 1010 elements. The 

one-dimensional shock fronts combine in photons, and the spherical shock fronts combine in the 

footprints of elementary particles. They can exchange roles in pair production and pair annihilation 

events. For observers, these events pose interpretation problems. However, the model can interpret 

these events as time reversal that converts a particle into its antiparticle or vice versa. This 

interpretation relies on the mass-energy equivalence and on the fact that during the conversion each 

one-dimensional shock front is exchanged against a spherical shock front. In this interpretation, 

elementary particles can zigzag through the time domain. This vision suggests that elementary 

particles never die, but at the utmost change the direction of their life story and turn into its 

antiparticle. The conversion does not happen instantaneously. It takes the full regeneration cycle of 

the hop landing location swarm of the elementary particle. The universe-wide proper time clock ticks 

with a frequency of about 1020 ticks per second, and the regeneration then takes about 1010 proper 

time clock ticks. 

In huge numbers, spurious dark objects may still cause noticeable influences. The halo of dark matter 

around galaxies is known to produce gravitational lensing effects. 

Even though the Hilbert Book Model does not consider the shock fronts as the lowest level of 

modules, the shock fronts together constitute all discrete objects that exist in the universe. 

The Hilbert Book model considers elementary modules as the lowest level modules. They are 

complicated constructs that consist of a quaternionic separable Hilbert space, a selected version of 

the quaternionic number system and a private stochastic process that generates their life story. 
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7 Gravity 
Mainstream physics considers the origin of the deformation of our living space as an unsolved 

problem [54]. It presents the Higgs mechanism as the explanation of why some elementary particles 

get their mass [55] [56]. The Hilbert Book Model relates mass to deformation of the field that 

represents our universe. This deformation causes the mutual attraction of massive objects [57]. 

7.1 A deforming field excitation 
A spherical pulse response is a solution of a homogeneous second order partial differential equation 

that was triggered by an isotropic pulse. The corresponding field equation and the corresponding 

solution are repeated here. 

 ( ) ( )( ), 4 ' 'r r q qy pd q t tÐÐ + ÐÐ = - °  (8.1.1) 

Here the ±  sign represents time inversion. 

 
( )( )' '

'

f q q c n

q q

t t
y

- ° -
=

-
  (8.1.2) 

¢ƘŜ ǎǇƘŜǊƛŎŀƭ ǇǳƭǎŜ ǊŜǎǇƻƴǎŜ ƛƴǘŜƎǊŀǘŜǎ ƻǾŜǊ ǘƛƳŜ ƛƴǘƻ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŦƛŜƭŘΦ ¢ƘŜ DǊŜŜƴΩǎ 

function is a solution of the Poisson equation.  

 ,r y= Ð Ð  (8.1.3) 

¢ƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŎcupies some volume.  
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This means that locally the pulse pumps some volume into the field, or it subtracts volume out of the 

field. The selection between injection and subtraction depends on the sign in the step function in the 

equation (8.1.1). The dynamics of the spherical pulse response shows that the injected volume 

quickly spreads over the field. In the case of volume subtraction, the front first collects the volume 

and finally subtracts it at the trigger location. Gravitation considers the case in which the pulse 

response injects volume into the field. 

Thus, locally and temporarily, the pulse deforms the field, and the injected volume persistently 

expands the field. 

This paper postulates that the spherical pulse response is the only field excitation that temporarily 

deforms the field, while the injected volume persistently expands the field. 

 The effect of the spherical pulse response is so tiny and so temporarily that no instrument can ever 

measure the effect of a single spherical pulse response in isolation. However, when recurrently 

regenerated in huge numbers in dense and coherent swarms the pulse responses can cause a 

significant and persistent deformation that instruments can detect. This is achieved by the stochastic 

processes that generate the footprint of elementary modules. 

The spherical pulse responses are straightforward candidates for what physicists call dark matter 

objects. A halo of these objects can cause gravitational lensing. 



31 
 

7.2 Gravitation potential 
The gravitation potential that an elementary module causes can be approached by the convolution of 

ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŦƛŜƭŘ ŀƴŘ ǘƘŜ ƭƻŎŀǘƛƻƴ ŘŜƴǎƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ǘƘŜ hop landing location 

swarm. This approximation is influenced by the fact that the deformations, which are due to the 

individual pulse responses quickly fade away. Further, the density of the location distribution affects 

the efficiency of the deformation. 

¢ƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ŘŜǎŎǊƛōŜǎ ǘƘŜ ǊŜǎǳƭǘ ƻŦ ŀ Ǉƻƛƴǘ-like pulse whose response has a mass of its own. 

We know how to compute the mass of a distribution of point masses [58]. At some distance of the 

center of the swarm, the gravitation potential can be approximated by [59] 

 ( )
Gm

g r
r

º  (8.2.1) 

where m is the mass of the object and r equals the distance to the center of mass. Here we omit the 

physical units. G is the gravitational constant. The fact that a distribution of point-like masses causes 

the gravitation potential makes this simple approximation possible. 

More exactly, the gravitation potential of the elementary module can be approximated by taking the 

convolution of the location density distribution of the hop landing location swarm. If we do this for 

example for a Gaussian location density distribution, then the convolution results in [60] 

 
( )
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ERF r

g r Gm
r

º  (8.2.2) 

 

Where ( )ERF r  is the well-known error function. Here the gravitation potential is a perfectly 

smooth function that at some distance from the center equals the approximated gravitation 

potential that was described above in equation (8.2.1). The convolution only offers an approximation 

because this computation does not account for the influence of the density of the swarm and it does 

not compensate for the fact that the deformation by the individual pulse responses quickly fades 

away. Thus, the exact result depends on the duration of the recurrence cycle of the swarm. 

In the example, we apply a normalized location density distribution, but the actual location density 

distribution might have a higher amplitude. 

This might explain why some elementary module types exist in three generations [61] [62] [63]. 

 

 

https://en.wikipedia.org/wiki/Center_of_mass
https://en.wikipedia.org/wiki/Gravitational_potential
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7.3 Regeneration 
The generation of the hopping path is an ongoing process. The generated hop landing location 

swarm contains a huge number of elements. Each elementary module type is controlled by a 

corresponding type of stochastic process. For the stochastic process, only the Fourier transform of 

the location density distribution of the swarm is important. Consequently, for a selected type of 

elementary module, it does not matter at what instant of the regeneration of the hop landing 

location swarm the location density distribution is determined. Thus, even when different types are 

bonded into composed modules, there is no need to synchronize the regeneration cycles of different 

types. This freedom also means that the number of elements in a hop landing location swarm may 

differ between elementary module types. This means that the strength of the deformation of the 

embedding field can differ between elementary module types. The strength of deformation relates 

to the mass of the elementary modules according to formula (8.2.1). 

The requirement for regeneration introduces a great mystery. All generated mass appears to dilute 

away and must be recurrently regenerated. This fact conflicts with the conservation laws of 

mainstream physics. The deformation work done by the stochastic processes vanishes completely. 

What results is the ongoing expansion of the field. Thus, these processes must keep generating the 

particle to which they belong. The stochastic process accurately regenerates the hop landing location 

swarm, such that its rest mass stays the same. 

Only the ongoing embedding of the content that is archived in the floating platform into the 

embedding field can explain the activity of the stochastic process. This supposes that at the instant of 

creation, the creator already archived the dynamic geometric data of his creatures into the 

eigenspaces of the footprint operators. These data consist of a scalar time-stamp and a three-

dimensional spatial location. The quaternionic eigenvalues act as storage bins.  

After the instant of creation, the creator left his creation alone. The set of floating separable Hilbert 

spaces, together with the background Hilbert space, act as a read-only repository. After sequencing 

the time-stamps, the stochastic processes read the storage bins and trigger the embedding of the 

location into the embedding field in the predetermined sequence. 

 Open question 
If the instant of archival proceeds the passage of the window that scans the Hilbert Book Base Model 

as a function of progression, then the behavior of the model does not change. This indicates a 

freedom of the model. 

7.4 Inertia 
The relation between inertia and mass is complicated [64] [65]. It assumes that a field xexists that 

tries to compensate for the change of the field when its vector part suddenly changes with time.  

This special field supports the hop landing location swarm that resides on the floating platform. It 

reflects the activity of the stochastic process, and it floats with the platform over the background 

platform. It is characterized by a mass value and by the uniform velocity of the platform with respect 

to the background platform. The real part conforms to the deformation that the stochastic process 

causes. The imaginary part conforms to the speed of movement of the floating platform. The main 

characteristic of this field is that it tries to keep its overall change zero. We callx the deformation 

field. 
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The first order change of a field contains five terms. Mathematically, the statement that in first 

approximation nothing in the field xchanges, indicates that locally, the first order partial differential 

xÐ  will be equal to zero. 

 , 0r r r rz x x x x x x=Ð =Ð - Ð +Ð +Ð °Ð³ = (8.4.1) 

The terms that are still eligible for change must together be equal to zero. These terms are. 

 0r rx xÐ +Ð = (8.4.2) 

In the following text plays xthe role of the vector field andrxplays the role of the scalar 

gravitational potential of the considered object. We approximate this potential by using formula 

(8.2.1). 
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 and the uniform speed v .  

If this object accelerates, then the new field ,
m

v
r

ë û
ì ü
í ý

 tries to counteract the change of the field v  by 

compensating this with an equivalent change of the real part 
m

r
 of the new field. According to the 

equation (8.4.2), this equivalent change is the gradient of the real part of the field. 
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This generated vector field acts on masses that appear in its realm. 

Thus, if two masses 1m  and 2m  ŜȄƛǎǘ ƛƴ ŜŀŎƘ ƻǘƘŜǊΩǎ ƴŜƛƎƘōƻǊƘƻƻŘΣ ǘƘŜƴ ŀƴȅ ŘƛǎǘǳǊōŀƴŎŜ ƻŦ ǘƘŜ 

situation will cause the gravitational force 
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The disturbance by the ongoing expansion of the field suffices to put the gravitational force into 

action. The description also holds when the field xdescribes a conglomerate of platforms and m

represents the mass of the conglomerate. 

In compound modules such as ions and atoms, the field x of a component oscillates with the 

deformation rather than with the platform. 

 

Inertia bases mainly on the definition of mass that applies to the region outside the sphere where 

ǘƘŜ ƎǊŀǾƛǘŀǘƛƻƴ ǇƻǘŜƴǘƛŀƭ ōŜƘŀǾŜǎ ŀǎ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŦƛŜƭŘΦ ¢ƘŜǊŜ the formula 
r

m

r
x=

applies. Further, it bases in the intention of modules to keep the gravitation potential inside the 
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mentioned sphere constant. At least that holds when this potential is averaged over the regeneration 

period. In that case, the overall change zof the deformation fieldxequals zero. Next, the definition 

of the deformation field supposes that the swarm which causes the deformation moves as one unit. 

Further, the fact is used that the solutions of the homogeneous second order partial differential 

equation can superpose in new solutions of that same equation. 

The popular sketch in which the deformation of our living space is presented by smooth dips is 

obviously false. The story that is represented in this paper shows the deformations as local 

extensions of the field, which represents the universe. In both sketches, the deformations elongate 

the information path, but none of the sketches explain why two masses attract each other. The 

above explanation founds on the habit of the stochastic process to recurrently regenerate the same 

time average of the gravitation potential, even when that averaged potential moves uniformly. 

Without the described habit of the stochastic processes, inertia would not exist. 

Similar tricks can be used to explain the electrical force from the fact that the electrical field is 

ǇǊƻŘǳŎŜŘ ōȅ ǎƻǳǊŎŜǎ ŀƴŘ ǎƛƴƪǎ ǘƘŀǘ Ŏŀƴ ōŜ ŘŜǎŎǊƛōŜŘ ōȅ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΦ  
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8 In the beginning 
Before the stochastic processes started their action, the content of the universe was empty. It 
was represented by a flat field that in its spatial part was equal to the parameter space. In the 
beginning, a huge number of these stochastic processes started their triggering of the dynamic 
field that represents the universe. From that moment on the universe started expanding. This did 
not happen at a single point. Instead, it happened at a huge number of locations that were 
distributed all over the spatial part of the parameter space of the quaternionic function that 
describes the dynamic field. 

 

Close to the begin of time, all distances were equal to the distances in the flat parameter space. 
Soon, these islands were uplifted with volume that was emitted at nearby locations. This flooding 
created growing distances between used locations. After some time, all parameter space 
locations were reached by the generated shock waves. From that moment on the universe 
started acting as an everywhere expanded continuum that contained deformations which in 
advance were very small. Where these deformations grew, the distances grew faster than in the 
environment. A uniform expansion appears the rule and local deformations form the exception. 
Deformations make the information path longer and give the idea that time ticks slower in the 
deformed and expanded regions. This corresponds with the gravitational red-shift of photons. 
 
Composed modules only started to be generated after the presence of enough elementary 
modules. The generation of photons that reflected the signatures of atoms only started after the 
presence of these compound modules. However, the spurious one-dimensional shock fronts 
could be generated from the beginning. 
 
 
This picture differs considerably from the popular scene of the big bang that started at a single 
location. 
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9 Life of an elementary module 
An elementary module is a complicated construct. First, the particle resides on a private quaternionic 

separable Hilbert space that uses a selected version of the quaternionic number system to specify 

the inner products of pairs of Hilbert vectors and the eigenvalues of operators. The vectors belong to 

an underlying vector space. All elementary modules share the same underlying vector space. The 

selected version of the number system determines the private parameter space, which is managed 

by a dedicated reference operator. The coordinate systems that sequence the elements of the 

parameter space determine the symmetry of the Hilbert space and the elementary module inherits 

this symmetry. The private parameter space floats over a background parameter space that belongs 

to a background platform. The background platform is a separable Hilbert space that also applies the 

same underlying vector space. The difference in the symmetry between the private parameter space 

and the background parameter space gives rise to a symmetry-related (electric) charge and a related 

color charge. The electric charge raises a corresponding symmetry-related field. The corresponding 

source or drain locates at the geometric center of the private parameter space. 

The eigenspace of a dedicated footprint operator contains the dynamic geometric data that after 

sequencing of the time-stamps form the complete life-story of the elementary module. A subspace of 

the underlying vector space acts as a window that scans over the private Hilbert space as a function 

of a progression parameter that corresponds with the archived time-stamps. This subspace 

synchronizes all elementary modules that exist in the model. 

Elementary particles are elementary modules, and together these elementary modules form all 

modules and modular systems that exist in the universe. 

The complicated structure of elementary modules indicates that these particles never die. This does 

not exclude the possibility that elementary modules can zigzag over the progression parameter. 

Observers will perceive the progression reflection instants as pair creation and pair annihilation 

ŜǾŜƴǘǎΦ ¢ƘŜ ȊƛƎȊŀƎ ǿƛƭƭ ƻƴƭȅ ōŜŎƻƳŜ ŀǇǇŀǊŜƴǘ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΦ Thus, only the footprint of the 

elementary module is recurrently recreated. Its platform persists. 

Probably the zigzag events correspond to an organized replacement of quaternions by two complex 

numbers or its reversal as is described in the Cayley-Dickson doubling [77]. 

A private stochastic process will recurrently regenerate the footprint of the elementary module in a 

cyclic fashion. During a cycle, the hopping path of the elementary module will have formed a 

coherent hop landing location swarm. A location density distribution describes this swarm. This 

location density distribution equals the Fourier transform of the characteristic function of the 

stochastic process that generates the hop landing locations. The location density distribution also 

equals the squared modulus of the wavefunction of the particle. This stochastic process mimics the 

mechanism that the creator applied when he created the elementary module. The stochastic process 

also represents the embedding of the eigenspace of the footprint operator into the continuum 

eigenspace of an operator that resides in the non-separable companion of the background platform. 

This continuum eigenspace represents the universe. 

The differences between the symmetry of the private parameter space and the background 

parameter space give rise to symmetry-related charges that locate at the geometric center of the 

private parameter space. These charges give rise to symmetry-related fields. Via the geometric 

center of the platform, these symmetry-related fields couple to the field that represents the 

universe. 
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The kinetic energy of the platform is obtained from the effects of one-dimensional shock fronts. In 

many cases, these energy packages are combined in photons. 
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10 Relational structures 
Lattice theory is a branch of mathematics [66]. 

10.1 Lattice 
A lattice is a set of elements , , ,...a b c  that is closed for the connections Æ andÇ. These 

connections obey: 

¶ The set is partially ordered.  

o This means that with each pair of elements ,a bbelongs to an elementc , such 

that a cË andb cË .  

¶ The set is a Æhalf lattice.  

o This means that with each pair of elements ,a ban element c  exists, such that 

c a b= Æ.  
¶ The set is a Ç half lattice. 

o This means that with each pair of elements ,a ban element cexists, such that

c a b= Ç.  
¶ The set is a lattice. 

o This means that the set is both a Æ half lattice and a Ç half lattice. 
 

The following relations hold in a lattice:  

 a b b aÆ = Æ (11.1.1) 

 ( ) ( )a b c a b cÆ Æ = Æ Æ (11.1.2) 

 ( )a a b aÆ Ç = (11.1.3) 

 a b b aÇ = Ç (11.1.4) 

 ( ) ( )a b c a b cÇ Ç = Ç Ç (11.1.5) 

 ( )a a b aÇ Æ = (11.1.6) 

The lattice has a partial order inclusion Ë: 

 a b a b aË Ú Æ = (11.1.7) 

10.2 Lattice types 
A complementary lattice contains two elements nand e,and with each element a; it contains a 

complementary element 'a such that [67]: 

 'a a nÆ =  (11.2.1) 

 a n nÆ =  (11.2.2) 

 a e aÆ =  (11.2.3) 

 'a a eÇ =  (11.2.4) 

 a e eÇ =  (11.2.5) 
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 a n aÇ =  (11.2.6) 

An orthocomplemented lattice contains two elements n and e ,and with each element a; it contains 

an element "a  such that [68]: 

 ''a a eÇ = (11.2.7) 

 "a a nÆ =  (11.2.8) 

 ()
"

"a a=  (11.2.9) 

 " "a b b aË Ú Ë  (11.2.10) 

e is the unity element; n is the nullelement of the lattice 

 

A distributive lattice supports the distributive laws [69]: 

 ( )( ) ( )a b c a b a cÆ Ç = Æ Ç Æ (11.2.11) 

 ( )( ) ( )a b c a b a cÇ Æ = Ç Æ Ç (11.2.12) 

A modular lattice supports [70]: 

 ( ) ( ) ( )( )a b a c a b a cÆ Ç Æ = Æ Ç Æ (11.2.13) 

Every distributive lattice is modular. 

An orthomodular lattice supports instead [71]: 

There exists an element d  such that 

 ( ) ( ) ( )a c a b c a b c d cË Ú Ç Æ = Ç Æ Ç Æ (11.2.14) 

where d obeys: 

 ( )a b d dÇ Æ = (11.2.15) 

 a d nÆ =  (11.2.16) 

 b d nÆ =  (11.2.17) 

 ( ) ( )a g and b g d gË Ë Ú Ë  (11.2.18) 

In an atomic lattice holds [72] 

 { }{ }{ }p L x L x p x n$ ' " ' Ë Ý = (11.2.19) 

 { }{ } ( ) ( ) ( )( ){ }a L x L a x a p x a or x a p" ' " ' Ì Ì Æ Ý = = Æè øê ú (11.2.20) 

p  is an atom 
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10.3 Well known lattices 
Boolean logic, also called classical logic, has the structure of an orthocomplemented distributive and 

atomic lattice [73] [74]. 

Quantum logic has the structure of an orthocomplemented weakly modular and atomic lattice [75].  

It is also called an orthomodular lattice [71]. 
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11 Quaternions 
Quaternions were discovered by Rowan Hamilton in 1843 [77] [76]. Later, in the twentieth century, 

quaternions fell in oblivion.  

Hilbert spaces can only cope with number systems whose members form a divisions ring [14]. 

Quaternionic number systems represent the most versatile division ring. Quaternionic number 

systems exist in many versions that differ in the way that coordinate systems can sequence them. 

Quaternions can store a combination of a scalar time-stamp and a three-dimensional spatial location. 

Thus, they are ideally suited as storage bins for dynamic geometric data.  

In this paper, we represent quaternion q  by a real one-dimensional part rq  and a three-dimensional 

imaginary part q  . The summation is commutative and associative 

The following quaternionic multiplication rule describes most of the arithmetic properties of the 

quaternions. 

 ( )( ) ,r r r r r r rc c c ab a a b b a b a b a b ab a b= + = = + + = - + + ° ³  (12.1.1) 

The ° sign indicates the freedom of choice of the handedness of the product rule that exists when 

selecting a version of the quaternionic number system. 

A quaternionic conjugation exists 

 

 
* *( )r rq q q q q= + = -  (12.1.2) 

 ( )
* * *ab b a=   (12.1.3) 

The norm q  equals 

 2 ,rq q q q= +   (12.1.4) 

 

 1

2

1 q
q

q q

-= =   (12.1.5) 

 exp
q

q q q
q

j

å õ
= æ öæ ö

ç ÷
  (12.1.6) 

q

q
 is the spatial direction of q . 

A quaternion and its inverse can rotate a part of a third quaternion. The imaginary part of the rotated 

quaternion that is perpendicular to the imaginary part of the first quaternion is rotated over an angle 

that is twice the angle of the argument j between the real part and the imaginary part of the first 
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quaternion. This makes it possible to shift the imaginary part of the third quaternion to a different 

dimension. For that reason, must / 4j p= . 

Each quaternion c can be written as a product of two complex numbers a and b of which the 

imaginary base vectors are perpendicular 

 
( )( )

( ) ( )
2

1 2

1 2 1 2 1 3

r r

r r r r r

c a a i b b j

a b a b i a b j a b k c c i c j c k

= + +

= + + + + + = + + +
  (12.1.7) 

Where k i j= ³  

  

  



43 
 

12 Quaternionic Hilbert spaces 

Around the turn of the nineteenth century into the twentieth century David Hilbert and others 
developed the type of vector space that later got Hilbert's name [12]. 

The Hilbert space is a specific vector space because it defines an inner product for every pair of 
its member vectors [13]. 

That inner product can take values of a number system for which every non-zero member owns a 
unique inverse [14]. This requirement brands the number system as a division ring [14]. 

Only three suitable division rings existΈ 

¶ The real numbers 

¶ The complex numbers 

¶ The quaternions 

Hilbert spaces cannot cope with bi-quaternions or octonions 

12.1 Bra's and ket's 

Paul Dirac introduced a handy formulation for the inner product that applies a bra and a ket [78]. 

The bra f   is a covariant vector, and the ket g   is a contravariant vector. The inner product 

|f g  acts as a metric. 

For bra vectors hold 

 f g g f f g+ = + = +  (13.1.1) 

 ( ) ( )f g h f g h f g h+ + = + + = + +  (13.1.2) 

For ket vectors hold  

 f g g f f g+ = + = +  (13.1.3) 

 ( ) ( )f g h f g h f g h+ + = + + = + +  (13.1.4) 

For the inner product holds 

 
*

| |f g g f=   (13.1.5) 

For quaternionic numbers aand b  hold 

 ( )
* *| | | |f g g f g f f ga a a a= = =   (13.1.6) 

 

 | |f g f gb b=   (13.1.7) 

 ( ) ( )
** *| | | |f g f g f g f ga b a b a b+ = + = +   (13.1.8) 

Thus 
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 fa   (13.1.9) 

 
*f fa a=   (13.1.10) 

 g ga a=   (13.1.11) 

We made a choice. Another possibility would be f fa a=  and 
*g ga a=   

In mathematics a topological space is called separable if it contains a countable dense subset; 

that is, there exists a sequence { }
0i

i i
f

=

=¤
  of elements of the space such that every 

nonempty open subset of the space contains at least one element of the sequence [11] [79]. 

Its values on this countable dense subset determine every continuous function on the separable 
space ᴎ [80] . 

The Hilbert space ᴎ is separable. That means that a countable row of elements { }nf exists 

that spans the whole space. 

If ( )| ,m nf f m nd=  [1 if n=m; otherwise 0], then  { }nf is an orthonormal base of Hilbert space 

ᴎ. 

A ket base { }k  of ᴎ is a minimal set of ket vectors k  that span the full Hilbert space ᴎ. 

Any ket vector 
f

 in ᴎ can be written as a linear combination of elements of { }k . 

 |
k

f k k f=ä   (13.1.12) 

A bra base { }b  of ᴎɖ is a minimal set of bra vectors b  that span the full Hilbert space ᴎɖ. 

Any bra vector 
f

 in  ᴎɖ can be written as a linear combination of elements of { }b . 

 |
b

f f b b=ä   (13.1.13) 

Usually, a base selects vectors such that their norm equals 1. Such a base is called an 
orthonormal base 

12.2 Operators 

Operators act on a subset of the elements of the Hilbert space. 

An operator L  is linear when for all vectors 
f

  and 
g

  for which L  is defined and for all 

quaternionic numbers a and b 

 ( ) ( )L f L g L f L g L f g L f ga b a b a b a b+ = + = + = +  (13.2.1) 

The operator B  is colinear when for all vectors f   for which B  is defined and for all 

quaternionic numbersathere exists a quaternionic number g such that 

https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Separable_space
https://en.wikipedia.org/wiki/Continuous_function
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 1 1B f B f B fa gag gag- -= ¹   (13.2.2) 

If a  is an eigenvector of the operator A with quaternionic eigenvaluea,  

 A a aa=   (13.2.3) 

then ab  is an eigenvector of A  with quaternionic eigenvalue 
1b ab-

. 

 
1A a A a a ab b ab b b ab-= = =   (13.2.4) 

ÀA   is the adjoint of the normal operator A  

 
*

À À| | |f Ag fA g g A f= =   (13.2.5) 

 ÀÀA A=   (13.2.6) 

 
( )

À À ÀA B A B+ = +
  (13.2.7) 

 
( )

À À ÀAB B A=
  (13.2.8) 

If
ÀA A=  then A  is a self-adjoint operator. 

A linear operator L is normal if
ÀLL exists, and

À ÀLL L L=   

For the normal operator N holds 

 À À| | |Nf Ng NN f g f NN g= =   (13.2.9) 

  

Thus 

 rN N N= +
  (13.2.10) 

 
À

rN N N= -
  (13.2.11) 

 

À

2
r

N N
N

+
=

  (13.2.12) 

 

À

2

N N
N

-
=

  (13.2.13) 

 
2À À ,r rNN N N N N N N N= = + =
  (13.2.14) 

rN
 is the Hermitian part of N . 

N  is the anti-Hermitian part of N . 

For two normal operators A  and B  holds 
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 ,r r r rAB A B A B A B AB A B= - + + ° ³  (13.2.15) 

For a unitary transformationU holds 

 | |Uf Ug f g=   (13.2.16) 

The closure of separable Hilbert space ᴎ means that converging rows of vectors of ᴎ ÃÏÎÖÅÒÇÅ ÔÏ 
Á ÖÅÃÔÏÒ ÉÎ ᴎȢ 

 Operator construction 

f g  is a constructed operator.  

 ( )
À

g f f g=   (13.2.17) 

For the orthonormal base { }iq consisting of eigenvectors of the reference operator, holds 

 |n m nmq q d=   (13.2.18) 

The reverse bra-ket method enables the definition of new operators that are defined by quaternionic 

functions. 

 { }
1

(| )|
N

i

i i iqg F h g hq F q
=

=ä   (13.2.19) 

The symbolF is used both for the operatorF and the quaternionic function ()F q .  This enables 

the shorthand 

 ()i i iF q F q q¹   (13.2.20) 

It is evident that 

 ()À *

i i iF q F q q¹   (13.2.21) 

For reference operatorR holds 

 i i iq q q=R   (13.2.22) 

If { }iq  consists of all rational values of the version of the quaternionic number system thatH

applies then the eigenspace of R represents the private parameter space of the separable 

Hilbert space H . It is also the parameter space of the function ()F q that defines the operatorF in 

the formula (13.2.20). 

12.3 Non-separable Hilbert space 

Every infinite dimensional separable Hilbert space H owns a unique non-separable companion 

Hilbert space . This is achieved by the closure of the eigenspaces of the reference operator 

and the defined operators. In this procedure, on many occasions, the notion of the dimension of 
subspaces loses its sense. 
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Gelfand triple and Rigged Hilbert space are other names for the general non-separable Hilbert 
spaces [81]. 

In the non-separable Hilbert space, for operators with continuum eigenspaces, the reverse bra-

ket method turns from a summation into an integration. 

 (){ }| | qg dF q F qh g h Vdt¹ññññ   (13.3.1) 

Here we omitted the enumerating subscripts that were used in the countable base of the separable 

Hilbert space. 

The shorthand for the operatorF is now  

 ()F q F q q¹   (13.3.2) 

For eigenvectors 
q

, the function ()F q defines as 

 () { }| | ' ( ') ' | ' 'F q q Fq q q F q q q dV dt= =ññññ   (13.3.3) 

The reference operator that provides the continuum background parameter space as its 

eigenspace follows from 

 { }|g h g h dq q q Vdt¹ññññ   (13.3.4) 

The corresponding shorthand is  

 q q q¹   (13.3.5) 

The reference operator is a special kind of defined operator. Via the quaternionic functions that 

specify defined operators, it becomes clear that every infinite dimensional separable Hilbert space 

owns a unique non-separable companion Hilbert space that can be considered to embed its 

separable companion. 

The reverse bracket method combines Hilbert space operator technology with quaternionic function 

theory and indirectly with quaternionic differential and integral technology. 
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13 Quaternionic differential calculus 
The quaternionic analysis is not so well accepted as complex function analysis [29] 

13.1 Field equations 

Maxwell equations apply the three-dimensional nabla operator in combination with a time 
derivative that applies coordinate time. The Maxwell equations derive from results of experiments. 
For that reason, those equations contain physical units. 

In this treatment, the quaternionic partial differential equations apply the quaternionic nabla. The 
equations do not derive from the results of experiments. Instead, the formulas apply the fact that 
the quaternionic nabla behaves as a quaternionic multiplying operator. The corresponding 
formulas do not contain physical units. This approach generates essential differences between 
Maxwell field equations and quaternionic partial differential equations. 

The quaternionic partial differential equations form a complete and self-consistent set. They use 
the properties of the three-dimensional spatial nabla.  

The corresponding formulas are taken from Bo Thidé's EMTF book., section Appendix F4 [31].  

Another online resource is Vector calculus identities [32]. 

The quaternionic differential equations play in a Euclidean setting that is formed by a continuum 

quaternionic parameter space and a quaternionic target space. The parameter space is the 

eigenspace of the reference operator of a quaternionic non-separable Hilbert space. The target space 

is eigenspace of a defined operator that resides in that same Hilbert space. The defined operator is 

specified by a quaternionic function that completely defines the field. Each basic field owns a private 

defining quaternionic function. All basic fields that are treated in this chapter are defined in this way. 

Physical field theories tend to use a non-Euclidean setting, which is known as spacetime setting. This 

is because observers can only perceive in spacetime format. Thus, Maxwell equations use coordinate 

time, where the quaternionic differential equations use proper time. In both settings, the observed 

event is presented in Euclidean format. The hyperbolic Lorentz transform converts the Euclidean 

format to the perceived spacetime format. Chapter 8 treats the Lorentz transform. The Lorentz 

transform introduces time dilation and length contraction. Quaternionic differential calculus 

describes the interaction between discrete objects and the continuum at the location where 

events occur. Converting the results of this calculus by the Lorentz transform will describe the 

information that the observers perceive. Observers perceive in spacetime format. This format 

features a Minkowski signature. The Lorentz transform converts from the Euclidean storage 

format at the situation of the observed event to the perceived spacetime format. Apart from this 

coordinate transformation, the perceived scene is influenced by the fact that the retrieved 

information travels through a field that can be deformed and acts as the living space for both the 

observed event and the observer. Consequently, the information path deforms with its carrier field 

and this affects the transferred information. In this chapter, we only treat what happens at the 

observed event. So, we ignore the Lorentz coordinate transform, and we are not affected by the 

deformations of the information path.  

The Hilbert Book Model archives all dynamic geometric data of all discrete creatures that exist in the 

model in eigenspaces of separable Hilbert spaces whose private parameter spaces float over the 

background parameter space, which is the private parameter space of the non-separable Hilbert 

space. For example, elementary particles reside on a private floating platform that is implemented by 

a private separable Hilbert space. 

Quantum physicists use Hilbert spaces for the modeling of their theory. However, most quantum 
physicists apply complex-number based Hilbert spaces. Quaternionic quantum mechanics 

https://en.wikipedia.org/wiki/Vector_calculus_identities
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appears to represent a natural choice. Quaternionic Hilbert spaces store the dynamic geometric 
data in the Euclidean format in quaternionic eigenvalues that consists of a real scalar valued 
time-stamp and a spatial, three-dimensional location. 

In the Hilbert Book Model, the instant of storage of the event data is irrelevant if it coincides with 
or precedes the stored time stamp. Thus, the model can store all data at an instant, which 
precedes all stored timestamp values. This impersonates the Hilbert Book Model as a creator of 
the universe in which the observable events and the observers exist. On the other hand, it is 
possible to place the instant of archival of the event at the instant of the event itself. It will then 
coincide with the archived time-stamp. In both interpretations, after sequencing the time-stamps, 
the repository tells the life story of the discrete objects that are archived in the model. This story 
describes the ongoing embedding of the separable Hilbert spaces into the non-separable Hilbert 
space. For each floating separable Hilbert space this embedding occurs step by step and is 
controlled by a private stochastic process, which owns a characteristic function. The result is a 
stochastic hopping path that walks through the private parameter space of the platform. A 
coherent recurrently regenerated hop landing location swarm characterizes the corresponding 
elementary object. 

Elementary particles are elementary modules. Together they constitute all other modules that 
occur in the model. Some modules constitute modular systems. A dedicated stochastic process 
controls the binding of the components of the module. This process owns a characteristic function 
that equals a dynamic superposition of the characteristic functions of the stochastic processes 
that control the components. Thus, superposition occurs in Fourier space. The superposition 
coefficients act as gauge factors that implement displacement generators, which control the 
internal locations of the components. In other words, the superposition coefficients may install 
internal oscillations of the components. These oscillations are described by differential equations. 

13.2 Fields 
In the Hilbert Book Model fields are eigenspaces of operators that reside in the non-separable 

Hilbert space. Continuous or mostly continuous functions define these operators, and apart from 

some discrepant regions, their eigenspaces are continuums. These regions might reduce to 

single discrepant point-like artifacts. The parameter space of these functions is constituted by a 

version of the quaternionic number system. Consequently, the real number valued coefficients of 

these parameters are mutually independent, and the differential change can be expressed in 

terms of a linear combination of partial differentials. Now the total differential change df of field 

f equals 

 
f f f f

df d idx jdy kdz
x y z

t
t

µ µ µ µ
= + + +
µ µ µ µ

  (14.2.1) 

In this equation, the partial differentials , , ,
f f f f

x y yt

µ µ µ µ

µ µ µ µ
 are quaternions. 

The quaternionic nabla Ð assumes the special condition that partial differentials direct along 

the axes of the Cartesian coordinate system. Thus 

 
4

0

i

i i

e i j k
x x y zt=

µ µ µ µ µ
Ð= = + + +

µ µ µ µ µ
ä   (14.2.2) 

The Hilbert Book Model assumes that the quaternionic fields are moderately changing, such that 

only first and second order partial differential equations describe the model. These equations can 

describe fields of which the continuity gets disrupted by point-like artifacts. Spherical pulse 

responses, one-dimensional pulse responses, and Green's functions describe the reaction of the 

field on such disruptions. 
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13.3 Field equations 

Generalized field equations hold for all basic fields. Generalized field equations fit best in a 
quaternionic setting. 

Quaternions consist of a real number valued scalar part and a three-dimensional spatial vector 
that represents the imaginary part. 

The multiplication rule of quaternions indicates that several independent parts constitute the 
product. 

 ( )( ) ,r r r r r r rc c c ab a a b b a b a b a b ab a b= + = = + + = - +°+ ³  (14.3.1) 

The ° indicates that quaternions exist in right-handed and left-handed versions. 

The formula can be used to check the completeness of a set of equations that follow from the 
application of the product rule. 

We define the quaternionic nabla as 

 , , , r
x y zt

ë ûµ µ µ µ
Ð¹ =Ð +Ðì ü

µ µ µ µí ý
  (14.3.2) 

 , ,
x y z

ë ûµ µ µ
Ð¹ì ü

µ µ µí ý
  (14.3.3) 

 
r
t

µ
Ð ¹

µ
  (14.3.4) 

 ( ) ,r r r r r rf f f y y y y y y y y
t

µå õ
= + =Ð = +Ð + =Ð - Ð +Ð +Ð °Ð³æ ö

µç ÷
  (14.3.5) 

 ,r r rf y y=Ð - Ð   (14.3.6) 

 r r E Bf y y y=Ð +Ð °Ð³ =- °  (14.3.7) 

Further, 

ryÐ  is the gradient of ry   

,yÐ  is the divergence of y  

yÐ³  is the curl of y 

The change yÐ  divides into five terms that each has a separate meaning. That is why these terms in 

Maxwell equations get different names and symbols. Every basic field offers these terms! 

 r rE y y=-Ð -Ð  (14.3.8) 

 B y=Ð³  (14.3.9) 

It is also possible to construct higher order equations. For example 
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 rJ B E=Ð³ -Ð  (14.3.10) 

The equation (14.3.6) has no equivalent in Maxwell's equations. Instead, its right part is used as a 

gauge. 

Two special second-order partial differential equations use the terms 

2

2

y

t

µ

µ
 and , yÐÐ   

 
2

2
,f y

t

ë ûµ
= - Ð Ðì ü
µí ý

  (14.3.11) 

 
2

2
,r y

t

ë ûµ
= + Ð Ðì ü
µí ý

  (14.3.12) 

The equation (14.3.11) is the quaternionic equivalent of the wave equation [35]. 

The equation (14.3.12) can be divided into two first-order partial differential equations. 

 ( )( )( )( )* * * ,r r r r rc j y y y y y=Ð =ÐÐ =ÐÐ = Ð +Ð Ð -Ð + = ÐÐ + ÐÐ  (14.3.13) 

This composes from 
*c j=Ð  and j y=Ð   

2

2
,

t

µ
- Ð Ð

µ
 ƛǎ ǘƘŜ ǉǳŀǘŜǊƴƛƻƴƛŎ ŜǉǳƛǾŀƭŜƴǘ ƻŦ ŘΩ!ƭŜƳōŜǊǘΩǎ ƻǇŜǊŀǘƻǊ . 

The operator 

2

2
,

t

µ
+ Ð Ð

µ
 does not yet have an accepted name. 

The Poisson equation equals 

 ,r y= Ð Ð   (14.3.14) 

A very special solution of this equation is the DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ
1

'q q-
  of the affected field  

 
( )

3

'1

' '

q q

q q q q

-
Ð =-
- -

  (14.3.15) 

 
( )

( )3

'1 1
, , , 4 '

' ' '

q q
q q

q q q q q q
pd

-
Ð Ð ¹ Ð Ð =- Ð Ð = -

- - -

  (14.3.16) 

¢ƘŜ ǎǇŀǘƛŀƭ ƛƴǘŜƎǊŀƭ ƻǾŜǊ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƛǎ ŀ ǾƻƭǳƳŜΦ 

(14.3.11) ƻŦŦŜǊǎ ŀ ŘȅƴŀƳƛŎ ŜǉǳƛǾŀƭŜƴǘ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΣ ǿƘƛŎƘ is a spherical shock front. It can 

be written as 
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( )( )' '

'

f q q c

q q

t t
y

- - -
=

-
  (14.3.17) 

A one-dimensional type of shock front solution is  

 ( )( )' 'f q q cy t t= - - -  (14.3.18) 

The equation (14.3.11) is famous for its wave type solutions 

 2,r ry y wyÐÐ = ÐÐ =-  (14.3.19) 

Periodic harmonic actuators cause the appearance of waves, 

Planar and spherical waves are the simpler wave solutions of this equation. 

 
( ) ( )( ){ }0, exp ,q n k q qy t wt j= - - +

  (14.3.20) 

 ( )
( )( ){ }0

0

exp ,
,

n k q q
q

q q

wt j
y t

- - +
=

-
  (14.3.21) 

The Helmholtz equation considers the quaternionic function that defines the field separable [36]. 

 ( ) ()(),r rq q A q T qy =   (14.3.22) 

 2
,

r r
A T

k
A T

Ð Ð Ð Ð
= =-  (14.3.23) 

 2, A k AÐÐ =-   (14.3.24) 

 
2

r rT k TÐ Ð =-   (14.3.25) 

For three-dimensional isotropic spherical conditions, the solutions have the form 

 ( ) ( )( ) ( ){ }
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Yq j q j
¤

= =-

= +ää   (14.3.26) 

Here lj  and ly  are the spherical Bessel functions, and 
m

lY  are the spherical harmonics. These 

solutions play a role in the spectra of atomic modules [38] [39]. 

A more general solution is a superposition of these basic types. 

(14.3.12) ƻŦŦŜǊǎ ŀ ŘȅƴŀƳƛŎ ŜǉǳƛǾŀƭŜƴǘ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΣ ǿƘƛŎƘ ƛǎ ŀ ǎǇƘŜǊƛŎŀƭ ǎƘƻŎƪ ŦǊƻƴǘΦ Lǘ Ŏŀƴ 

be written as 

 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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( )( )' '

'

f q q c

q q

t t
y

- + -
=

-
  (14.3.27) 

A one-dimensional type of shock front solution is  

 ( )( )' 'f q q cy t t= - + -  (14.3.28) 

Equation (14.3.12) offers no waves as part of its solutions. 

During travel, the amplitude and the lateral direction 
f

f
 of the one-dimensional shock fronts are 

fixed. The longitudinal direction is along 
'

'

q q

q q

-

-
.  

The shock fronts that are triggered by point-like actuators are the tiniest field excitations that exist. 

The actuator must fulfill significant restricting requirements. For example, a perfectly isotropic 

actuator must trigger the spherical shock front. The actuator can be a quaternion that belongs to 

another version of the quaternionic number system than the version, which the background platform 

applies. The symmetry break must be isotropic. Electrons fulfill this requirement. Neutrinos do not 

break the symmetry but have other reasons why they cause a valid trigger. Quarks break symmetry, 

but not in an isotropic way. 
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14 Line, surface and volume integrals 

14.1 Line integrals 
The curl can be presented as a line integral [85] 

 
0

1
, lim ,

A
C

n dr
A

y y


å õ
Ð³ ¹ æ ö

ç ÷
ñ   (15.1.1) 

14.2 Surface integrals 
With respect to a local part of a closed boundary that is oriented perpendicular to vector n  the 

partial differentials relate as 

 , ,r rn n n ny y y y y y y yÐ =- Ð +Ð °Ð³ Ú =- + ° ³  (15.2.1) 

This is exploited in the surface-volume integral equations that are known as Stokes and Gauss 

theorems [43] [44].  

 dV n dSy yÐ =ñññ ññ  (15.2.2) 

 , ,dV n dSy yÐ =ñññ ññ  (15.2.3) 

 dV n dSy yÐ³ = ³ñññ ññ  (15.2.4) 

 
r rdV n dSy yÐ =ñññ ññ  (15.2.5) 

This result turns terms in the differential continuity equation into a set of corresponding integral 

balance equations. 

The method also applies to other partial differential equations. For example 

 ( ) ( ), , , ,n n n ny y y y y yÐ³ Ð³ =Ð Ð - ÐÐ ÚÐ³ Ð³ = -  (15.2.6) 

 ( ){ } { } { }, ,
V S S

dV dS dSy y yÐ³ Ð³ = Ð Ð - Ð Ðñññ ññ ññ  (15.2.7) 

One dimension less, a similar relation exists. 

 ( ), ,
S C

a n dS a dlÐ³ =ññ ñ  (15.2.8) 

14.3 Using volume integrals to determine the symmetry-related charges 

In its simplest form in which no discontinuities occur in the integration domain W the generalized 

Stokes theorem runs as 

 dw w w
W µW W

= =ñ ñ ñ  (15.3.1) 

We separate all point-like discontinuities from the domain Wby encapsulating them in an extra 
boundary. Symmetry centers represent spherically ordered parameter spaces in 

regions 
x

nH  that float on a background parameter space R . The boundaries 
x

nHµ  separate the 
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regions  from the domain
x

nH . The regions
x

nH are platforms for local discontinuities in basic 

fields. These fields are continuous in domain HW-  .  

 
1

N
x

n

n

H H
=

=   (15.3.2) 

The symmetry centers 

x

nS
 are encapsulated in regions

x

nH , and the encapsulating boundary
x

nHµ

is not part of the disconnected boundary, which encapsulates all continuous parts of the 

quaternionic manifold w that exists in the quaternionic model. 

 
1 x

n

N

kH H H

dw w w w
=W- µWÇµ µW µ

= = -äñ ñ ñ ñ  (15.3.3) 

In fact, it is sufficient that 
x

nHµ surrounds the current location of the elementary module. We will 

select a boundary, which has the shape of a small cube of which the sides run through a region 
of the parameter spaces where the manifolds are continuous. 

If we take everywhere on the boundary the unit normal to point outward, then this reverses the 

direction of the normal on 
x

nHµ which negates the integral. Thus, in this formula, the contributions 

of boundaries { }xnHµ  are subtracted from the contributions of the boundary µW. This means 

that µW also surrounds the regions { }xnHµ  

 This fact renders the integration sensitive to the ordering of the participating domains. 

Domain Wcorresponds to part of the background parameter spaceR . As mentioned before the 

symmetry centers 

x

nS
 represent encapsulated regions { }xnHµ that float on the background 

parameter space R . The Cartesian axes of 

x

nS
 are parallel to the Cartesian axes of background 

parameter space R . Only the orderings along these axes may differ. 

Further, the geometric center of the symmetry center 

x

nS
is represented by a floating location on 

parameter space R . 

The symmetry center 

x

nS
is characterized by a private symmetry flavor. That symmetry flavor 

relates to the Cartesian ordering of this parameter space. With the orientation of the coordinate 
axes fixed, eight independent Cartesian orderings are possible. 

The consequence of the differences in the symmetry flavor on the subtraction can best be 

comprehended when the encapsulation 
x

nHµ is performed by a cubic space form that is aligned 

along the Cartesian axes that act in the background parameter space. Now the six sides of the 

cube contribute differently to the effects of the encapsulation when the ordering of 
x

nH  differs 

from the Cartesian ordering of the reference parameter space R . Each discrepant axis ordering 

corresponds to one-third of the surface of the cube. This effect is represented by the symmetry-
related charge, which includes the color charge of the symmetry center. It is easily 
comprehensible related to the algorithm which below is introduced for the computation of the 
symmetry-related charge. Also, the relation to the color charge will be clear. Thus, this effect 
couples the ordering of the local parameter spaces to the symmetry-related charge of the 
encapsulated elementary module. The differences with the ordering of the surrounding 
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parameter space determine the value of the symmetry-related charge of the object that resides 
inside the encapsulation! 

14.4 Symmetry flavor 
The Cartesian ordering of its private parameter space determines the symmetry flavor of the 

platform [18]. For that reason, this symmetry is compared with the reference symmetry, which is the 

symmetry of the background parameter space. Four arrows indicate the symmetry of the platform. 

The background is represented by: 

 

Now the symmetry-related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry of the platform with the spatial part 

of the symmetry of the background parameter space. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

 

Symmetry flavor 
Ordering 

x   y   z    Ű 

sequence Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry type. 

  R N +0 neutrino 

  L R ī1 down quark 

  L G ī1 down quark 

  L B ī1 down quark 

  R B +2 up quark 

  R G +2 up quark 

  R R +2 up quark 

  L N ī3 electron 

  R N +3 positron 

  L R ī2 anti-up quark 

  L G ī2 anti-up quark 

  L B ī2 anti-up quark 

  R B +1 anti-down quark 

  R R +1 anti-down quark 

  R G +1 anti-down quark 

  L N ī0 anti-neutrino 

 

The suggested particle names that indicate the symmetry type are borrowed from the Standard 

Model. In the table, compared to the standard model, some differences exist with the selection of 

the anti-predicate. All considered particles are elementary fermions. The freedom of choice in the 

polar coordinate system might determine the spin [19]. The azimuth range is 2ʌ radians, and the 

polar angle range is ʌ radians. Symmetry breaking means a difference between the platform 

symmetry and the symmetry of the background. Neutrinos do not break the symmetry. Instead, they 

may cause conflicts with the handedness of the multiplication rule. 

14.5 Derivation of physical laws 
The quaternionic equivalents of Ampère's law are 

 r rJ B E J n B E¹Ð³ =Ð Ú ¹ ³ =Ð  (15.5.1) 

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Spherical_coordinate_system
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 , , ,r

S C S

B n dS B dl J E n dSÐ³ = = +Ðññ ñ ññ   (15.5.2) 

The quaternionic equivalents of Faraday's law are: 

 ( ) ( )r r r rB E B n Ey yÐ =Ð³ Ð =-Ð³ ÚÐ = ³ Ð =-Ð³  (15.5.3) 

 , , ,r

c S S

E dl E n dS B n dS= Ð³ =- Ðñ ññ ññ  (15.5.4) 

 ( ) rJ B E vj j r=Ð³ - =Ð³ -Ð =  (15.5.5) 

 ( ), , ,r

S C S

n dS dl v n dSj j r jÐ³ = = +Ðññ ñ ññ   (15.5.6) 

The equations (15.5.4) and (15.5.6) enable the derivation of the Lorentz force [82]. 

 rE BÐ³ =-Ð  (15.5.7) 

 ()
( )

()
()0

0 0, , ,
S S S

d d
B n dS B n ds B n ds

d d
t t

t t
t t

= +ññ ññ ññ  (15.5.8) 

The Leibniz integral equation states [83] 
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( ) ( ) ( ) ( ) ( )
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S C
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X n dS
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X X v n dS v X dl
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t t

t

t t t t t= + Ð - ³

ññ

ññ ñ
  (15.5.9) 

With X B=   and 
, 0BÐ =

  follows 

 

()
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() () ()
( )( )

()
( )

() ()
( )
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B

S S C
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d d
B n dS B n dS v B dl

d d
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t t

t t t t
t t

t t t

F
= = - ³

=- - ³

ññ ññ ñ

ñ ñ
  (15.5.10) 

The electromotive force (EMF) e  equals [84] 
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F d
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  (15.5.11) 

 F qE qv B= + ³  (15.5.12) 

  

https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
https://en.wikipedia.org/wiki/Electromotive_force
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15 Polar coordinates 
In polar coordinates, the nabla delivers different formulas. 

 0 r r q jy y y y q y j= + + +   (16.1.1) 

 
0 0 0

0

1 1

sin
r

r r r

y y y
y q j

q q j

µ µ µ
Ð = + +

µ µ µ
  (16.1.2) 
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sin1 1 1
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µ µ µ
  (16.1.3) 
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  (16.1.5) 

 

In pure spherical conditions, the Laplacian reduces to: 

 
2

2

1
, r

r r r

y
y

µ µå õ
Ð Ð = æ ö

µ µç ÷
  (16.1.6) 

The Greenôs function blurs the location density distribution of the hop landing location swarm of 
an elementary particle. If the location density distribution has the form of a Gaussian distribution, 
then the blurred function is the convolution of this location density distribution and the Greenôs 
function. The Gaussian distribution is 

 ()
( )

2

3 2

1
exp

22

r
rr

ss p

å õ
= -æ ö

ç ÷
  (16.1.7) 

The shape of the deformation of the field for this example is given by: 

 ()
2

4

r
ERF

r
r

s

p

å õ
-æ ö
ç ÷=T   (16.1.8) 

In this function, every trace of the singularity of the Greenôs function has disappeared. It is due to 
the distribution and the huge number of participating hop locations. This shape is just an 
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example. Such extra potentials add a local contribution to the field that acts as the living space of 
modules and modular systems. The shown extra contribution is due to the local elementary 
module that the swarm represents. Together, a myriad of such bumps constitutes the content of 
the living space. 
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16 Lorentz transform 

16.1 The transform 

The shock fronts move with speed c . In the quaternionic setting, this speed is unity.  

 
2 2 2 2 2x y z ct+ + =   (17.1.1) 

Swarms of spherical pulse response triggers move with lower speed v  . 

For the geometric centers of these swarms still holds: 

 
2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z ct t+ + - = + + -  (17.1.2) 

  

If the locations { }, ,x y z and { }', ', 'x y z  move with uniform relative speed v , then 

 () ()' cosh sinhct ct xw w= -   (17.1.3) 

 () ()' cosh sinhx x ctw w= -   (17.1.4) 

 ()
() ( )

2 2

exp exp
cosh

2

c

c v

w w
w

+ -
= =

-
  (17.1.5) 

 ()
() ( )

2 2

exp exp
sinh

2

v

c v

w w
w

- -
= =

-
  (17.1.6) 

 () ()
2 2

cosh sinh 1w w- =  (17.1.7) 

This is a hyperbolic transformation that relates two coordinate systems. 

This transformation can concern two platforms P  and 'P  on which swarms reside and that 
move with uniform relative speed . 

However, it can also concern the storage location P that contains a timestamp t and spatial 

location { }, ,x y z and platform 'P  that has coordinate time t and location { }', ', 'x y z  . 

In this way, the hyperbolic transform relates two individual platforms on which the private swarms 
of individual elementary particles reside. 

It also relates the stored data of an elementary particle and the observed format of these data for 
the elementary particle that moves with speed  relative to the background parameter space. 

The Lorentz transform converts a Euclidean coordinate system consisting of a location { }, ,x y z

and proper time stamps tinto the perceived coordinate system that consists of the spacetime 

coordinates { }', ', ', 'x y z ct in which 't plays the role of proper time. The uniform velocity v  causes 

time dilation 
2

2

'

1

t
v

c

tD
D =

-

 and length contraction 

2

2
' 1

v
L L

c
D =D -  

16.2 Minkowski metric 
Spacetime is ruled by the Minkowski metric. 
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In flat field conditions, proper time ʐ is defined by 

 
2 2 2 2 2c t x y z

c
t

- - -
=°   (17.2.1) 

And in deformed fields, still 

 
2 2 2 2 2 2 2 2ds c d c dt dx dy dzt= = - - -  (17.2.2) 

 

Here ds is the spacetime interval and dtis the proper time interval. dt  is the coordinate time 

interval 

16.3 Schwarzschild metric 
 Polar coordinates convert the Minkowski metric to the Schwarzschild metric. The proper time 

interval dtobeys [ 89] [90] 

 ( )
1

2 2 2 2 2 2 2 2 21 1 sins sr r
c d c dt dr r d d

r r
t q j

-

å õ å õ
= - - - - +æ ö æ ö
ç ÷ ç ÷

  (17.3.1) 

Under pure isotropic conditions, the last term on the right side vanishes.  

In the environment of a black hole, the formula sr  stands for the Schwarzschild radius. 

 
2

2
s

GM
r

c
=  (17.3.2) 

 

The variable r equals the distance to the point-like massM . 
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17 Black holes 
Black holes are regions from which nothing, not even photons can escape. Consequently, no 

information exists about the interior of a black hole. Only something is known about the direct 

environment of the black hole [86]. In this section, we try to follow the findings of mainstream 

physics.  

17.1 Geometry 
Mainstream physics characterizes the simplest form of black holes by a  Schwarzschild radius. [87] 

[88] It is supposed to be the radius where the escape speed of massive objects equals light speed. 

The gravitational energy U  of a massive object with mass m in a gravitation field of an object with 

mass M  is 

 
GMm

U
r

=-  (18.1.1) 

 

In non-relativistic conditions, the escape velocity follows from the initial energy 2½mv of the object 

with mass m and velocity v. At the border, the kinetic energy is consumed by the gravitation energy. 

 0

0

2 0½
G

v
Mm

r
m - = (18.1.2) 

 

This results in escape velocity 0v  

 
0

0

2
GM

v
r

=  (18.1.3) 

It looks as if the Schwarzschild radius can be obtained by taking the speed of light for the escape 

velocity. Apart from the fact that this condition can never be tested experimentally, this violates the 

non-relativity conditions. If we replace 2½mv by the energy equivalent of the rest mass 2mc , then 

the wrong formula for the Schwarzschild radius results. 

We try another route and use the fact that photons cannot pass the Schwarzschild radius. Instead of 

the escape velocity of massive objects, we investigate the gravitational redshift of photons.  

Due to gravitation, the frequency ’ of photons with original frequency 0n changes with the distance 

r  to a point massM .  

 
0

0 02

2
1 sGMh r

h h h
rc r

n
n n n

å õ
= - = -æ ö

ç ÷
 (18.1.4) 

The formula (18.1.4) is supposed to describe the gravitational redshift of photons. According to this 

formula, the radius at which the frequency ’ has reduced to zero is the Schwarzschild radius sr   

 
2

2
s

GM
r

c
=  (18.1.5) 

http://jila.colorado.edu/~ajsh/bh/schwp.html
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17.2 The border of the black hole 
According to mainstream physics, for a non-rotating neutral black hole, photons cannot pass the 

sphere with the Schwarzschild radius sr .  The reasoning used the fact that the frequency of the 

photons reduces to zero at this border. The problem with this reasoning is that the frequency 

reduction does not affect the energy of the energy packages that constitute the photons. 

That is easily cured by replacing frequency reduction by energy reduction. 

 
0

0 02

2
1 sGME r

E E E
rc r

å õ
= - = -æ ö

ç ÷
 (18.2.1) 

This also works for the one-dimensional shock fronts that constitute the photon. It also means that 

one-dimensional shock fronts and spherical shock fronts cannot pass this radius of this sphere.  

First, we consider what happens if a spherical pulse response injects geometric volume into the 

region of the black hole. 

Spherical shock fronts can only add volume to the black hole when their actuator hovers over the 

region of the black hole. The injection increases the Schwarzschild radius. The injection also increases 

the mass M An increase in the Schwarzschild radius means an increase in the geometric volume of 

this sphere. This is like the injection of volume into the volume of the field that occurs via the pulses 

that generate the elementary modules. However, in this case, the volume stays within the 

Schwarzschild sphere. According to the formula of the Schwarzschild radius, the volume of the 

enclosed sphere is not proportional to the mass of the sphere. The mass is proportional to the radius. 

In both cases, the volume of the field expands, but something different happens.  

The HBM postulates that the geometric center of an elementary module cannot enter the region of 

the black hole. This means that part of the active region of the stochastic process that produces the 

footprint of the elementary module can hover over the region of the black hole. In this overlap 

region, the pulses can inject volume into the black hole. Otherwise, the stochastic process cannot 

inject volume into the black hole. 

According to the HBM, the black hole region contains unstructured geometric volume. No modules 

exist within that sphere. 

17.3 An alternative explanation 
The two modes in which spherical pulse responses can operate offers a second interpretation. This 

explanation applies the volume sucking mode of the spherical pulse response. This mode removes 

ǘƘŜ ǾƻƭǳƳŜ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ŦǊƻƳ ǘƘŜ ƭƻŎŀƭ ŦƛŜƭŘ ǘƘŀǘ ƳƻŘƛŦƛŜǎ ǘƘŜ ŜƴǾƛǊƻƴƳŜƴǘ ƻŦ ǘƘŜ ƭƻŎŀǘƛƻƴ 

of the pulse into a continuum, such that only the rational value of the location of the pulse results. A 

large series of such pulse responses will turn the local continuum into a discrete set of rational 

location values. Thus, within the region of the black hole, the pulses turn the continuum field into a 

sampled field. Inside that discrete set, oscillation is no longer possible and shock fonts do not occur. 

The elementary particles cannot develop in that region. However, the pulses appear to extend the 

black hole region not in a similar way as the volume injection pulses in empty space would do. In 

both cases, these pulses can extend the mass of the region. But in the black hole region, the mass 

increment is proportional to the radius of the sphere, while in free space the mass increment is 

proportional to the injected volume. Also, this second approach does not give a proper explanation 

for the different increase of the volume of the black hole region with the increase of its mass.  
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In the next chapter, a more sensible explanation is given that introduces mixed fields, which contain 

closed regions, which do not contain a continuum, but instead a compact discrete set of rational 

numbers. 

17.4 The Bekenstein bound 
The Bekenstein bound relates the Schwarzschild black hole to its entropy. 

 
22ER ER GM

S S
hc hc hc

k k k
Ý =¢ =  (18.3.1) 

This indicates that the entropy S is proportional to the area of the black hole. This only holds for the 

entropy at the border of the black hole.  
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18 Mixed fields 
Usually, a dynamic field is a continuum eigenspace of a normal operator that resides in a 

quaternionic non-separable Hilbert space. In a quaternionic separable Hilbert space the field is 

countable and is a sampled field that consists only of the rational target values of the quaternionic 

function that defines the eigenspace of the operator. This function uses the eigenspace of the 

reference operator as its parameter space. 

If a dense set of rational numbers in a version of the quaternionic number system is convoluted with 

ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ŀ ǉǳŀǘŜǊƴƛƻƴƛŎ ŦƛŜƭŘΣ ǘƘŜƴ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ŎƻƴǘƛƴǳǳƳ ǉǳŀǘŜǊƴƛƻƴƛŎ ƴǳƳōŜǊ 

ǎȅǎǘŜƳ ǊŜǎǳƭǘǎΦ ¢ƘǳǎΣ ŀŘŘƛƴƎ ǘƘŜ ƎŜƻƳŜǘǊƛŎ ǾƻƭǳƳŜ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ǘƻ ŀ Ǌŀǘƛƻƴŀƭ ƴǳƳōŜǊ 

converts its environment into a continuum. In reverse, sucking the volume in the surround of a 

rational number that is embedded in a continuum will turn the rational number into its naked value. 

This can only happen at a border that separates the continuum from a discrete set. It will move the 

rational number from the continuum to the discrete set. 

It is possible to define functions that are continuous in most of the parameter space, but that takes 

only discrete values in one or more closed regions of the parameter space. In the non-separable 

Hilbert space, the closed region corresponds to a subspace that encloses a separable Hilbert space. 

The surface that encloses the closed region must be a continuum. However, it's interior only contains 

a discrete set. All converging series of elements of this set must, if the limit exists, have this limit in 

the enclosing surface. This surface has a minimal area that corresponds to the geometric volume of 

the enclosed region. We can interpret the shift of a rational number from a discrete set to a nearby 

continuum as the embedding of a separable Hilbert space into a non-separable Hilbert space. The 

reverse of this procedure is also possible. 

A mechanism that injects geometric volume into this region must steal this volume from the 

surrounding continuum. If this mechanism applies point-sized pulses, then the injection inserts a 

rational number and the corresponding geometric volume increases. This inserted geometric volume 

ǊŜƭŀǘŜǎ ǘƻ ǘƘŜ ǾƻƭǳƳŜ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŎƻƴǘƛƴǳǳƳΦ ²Ŝ ǳǎŜ ǘƘŜ ǿƻǊŘ άǊŜƭŀǘŜǎ ǘƻέ ƛƴǎǘead 

ƻŦ άƛǎ ǇǊƻǇƻǊǘƛƻƴŀƭ ǘƻέ ōŜŎŀǳǎŜ ǘƘŜ ǊŜƭŀǘƛƻƴ ƛǎ ƴƻǘ ǇǊƻǇƻǊǘƛƻƴŀƭƛǘȅΦ ¢Ƙƛǎ ƛǎ ŜȄǇƭŀƛƴŜŘ ōȅ .ƛǊƪƘƻŦŦΩǎ 

theorem [89] [90].  

In its simplest shape, the region is a sphere, and the radius of the sphere is proportional to the mass 

of the region. 

Shock fronts and waves cannot pass the border of the enclosed region and cannot exist inside this 

region. 

The enclosed region deforms the continuous part of the field. This deformation relates to the 

geometric volume of the enclosed region and thus relates to the number of injected rational 

numbers. The deformation corresponds to the mass property of the enclosed region. According to 

the equation (8.2.1), the mass M determines the gravitation potential energy of mass m at distant r  

from the center of the region. 

 ( )
GMm

U r
r

º  (19.1.1) 

Due to gravitation, a photon that started from a long distance and approaches the region the 

contained energy reduces when the gravitation potential increases. Photons are strings of 

equidistant one-dimensional shock fronts. At a huge distance from the center of the black hole, the 

https://en.wikipedia.org/wiki/Birkhoff%27s_theorem_(relativity)
https://en.wikipedia.org/wiki/Birkhoff%27s_theorem_(relativity)
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energy of the one-dimensional shock front equals a mass-energy equivalent 
2

0E mc= . At the 

border of the black hole, the gravitation potential energy reduces the total energy of the energy 

package to zero. 

 
2 0

mMG
E mc

r
= - = (19.1.2) 

The equivalent mass m plays no role in the value of the computation of the radius of the black hole. 

Thus, the border of a simple black hole is given by 

 
2bh

GM
r

c
=  (19.1.3) 

 
The energy of the standard energy packages changes with distance r from the center of the black 

hole as  
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1 1 bhrMG
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å õå õ
= - = -æ ö æ ö
ç ÷ ç ÷

 (19.1.4) 

For photons the initial energy is 0 0E hn= . The photon energy changes proportionally to the 

energy of the one-dimensional shock fronts. 

 0 01 1bh bhr r
E E h
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å õ å õ
= - = -æ ö æ ö
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 (19.1.5) 

 
 

Mainstream physics sees the border of the black hole as the Schwarzschild radius sr   

 
2

2
s

GM
r

c
=  (19.1.6) 

At that radius, the packages are no longer capable of transferring kinetic energy. 

18.1 Open questions 
The Hilbert Book Model uses a different radius for the border of a black hole than the Schwarzschild 

radius that mainstream physics uses. The difference is a factor 2. 

 
Mixed fields can contain regions that only contain a set of rational quaternions. The region is 

encapsulated by a surface that represents a continuum. This border separates the discrete region 

from a continuum. The encapsulated region behaves like a black hole. The continuum can contain a 

series of such regions. It is not clear whether and how these regions can merge. 

It is possible that the continuum is surrounded by a continuous border that separates it from a 

discrete region. This discrete region can contain a series of regions that are surrounded by a 

continuous border and that contain a continuum. In this way, a multiverse can be established.  

Inside the discrete regions. information transfer is blocked.  
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19 Material penetrating field 

19.1 Field equations 

Basic fields can penetrate homogeneous regions of the material. Within these regions, the fields 
get crumpled. Consequently, the average speed of spherical fronts, One-dimensional fronts, and 
waves diminish, or these vibrations just get dampened away. The basic field that we consider 

here is a smoothed version y   of the original field y  that penetrates the material. 

 r r E Bf y y y=Ð +Ð °Ð³ =- °  (20.1.1) 

 r rj y y y=Ð +Ð °Ð³ =- °C B   (20.1.2) 

The first order partial differential equation does not change much. The separate terms in the first 
order differential equations must be corrected by a material-dependent factor and extra material 
dependent terms appear. 

These extra terms correspond to polarization P and magnetization M of the material, and the 

factors concern the permittivity e and the permeability m of the material. This results in 

corrections in the E and the B  field and the average speed of one-dimensional fronts and 

waves reduces from 1 to 
1

em
. 

 D Pe= +E   (20.1.3) 

 
1

H M
m
= -B   (20.1.4) 

 ,b Pr=- Ð   (20.1.5) 

 ,f Dr=- Ð   (20.1.6) 

 b rJ M P=Ð³ +Ð  (20.1.7) 

 f rJ H D=Ð³ -Ð  (20.1.8) 
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, b fr r r
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= Ð = +E   (20.1.9) 
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r b fJ J J
e

m m
= Ð³ Ð +B- E =   (20.1.10) 

 ( ) ( )
1

D P H Mf m
e

= - - +E-B =   (20.1.11) 

The subscript b signifies bounded. The subscript f signifies free. 

The homogeneous second order partial differential equations hold for the smoothed fieldy.   

 { }2 , 0r r v yÐÐ ° ÐÐ =  (20.1.12) 
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19.2 Pointing vector 

The Poynting vector represents the directional energy flux density (the rate of energy transfer 
per unit area) of a basic field. The quaternionic equivalent of the Poynting vector is defined as: 

 S E H= ³   (20.2.1) 

 
  

  

  
  

 

 

u is the electromagnetic energy density for linear, nondispersive materials, given by 

 
, ,

2

E B B H
u

+
=   (20.2.2) 

 , ,f

u
S J E

t

µ
=- Ð -

µ
  (20.2.3) 
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20 Action 
The set of basic fields that occur in the model form a system. These fields interact at a finite number 

of discrete locations. The symmetry-related xA fields always attach to the geometrical center of a 

dedicated symmetry center. The C field attaches at a stochastically determined location somewhere 

in the vicinity of this geometric center. However, integrated over the regeneration cycle of the 

corresponding particle the averaged attachment point coincides with the geometric center of the 

symmetry center. Thus, in these averaged conditions the two fields can be considered as being 

superposed. In the averaged mode the ᴡ field has weak extrema. The xA fields always have strong 

extrema. In the averaged mode the fields can be superposed into a new field F that shares the 

symmetry center related extrema. 

The path of the geometric center of the symmetry center is following the least action principle. 

This is not the hopping path along which the corresponding particle can be detected. 

The coherent location swarm{ }xia also represents a path, which is a hopping path. Its coherence 

means that the swarm owns a continuous location density distribution that characterizes this 
swarm. A more far-reaching coherence requirement is that the characterizing continuous 

location density distribution also has a Fourier transform. At first approximation , the swarm 

moves as one unit. The swarm owns a displacement generator. These facts have much impact on 

the hopping path and on the movement of the underlying symmetry center. The displacement 

generator that characterizes part of the dynamic behavior of the symmetry center is represented 

by the momentum operator p . This displacement generator describes the movement of the 

swarm as one unit. It describes the movement of the platform that carries the elementary 

particle. On the platform, the hopping path is closed. In the embedding field, the platform moves. 

We suppose that momentum p is constant during the particle generation cycle. Every hop gives 

a contribution to the path. These contributions can be divided into three steps per contributing 

hop: 

1. Change to Fourier space. This involves inner product
ia p  

2. Evolve during an infinitesimal progression step into the future.  

a. Multiply with the corresponding displacement generatorp  

b. The generated step in configuration space is ( )1i ia a+- . 

c. The action contribution in Fourier space is 1, i ip a a+- . 

d. This combines in a unitary factor ( )1exp , i ip a a+-    

3. Change back to configuration space. This involves inner product
1ip a+  

a. The combined term contributes a factor ( )1 1exp ,i i i ia p p a a p a+ +- . 

 

Two subsequent steps give: 

 ( ) ( ) 21 11 2exp , exp ,i ii i i i i ip a aa p p a a p a a pp a+ ++ ++- -   (21.1.1) 

The terms in the middle turn into unity. The other terms also join. 
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( ) ( )

( )

1 2 1 2

2 2

exp , exp ,

exp ,

i i i i i i

i i i i

a p p a a p a a p a

a p p a a p a

+ + + +

+ +

- -

= -
  (21.1.2) 

Over a full particle generation cycle with N steps this results in: 

 

( )

( )

()

1

1 1

1

1 1

1 1

2

1

exp ,

exp ,

exp ,

exp

N

i i i i

i

N N

N

i i N

i

N

a p p a a p a

a p p a a p a

a p p a a p a

a p L p a

-

+ +

=

+

=

-

= -

å õ
= -æ ö

ç ÷

=

Ô

ä

  (21.1.3) 

 1

2

, ,
N

i i

i

Ld p a a p dqt +

=

= - =ä   (21.1.4) 

 ,L p q=   (21.1.5) 

 

L is known as the Lagrangian. 

The equation (21.1.5) holds for the special condition in whichp is constant. If p is not constant, 

then the HamiltonianH varies with location. 

 i

i

H
p

q

µ
=-

µ
  (21.1.6) 

 i

i

H
q

p

µ
=

µ
  (21.1.7) 

 i

i

L
p

q

µ
=

µ
  (21.1.8) 

 i

i

L
p

q

µ
=-

µ
  (21.1.9) 

 
H L

t t

µ µ
=-

µ µ
  (21.1.10) 

 
i i

d L L

d q qt

µ µ
=

µ µ
  (21.1.11) 

 

3

1

i i

i

H L q p
=

+ =ä   (21.1.12) 

Here we used proper time † rather than coordinate time ὸ. 
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This procedure derives the Lagrangian and the Hamilton equations from the stochastic hopping 

path. Each term in the series shows that the displacement generator forces the combination of 

terms to generate a closed hopping path on the platform that carries the elementary particle. The 

only term that is left is the displacement generation of the whole hop landing location swarm. That 

term describes the movement of the platform. 

In mainstream physics applies the Lagrangian as the base of the path integral. In the Hilbert Book 

Model, the Lagrangian results from the analysis of the hopping path. 

In mainstream physics applies the Lagrangian as the base of the path integral. In the Hilbert Book 

Model, the Lagrangian results from the analysis of the hopping path. 
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21 Dirac equation 
In its original form, the Dirac equation for the free electron and the free positron is formulated by 

using complex number based spinors and matrices [91] [92]. That equation can be split into two 

equations, one for the electron and one for the positron. The matrices implement the functionality of 

a bi-quaternionic number system. Bi-quaternions do not form a division ring. Thus, Hilbert spaces 

cannot cope with bi-quaternionic eigenvalues. The Dirac equation plays an important role in 

mainstream physics. 

21.1 The Dirac equation in original format 
In its original form, the Dirac equation is a complex equation that uses spinors, matrices, and partial 

derivatives.  

Dirac was searching for a split of the Klein-Gordon equation into two first order differential 

equations.  

 
2 2 2 2

2

2 2 2 2

f f f f
m f

t x y z

µ µ µ µ
- - - =-

µ µ µ µ
  (22.1.1) 

 ( ) 2,r rf f m f= ÐÐ - ÐÐ =-  (22.1.2) 

Here ( ),r r= ÐÐ - ÐÐ   ƛǎ ǘƘŜ ŘΩ!ƭŜƳōŜǊǘ ƻǇŜǊŀǘƻǊΦ 

Dirac used a combination of matrices and spinors in order to reach this result. He applied the Pauli 

matrices in order to simulate the behavior of vector functions under differentiation [93]. 

The unity matrix I  and the Pauli matrices 1 2 3, ,s s s are given by  

 1 2 3

1 0 0 1 0 1 0
, , ,

0 1 1 0 0 0 1

i
I

i
s s s

-è ø è ø è ø è ø
= = = =é ù é ù é ù é ù

-ê ú ê ú ê ú ê ú
  (22.1.3) 

Here 1i = -. For one of the potential orderings of the quaternionic number system, the Pauli 

matrices together with the unity matrix Ὅ relate to the quaternionic base vectors ρ, ░, ▒ and ▓ 

 1 2 31 , , ,I i i j i k is s sÝ Ý Ý Ý   (22.1.4) 

This results in the multiplication rule 

 1 2 2 1 3 2 3 3 2 1 3 1 1 3 22 , 2 , 2i i iss s s s s s ss s ss ss s- = - = - =  (22.1.5) 

 1 1 2 2 3 3 Iss s s ss= = =  (22.1.6) 

The different ordering possibilities of the quaternionic number system correspond to different 

symmetry flavors. Half of these possibilities offer a right-handed external vector product. The other 

half offers a left-handed external vector product. 

We will regularly use: 

 ( ),i sÐ =Ð  (22.1.7) 

With 
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 p im m=-Ð  (22.1.8) 

follow 

 p iem m m ms =- Ð  (22.1.9) 

 ,p is =-Ð  (22.1.10) 

21.2 5ƛǊŀŎΩǎ ŦƻǊƳǳƭŀǘƛƻƴ 
The original Dirac equation uses 4x4 matrices a and b. 

a and b are matrices that implement the bi-quaternion arithmetic behavior including the possible 

symmetry flavors of bi-quaternionic number systems and continuums.  

 1

1

1

0 0

0 0

i
i

i

s
a

s

è øè ø
= =-é ùé ù
ê ú ê ú

  (22.2.1) 

 2

2

2

0 0

0 0

j
i

j

s
a

s

è øè ø
= =-é ùé ù
ê ú ê ú

  (22.2.2) 

 
3

3

3

0 0

0 0

k
i

k

s
a

s

è øè ø
= =-é ùé ù
ê ú é ùê ú

  (22.2.3) 

 
1 0

0 1
b
è ø
=é ù

-ê ú
  (22.2.4) 

 Ibb=   (22.2.5) 

The interpretation of the Pauli matrices as a representation of a special kind of angular momentum 

has led to the half-integer eigenvalue of the corresponding spin operator. 

5ƛǊŀŎΩǎ ǎŜƭŜŎǘƛƻƴ ƭŜŀŘǎ ǘƻ 

 ( ){}, 0rp p mca b j- - =  (22.2.6) 

{}j  is a four-component spinor, which splits into 

 ( ), 0r Ap p mca b j- - =  (22.2.7) 

 

and 

 ( ), 0r Bp p mca b j- + =  (22.2.8) 

•  and •   are two component spinors. Thus, the original Dirac equation splits into: 

 ( ) 0r AimcjÐ -Ð- =  (22.2.9) 
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 ( ) 0r Bimc jÐ -Ð+ =  (22.2.10) 

This split does not lead easily to a second order partial differential equation that looks like the Klein 

Gordon equation. 

21.3 Relativistic formulation 
LƴǎǘŜŀŘ ƻŦ 5ƛǊŀŎΩǎ ƻǊƛƎƛƴŀƭ ŦƻǊƳǳƭŀǘƛƻƴΣ usually, the relativistic formulation is used. 

That formulation applies gamma matrices, instead of the alpha and beta matrices. This different 

choice influences the form of the equations that result in the two-component spinors. 

 1

1

1

0 0

0 0

i
i

i

s
g

s

è øè ø
= =-é ùé ù
- -ê ú ê ú

  (22.3.1) 

 2

2
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0 0

0 0

j
i

j

s
g

s

è øè ø
= =-é ùé ù
- -ê ú ê ú

  (22.3.2) 
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3

0 0

0 0

k
i

k

s
g

s

è øè ø
= =-é ùé ù
- -ê ú é ùê ú

  (22.3.3) 

 0

1 0

0 1
g
è ø
=é ù

-ê ú
  (22.3.4) 

Thus 

 
0

0

; 1,2,3m mg g a m

g b

= =

=
  (22.3.5) 

Further 

 5 0 1 2 3

0 1

1 0
ig g g g g

è ø
= =é ù

ê ú
  (22.3.6) 

The matrix  anti-commutes with all other gamma matrices. 

{ŜǾŜǊŀƭ ŘƛŦŦŜǊŜƴǘ ǎŜǘǎ ƻŦ ƎŀƳƳŀ ƳŀǘǊƛŎŜǎ ŀǊŜ ǇƻǎǎƛōƭŜΦ ¢ƘŜ ŎƘƻƛŎŜ ŀōƻǾŜ ƭŜŀŘǎ ǘƻ ŀ ά5ƛǊŀŎ Ŝǉǳŀǘƛƻƴέ 

of the form  

 ( ){} 0i mcm mg jÐ - =  (22.3.7) 

More extended: 

 {}0 1 2 3 0
m

t x y z ih
g g g g j
å õµ µ µ µ

+ + + - =æ ö
µ µ µ µç ÷

  (22.3.8) 

 {}0 , 0
m

t ih
g g j
µå õ
+ Ð - =æ ö

µç ÷
  (22.3.9) 
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0 ,1 0 1 0

0
0 1 0 1, 0

A

B

m

t ih

s j

js

å õè øÐ è øè ø è øµæ öé ù+ - =é ùé ù é ùæ öé ù- µê ú - Ð ê úê ú
ê úç ÷

  (22.3.10) 
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  (22.3.11) 

 0A B A

m
i

t h
j j j
µ

+Ð + =
µ

  (22.3.12) 

 0B A B

m
i

t h
j j j
µ

+Ð - =
µ

  (22.3.13) 

Also, this split does not easily lead to a second order partial differential equation that looks like the 

Klein Gordon equation. 

21.4 A better choice 
Another interpretation of the Dirac approach replaces  with : 

 {}5 1 2 3 0
m

t x y z ih
g g g g j
å õµ µ µ µ

+ + + - =æ ö
µ µ µ µç ÷

  (22.4.1) 

 {}5 , 0
m

t ih
g g j
µå õ
+ Ð - =æ ö

µç ÷
  (22.4.2) 
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  (22.4.5) 

 0A A B

m
i

t h
j j j
µ

-Ð + =
µ

  (22.4.6) 

This version invites splitting of the four-component spinor equation into two equations for two-

component spinors: 

 B A

m
i

t h
j j

µå õ
+Ð =-æ ö

µç ÷
  (22.4.7) 

 A B

m
i

t h
j j

µå õ
-Ð =-æ ö

µç ÷
  (22.4.8) 

This looks far more promising. We can insert the right part of the first equation into the left part of 

the second equation. 
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µ µç ÷ç ÷
  (22.4.9) 
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, B B

m

t h
j j

å õµ
+ Ð Ð =-æ ö

µç ÷
  (22.4.12) 

This is what Dirac wanted to achieve. The two first order differential equations couple into a second 

order differential equation, but that equation is not equivalent to the Klein Gordon equation. It is 

equivalent to the equation (4.2.1). 

The nabla operator acts differently onto the two-component spinors Ajand Bj .  

21.5 The Dirac nabla 

The Dirac nabla D  differs from the quaternionic nabla . 

 , , , r
x y zt

ë ûµ µ µ µ
Ð= =Ð +Ðì ü

µ µ µ µí ý
  (22.5.1) 

   (22.5.2) 

   (22.5.3) 

   (22.5.4) 

   (22.5.5) 

   (22.5.6) 

 

  






































































