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Abstract. We introduce a special class of complex numbers, wherein their
absolute values and arguments given in a polar coordinate system are intege-
rs and we introduce the corresponding class of the Optimization Problems:
"Polar Complex Integer Optimization".
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1. Introduction

Its well-known in number theory a complex number whose real and ima-
ginary parts are both integers: Gaussian Integer. The Gaussian integers are
the set: Z[i]:={a+ bi | a,b e Z}, wherei’=- 1. Gaussian integers are
closed under addition and multiplication and form commutative ring, which
is a subring of the field of complex numbers.  When considered within the
complex plane the Gaussian integers constitute the 2-dimensional integer lat-
tice. The Gaussian integers form unique factorization domain: it is irreduci-
ble if and only if it is a prime(Gaussian primes). The field of Gaussian ratio-
nals consists of the complex numbers whose real and imaginary part are both
rational(see, e.g., [5]).

Another well-known integral subclass of complex numbers are Eisenshte-
in integers: complex numbers of the form: z=a + bw, where a and b are in-
tegers and o= e", u=2mni/3. The Eisenshtein integers form a triangular la-
ttice in the complex plane, in contrast with Gaussian integers, which form a
square lattice in the complex plane. The Eisenstein integers form a commut-
ative ring as well and similar to Gaussian integers form a Euclidean domain,
which supposes unique factorization of Eisenshtein integers into Eisenshtein
primes.



Similar integral subclasses can be defined for quaternions: Lipschitz and
Hurwitz Integers(quaternions).

Quaternions are generally represented in the form: q= a+ bi + cj + dKk,
where,a € R,b € R,c € R, d € R, and i, j and k are the fundamental quate-
rnion units and are a number system that extends the complex numbers(see,

e.g., [2], [3)]).

The set of all quaternions H is a normed algebra, where the norm is mul-
tiplicative: |[pq|=llpllllqll,peH qeH,[q| = a’+b*+c’+d".

This norm makes it possible to define the distance d(p, q) =||p - q||, whi-
ch makes H into a metric space.

Lipschitz Integer(quaternion) is defined as:
L:={q q=a+bitcjtdk |aeZ, beZceZ deZ}.

Lipschitz Integer(quaternion) is a quaternion, whose components are all
integers.

Hurwitz Integer(quaternion) is defined as:
H:= {q q=a+bitcj+dk | a,b, ¢, d e Z+1/2}.

Thus, Hurwitz Integer(quaternion) is a quaternion, whose components
are either all integers or all half-integers.

2. Polar Complex Integers

Let us introduce a new subclass of complex numbers and a new approa-
ch for their definition accordingly: Polar Complex Integers.

Its well-known for a complex number z= Re(z) + Im(z)i=a+ib, a e
R,b € R, i’ = -1, to use an alternative option for coordinates in the complex
plane:  polar coordinate system that uses the distant of the point z from the
origin and the angle,  subtended between the positive real axis and the line
segment in a counterclockwise sense(see, e.g., [6], [7]).



The absolute value of the complex number: r= |z| is the distance to the
origin of the point, representing the complex number z in the complex plane.

The argument of z: ¢, is the angle of the radius with the positive real
axis. Note that there are two notations of angle ¢: in degree and in radian.

Together, r and ¢ gives another way of representing complex numbers,
the polar form. Recovering the original rectangular co-ordinates  from the
polar form is done by the formula called trigonometric form:

z=r1(cos @ + isin ).

Recall that addition of two complex numbers can be done geometrical-
ly by constructing the corresponding parallelogram.

Given two complex numbers:

z; =11 (cos @ *+ 1 sin @) and z, =1, (cos @, + i sin @,), multiplication
of z; and z, in polar form is given by:

712y =11 1(cos (@ + @) Tisin(Q;+ @p)).
Similarly, division is given by:
z1/2y = =11/ 12( 08 (Q1 - 1) Tisin (@1 - ¢1) ).

Using polar form, let us introduce the following new subclass of com-
plex numbers : Polar Complex Integers:

P={z: z=r(cosp+ising)|zeC, reZ,¢cZ}.
Theorem 1. Polar Complex Integers are closed under multiplication.
Proof. It follows from the formula:

71Z; =11 12(cos (@ + @) +isin (@, + @)). O
Theorem 2. Polar Complex Integers are not closed under addition.

Proof. Letus consider z;, =0+ liand z, = 1 + Oi.



Even for degree notation, where z, = 1(cos 90 +isin 90 ) and
7, = 1(cos 0 +isin0 ), absolute value of z; + z, is an irrational number. []
Theorem 3. Polar Complex Integers are not closed under division.
Proof. It follows from the formula:

z1/2y = =11/ 12(COS (@1 - 1) +isin(@- ¢p)). 0

Corollary 1. Polar Complex Integers are mutually primes if and only if
their absolute values are mutually primes.

Similar to aforementioned Hurwitz integers let us introduce Polar Co-
mplex Hurwitz-like Integers:

PH:={z: z=r(coso+ising)|zeC, reZ+12,0peZ+1/2},

and similar to aforementioned Gaussian Rationals, the corresponding set of
Polar Complex Rationals can be introduced as well.

3. Optimization over subsets of Polar Complex Integers
It is well-known that an optimization problem can be represented in the

following way:

given: a function f: G — R from some set G to the real numbers,

sought: an element xye G such that f(x() < f(x) forall xe G
("minimization") or such that f(xy) > f(x) for all xe G ("maximizati-
on").

Let us introduce a new class of Optimization problems, where G is some
subset of the Polar Complex Integers P and P" and target functions f: P—

R and f: P" — R are real-valued complex variable function: "Polar Compl-
ex Integer Optimization".

3.1. Polynomial Polar Complex Integer Optimization
pcopl = { maximize |c,z"+... + ¢,z | subject to

|aann+... +3112| < bl,



| apmz" + ... + apz| < by,
zeP,a;eC, bieR,¢eC,
1 <1i<m1<j<nnelN, meN}

(More sophisticated examples would contain rational meromorphic complex
functions).

3.2. Linear Polar Complex Integer Optimization
pcop2a = { maximize | ¢,z; + ... +¢,z,| subject to

|ajzy + ... +anz,| <by,

| ;a.r;ﬂZl + + QmnZn | Sbm,

zie P, aje C, bje R, ¢c; € C,

1 <1i<m1<j<nnelN, meN}
pcop2b = { maximize | ¢;z; + ... +c,z,| subject to

a1z; +...tanz, = by,

AmiZy + .. + BamZn = o

zie P, a;je C, b e C,¢; e C,

(Az=D),

l1 <i<m1<j<nneN meN}.

3.3. Quadratic Polar Complex Integer Optimization
pcop3 = { maximize | z,* + ... +z,” - iz,z,| subject to

| a11Z1 + ...+ aann| < b],



| amiz; +...+ angn| < bm,

zie P, ajj € C, b; € R,

1 <

i

<

m, 1

<j<nneN, meN}

3.4. Non-Linear Polar Complex Integer Optimization

pcop4 = { maximize | e” - sin(nz) | subject to

| cos(nz) | <a,0< Re(z) £1,0< Im(z) <1,

ze P,aeR}.

3.5. Mixed-Real-Integer Polar Complex Optimization (MRIPCOP).
(Similarly for the Polar Complex Hurwitz-like Integers and Polar Complex

Rationals).
pcop5 = {minimize |iz," +2,°|- x> +y’t* subject to
xy = N,
a; < |z | £ by,
a < |zy] < by,
a3 < X < b;,
a <y < by
as < t < Dbs,

21€C,z,€ P,

xel, yelZ,teR,

a3, e Rbje R NeN, a>0,



1 <i<5).

Note that in addition, each such example may comprise complex conjug-
ations as well.

4. Conclusions

We unveiled a special class of complex numbers, wherein their absolute val-
ues and arguments,  given in a polar coordinate system are integers and we
unveiled the corresponding class of the Optimization Problems: "Polar Co-
mplex Integer Optimization".
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