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Abstract

Despite its successes, general relativity has failed to define a stress-energy-
momentum tensor for the gravitational field. In what follows, a new theory
solves the problem of gravitational dynamics. It yields covariant expressions
for the energy, momentum, stress, force and power. The theory predicts both
longitudinal and transverse gravitational waves. It is time to launch a search
for longitudinal waves, in the data at LIGO and Virgo.
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1. Introduction

In relativistic particle dynamics, the energy and momentum

E =
mc2√

1− v2/c2
p =

mv√
1− v2/c2

=
E

c2
v (1)

yield the power formula

dE

ds
= v · dp

ds
(2)

where v = dr/dt is the physical velocity. This shows that a displacement
dr is required, if energy is to be exchanged with the particle. For example,
in cosmology, the galaxies are at rest in the expanding Robertson-Walker
coordinate system. They do not exchange energy with the gravitational field.
Something similar occurs with the purely transverse gravitational waves of
general relativity. They do not produce a displacement of the detector [1].
Therefore, they do not transfer energy to the detector.

In what follows, the problem of radiation is treated in terms of the scalar,
three-vector theory of gravitation. Here, the radiation field includes both
transverse and longitudinal components. The latter exert a force, produce a
displacement and transfer energy to the detector.

2. Field equations

The theory of special relativity concerns the motion and orientation of or-
thonormal frames of reference. A displacement dr is projected onto an or-
thonormal 3-frame: i · dr, j · dr, k · dr. These projections, together with the
time interval dt, undergo a Lorentz transformation, which leaves the funda-
mental interval invariant

ds2 = c2dt2 − dr2 (3)

The physical displacements may also be expressed in terms of a coordinate
system {xµ}

c dt = e0(x)dx0 dr = ei(x)dxi (4)

where eµ = (e0, ei) is a scalar, 3-vector basis. The interval (3) then takes the
form
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ds2 = (e0dx
0)2 − ei · ej dxidxj

= gµνdx
µdxν (5)

where

gµν =


g00 0 0 0
0
0 gij
0

 (6)

The theory of gravitation concerns the structure of this metrical coordinate
system. A Lorentz transformation may take place at any point. It will not
involve the coordinates {xµ}.

An observer is free to choose a new coordinate system {xµ′}. In order to
retain the distinction between scalars and 3-vectors, the coordinate transfor-
mations are restricted to the form

x0
′
= x0

′
(x0) xi

′
= xi

′
(xj) (7)

Displacements (4) will then be invariant, while the metric transforms as a
tensor

g0′0′ =
∂x0

∂x0′
∂x0

∂x0′
g00 gi′j′ =

∂xm

∂xi′
∂xn

∂xj′
gmn (8)

The Christofel symbols

Γµνλ =
1

2
gµρ (∂λgνρ + ∂νgρλ − ∂ρgνλ) (9)

yield the Ricci tensor

Rµν = ∂νΓ
λ
µλ − ∂λΓλµν + ΓλρνΓ

ρ
µλ − ΓλλρΓ

ρ
µν (10)

The gravitational field equations

c4

8πG

(
Rµν −

1

2
gµνR

)
+ T (m)

µν = 0 (11)

follow from the Einstein-Hilbert action
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δ
∫ c4

16πG
gµνRµν

√
−g d4x+ δ

∫
L(m)√−g d4x = 0 (12)

There are seven field equations, corresponding to the seven variations δgµν =
(δg00, δgij). Components R0i and T

(m)
0i do not appear in (11).

3. Gravitational energy, momentum and stress

The rate of change of the basis system is defined in terms of connection
coefficients Qλ

µν

∇νeµ = eλQ
λ
µν (13)

This formula separates into scalar and 3-vector parts

∇νe0 = e0Q
0
0ν (14)

∇νei = ejQ
j
iν (15)

where Qj
0ν = Q0

iν ≡ 0. In terms of the metrical functions (6),

∂λg00 = 2g00Q
0
0λ (16)

∂0gij = ginQ
n
j0 + gjnQ

n
i0 (17)

∂kgij = ginQ
n
jk + gjnQ

n
ik (18)

If Qi
jk = Qi

kj and if the two terms in (17) are assumed to be equal, then

Q0
0λ = Γ0

0λ =
1

2
g00∂λg00 (19)

Qi
j0 = Γij0 =

1

2
gin∂0gnj (20)

Qi
jk = Γijk =

1

2
gin (∂kgjn + ∂jgnk − ∂ngjk) (21)

Together, they comprise the formula

Qµ
νλ = Γµνλ + gµρgληQ

η
[νρ] (22)
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where

Qµ
[νλ] ≡ Qµ

νλ −Q
µ
λν (23)

The non-zero components of Qµ
[νλ] are

Q0
[0i] = Q0

0i =
1

2
g00∂ig00 Qi

[j0] = Qi
j0 =

1

2
gin∂0gnj (24)

They transform as tensor components

Q0′

[0′i′] =
∂xn

∂xi′
Q0

[0n] Qi′

[j′0′] =
∂xi

′

∂xm
∂xn

∂xj′
∂x0

∂x0′
Qm

[n0] (25)

This field strength tensor serves to define the gravitational energy tensor

T (g)
µν =

c4

8πG

{
Qρ

[λµ]Q
λ
[ρν] +QµQν −

1

2
gµνg

ητ (Qρ
[λη]Q

λ
[ρτ ] +QηQτ )

}
(26)

where Qµ = Qρ
[ρµ]. For a static Newtonian potential ψ

g00 = 1 +
2

c2
ψ (27)

so that Qµ
[νλ] is given by

Q0
[0i] =

1

c2
∂iψ Qi

[j0] = 0 (28)

It follows that

T
(g)
00 =

1

8πG
(∇ψ)2 (29)

T
(g)
0i = 0 (30)

T
(g)
ij =

1

4πG

{
∂iψ ∂jψ −

1

2
δij(∇ψ)2

}
(31)

which is the Newtonian stress-energy tensor.
The conservation law for energy and momentum is found by summing the

expression eµT
µν dVν over an infinitesimal region δR
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∑
δR

eµT
µν dVν =

{
eµ ∂ν(

√
−g T µν) + (∇νeµ)

√
−g T µν

}
d4x

= eµ
{ 1√
−g

∂ν(
√
−g T µν) +Qµ

λνT
λν
}√
−g d4x (32)

where T µν = T µν(g) + T µν(m) and

dVν =
√
−g (dx1dx2dx3, dx0dx2dx3, . . .) (33)

Energy and momentum are conserved, if

divT µν =
1√
−g

∂ν(
√
−g T µν) +Qµ

λνT
λν = 0 (34)

Make use of (22) to find

divT µν = T µν;ν + gµνQβ
[αν]T

α
β (35)

where T µν;ν is the (contracted) covariant derivative. The divergence of the
mixed tensor is

divT ν
µ = T ν

µ ;ν +Qβ
[αµ]T

α
β (36)

The conservation law has been used to calculate the gravitational energy of
the Robertson-Walker metric [2]. It was found that gravity accounts for two-
thirds of the energy in the Universe—it is the “dark energy.” The energy
tensor (26) was used in [3] to show that gravitational coupling can account
for the fermion mass in a gauge invariant manner.

4. Gravitational force and power

The motion of a particle in a gravitational field is described by the Lagrangian

L = mc
√
gµν(x)uµuν (37)

and the resulting equation of motion

mc
{duµ
ds

+ Γµνλu
νuλ

}
= 0 (38)
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where uµ = dxµ/ds. The gravitational power and force are found by express-
ing the energy and momentum (1) in terms of coordinates

E = mc2e0u
0 p = mc eiu

i (39)

The rate of change of eµu
µ is

d(eµu
µ)

ds
= eµ

duµ

ds
+
deµ
ds

uµ = eµ
{duµ
ds

+Qµ
νλu

νuλ
}

= eµ
{duµ
ds

+ Γµνλu
νuλ

}
+ eµQλ

[νµ]u
νuλ (40)

where (22) has been used. Substitute the equation of motion (38) to find

mc
d(eµu

µ)

ds
= eµmcQλ

[νµ]u
νuλ (41)

Separate this formula into scalar and 3-vector parts, then substitute the
components (24) to find that the energy and momentum change as follows:

dE

ds
= e0

mc2

2

{
−∂ng00 unu0 + ∂0gmn u

mun
}

(42)

dp

ds
= ei

mc

2

{
∂ig00 u

0u0 − ∂0gin u0un
}

(43)

These equations express the power and force which are exerted by the grav-
itational field. In the Newtonian limit (27), u0 = 1 and un = vn/c so that

dE

dt
= −m∇ψ · v dp

dt
= −m∇ψ (44)

If other forces are present, they will appear in the equation of motion. For
example, a charged particle in combined gravitational and electromagnetic
fields is described by

L = mc
√
gµν(x)uµuν +

q

c
Aµ(x)uµ (45)

and

mc
{duµ
ds

+ Γµνλu
νuλ

}
=
q

c
F µ
νu

ν (46)
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It follows that (compare (41))

mc
d(eµu

µ)

ds
= eµ

{
mcQλ

[νµ]u
νuλ +

q

c
Fµνu

ν
}

(47)

The scalar and 3-vector parts of the Lorentz force are then added to the
right-hand side of (42) and (43).

5. The weak-field approximation

(In this section, T µν(m) = T µν = ρc2uµuν .)
If the coordinate system is nearly rectangular, then the metric tensor may
be expanded

gµν = ηµν + hµν |hµν | � 1 (48)

Substitution into (10) yields

Rµν =
1

2

{
ηλρ∂λ∂ρhµν + ∂µ∂νh

λ
λ − ∂µ∂λhλν − ∂ν∂λhλµ

}
(49)

The four conditions

∂νh
λ
λ = 2 ∂λh

λ
ν (50)

leave three independent components hµν , and they greatly simplify the Ricci
tensor

Rµν =
1

2
∂λ∂λhµν (51)

Rewrite the field equations in the form

Rµ
ν = −8πG

c4

(
T µν −

1

2
δµν T

)
(52)

in order to obtain

∂λ∂λh
µ
ν = −16πG

c4

(
T µν −

1

2
δµν T

)
(53)

The retarded solution is

hµν(x, t) = −4G

c4

∫ (T µν − 1
2
δµν T )

|x− x′|
|ret d3x′ (54)
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If the source is at rest, then T 0
0 = T = ρc2 and T ij = 0 so that (54) yields

ds2 = (1 +
2

c2
ψ)(dx0)2 − (1− 2

c2
ψ)(dx2 + dy2 + dz2) (55)

where ψ is the Newtonian potential.

5.1 Wave generation
When motion of the source is significant, radiation is produced which prop-
agates into distant regions. In those regions, the solution (54) simplifies to

hµν(x, t) = −4G

c4r

∫
(T µν −

1

2
δµν T ) d3x (56)

Here, the long wavelength limit is assumed, so that ret simply means time
(t− r/c). Formula (50) for ν = 0 imposes a constraint on this solution, viz.,
∂0h

0
0 = ∂0h

n
n. Explicitly,

h00(x) = −2G

c4r

∫
(T 0

0 − T nn) d3x (57)

hnn(x) = −2G

c4r

∫
(−3T 0

0 − T nn) d3x (58)

so that the constraint becomes

d

dt

∫
T 0

0 d
3x = 0 (59)

The material energy changes very little in the weak-field approximation, i.e.,
little gravitational energy is produced. Thus, the T 0

0 term will not contribute
to the radiation, which leaves

h00(x) =
2G

c4r

∫
T nn d

3x (60)

hij(x) = −4G

c4r

∫
(T ij −

1

2
δij T

n
n) d3x (61)

These integrals may be transformed by means of the identity [4-6]∫
T ij d3x =

1

2

∫
xixj ∂k∂lT

kl d3x (62)
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The conservation law ∂µT
µν = 0 (again, ignoring the gravitational part)

gives ∂k∂lT
kl = ∂0∂0T

00, and it follows that

∫
T ij d3x =

1

2

d2

dt2

∫
ρ xixj d3x =

1

2

d2I ij

dt2
(63)

Finally,

h00(x) =
G

c4r

d2Inn
dt2

= − G

c4r

d2I

dt2
(64)

hij(x) = −2G

c4r

(d2I ij
dt2

+
1

2
δij
d2I

dt2

)
(65)

The above expressions give the radiation field in terms of the motion of
the source. The hµν also satisfy the field equations (53) for matter-free space,
∂λ∂λhµν = 0, which admit plane wave solutions such as

hµν = Aµν cos(−kλxλ) (k0 = k) (66)

Conditions (50) now take the form

A0
0 = Ann kiA

n
n = knA

n
i (67)

If a particular direction is chosen (say k3) then the following components
remain

h00 = h33 h11 = −h22 h12 = h21 (68)

while h23 = h31 = 0. The transverse part of Aij is traceless

hµν =


h00 0 0 0
0 h11 h12 0
0 h12 −h11 0
0 0 0 −h00

 (69)

This can be proved for the general case by using the projection operator [7]
Pij = δij − ninj to define ATij = PinPjmAnm. Then (67) gives AT n

n = 0.

5.2 Radiative energy flow
The flow of gravitational energy is determined by (26)
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T
(g)
0i =

c4

8πG

{
Q0

[0n]Q
n
[i0] +Qn

[n0]Q
0
[0i]

}
=

c4

32πG

{
∂nh

0
0 ∂0h

n
i + ∂ih

0
0 ∂0h

n
n

}
(70)

A plane wave satisfies k ∂ih
µ
ν = ki ∂0h

µ
ν so that

T
(g)
0i =

c4

32πG

{kn
k
∂0h

0
0 ∂0h

n
i +

ki
k
∂0h

0
0 ∂0h

n
n

}
(71)

This shows that the transverse-traceless components do not contribute to the
energy flow. Conditions (67) now give

T
(g)
0i =

c4

16πG

ki
k

(∂0h
0
0)

2 =
c4

16πG
ni (∂0h

0
0)

2 (72)

The scalar product

c T
(g)i
0 ni =

c5

16πG
(∂0h

0
0)

2 (73)

gives the flow in the radial direction. There is no angular dependence and so
the total power is found by substituting (64)

dE

dt
=
∫
c T

(g)i
0 nir2dΩ =

G

4c5

(
d3I

dt3

)2

(74)

In a binary system, [6]

d3I

dt3
= − 2m1m2

a(1− e2)
e sin θ θ̇ (75)

Substitution into (74) gives the power

dE

dt
=

Gm2
1m

2
2

c5a2(1− e2)2
e2 sin2 θ θ̇2 (76)

while the average over one period is〈
dE

dt

〉
=
Gm2

1m
2
2(m1 +m2)

2c5a5
e2(1 +

e2

4
)(1− e2)−7/2 (77)

This formula exhibits a strong dependence upon eccentricity. In particular,
circular orbits will not radiate energy (e = 0), suggesting that they are more
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stable than eccentric orbits. Nevertheless, they do emit transverse waves in
accordance with (65)

hij(x) = −2G

c4r

d2I ij
dt2

(78)

5.3 Wave detection
The force (43) exerted on a detector initially at rest is clearly due to ∂ig00
alone

dp

dt
=
mc2

2
ei ∂ig00 =

mc2

2
∂0h00 ein

i (79)

which is along the direction of propagation. Substitute (64) to find

dp

dt
= −Gm

2c3r

d3I

dt3
ein

i (80)

Apart from the acceleration of the mirrors (referring to LIGO), the gravita-
tional field changes the wavelength of light in the storage chambers, much as
in the static redshift. In this regard, it is important that each mode possesses
energy:

T
(g)
00 =

c4

16πG

{
Qm
n0Q

n
m0 +Qm

m0Q
n
n0 − 2η00η

mnQ0
0mQ

0
0n

}
=

c4

64πG

{
∂0h

m
n∂0h

n
m + ∂0h

m
m∂0h

n
n + 2(∂0h

0
0)

2
}

=
c4

32πG

{
(∂0h

1
1)

2 + (∂0h
1
2)

2 + 2(∂0h
0
0)

2
}

(81)

where the final line pertains to motion along k3 (see (69)). The effect on
light can then be viewed as an exchange of energy.

The gravitational stress is given by

T
(g)
ij =

c4

8πG

{
2Q0

0iQ
0
0j −

1

2
ηij
[
η00(Qm

n0Q
n
m0 +Qm

m0Q
n
n0) + 2ηmnQ0

0mQ
0
0n

]}
(82)

which is diagonal for the field (69)
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T
(g)
11 = T

(g)
22 =

c4

32πG

{
(∂0h

1
1)

2 + (∂0h
1
2)

2
}

(83)

T
(g)
33 =

c4

32πG

{
(∂0h

1
1)

2 + (∂0h
1
2)

2 + 2(∂3h
0
0)

2
}

(84)

These stresses are compressive, with the transverse modes exerting an equal
pressure in all directions, and the longitudinal mode exerting pressure along
k3.

5.4 LIGO and Virgo
The search for longitudinal waves could begin with the experiments at LIGO
and Virgo. At any given installation, if a gravitational wave arrives verti-
cally, then its transverse components would alter the wavelength of light in
the storage chambers. For other directions of arrival, both transverse and
longitudinal components would contribute. A new analysis of the data could
reveal the existence of longitudinal gravitational waves.

6. Conclusion

The precis of general relativity is that it provides covariant expressions (ten-
sors) for all physical quantities and for the laws that relate those quanti-
ties. However, no such expressions exist for gravitational energy, momentum,
stress, force and power. This, in itself, shows that general relativity cannot
be correct. The four-dimensional vector formalism is incapable of describing
gravitational dynamics [8].

The theory presented here derives from the fact that special relativity
was invented without the use of four-vectors. Only scalars and three-vectors
were used by the founders. This is evident in the basic elements of the
theory: (time, space), (energy, momentum), (charge, current), etc. It is
by expressing these elements in terms of coordinates that a new theory of
gravitation emerges. It yields a fully covariant treatment of gravitational
dynamics.
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