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ABSTRACT: 
This is a second follow up paper on a model, which treats the black hole as a 4-D spatial ball 
filled with blackbody radiation.  For the interior radiative mass distribution, we employ a new 
type of truncated probability distribution function, the exponential distribution.  We find that 
this distribution comes closest to reproducing a singularity at the center, and yet it is finite at 4-
D radius, 𝑟𝑟 = 0.  This distribution will give a constant gravitational acceleration for a test 
particle throughout the black hole, irrespective of radius.  The 4-D gravitational acceleration is 
given by the expression, 𝑔𝑔(4) = −.1𝑐𝑐2𝜆𝜆 = −.2𝜆𝜆 𝐺𝐺𝑀𝑀𝑅𝑅/𝑅𝑅 , where 𝑅𝑅 is the radius of the black 
hole, 𝑀𝑀𝑅𝑅 is its mass, and 𝜆𝜆 is the exponential shape parameter, which depends only on the 
mass, or radius, of the black hole.  We calculate the gravitational force, and the entropy within 
the black hole interior, as well as on its surface, the event horizon, which separates 3-D from 4-
D space.  Similar to a truncated Gaussian distribution, the gravitational force increases 
discontinuously, and dramatically, upon entry into the 4-D black hole from the 3-D side.  It is 
also radius dependent within the 4-D black hole.  Moreover, the total entropy is shown to be 
much less than the Bekenstein result, similar to the truncated Gaussian.  For the gravitational 

force, we obtain, 𝐹𝐹𝐺𝐺,𝑟𝑟
(4) = −.1𝑐𝑐2𝜆𝜆 𝑀𝑀𝑟𝑟 , where 𝑀𝑀𝑟𝑟 is the radiative mass enclosed within a 4-D 

volume of radius 𝑟𝑟.   This unusual force law indicates that the gravitational force acting upon a 
layer of blackbody photons at radius 𝑟𝑟 is strictly proportional to the enclosed radiative energy, 
𝑀𝑀𝑟𝑟𝑐𝑐2, contained within that radius, with . 1 𝜆𝜆 being the constant of proportionality.  For the 
entropy at radius, 𝑟𝑟, and on the surface, we obtain an expression which is order of magnitude 
comparable to the truncated Normal distribution.  Tables are presented for three black holes, 
one having a mass equal to that of the sun.  The other two have masses, which are ten times 
that of the sun, and 106 solar masses.  The corresponding 𝜆𝜆 parameters are found to equal, 
(𝜆𝜆𝐴𝐴,𝜆𝜆𝐵𝐵, 𝜆𝜆𝐶𝐶) = (.039569, .0037996, 3.01229 ∗ 10−8), respectively.  We compare these 
results to the truncated Gaussian distribution, which were worked out in another paper. 
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I  INTRODUCTION 

This is a follow up paper, where we consider another probability distribution function (pdf), the 
exponential distribution, and apply it to modeling the radiative mass concentration within the 
interior of a black hole.  We assume that the black hole is a 4-D spatial ball embedded in 3-D 
space, and that it is filled (packed) with blackbody photons.  Moreover, the radiative energy, in 
all its forms, internal, pressure, and heat, makes up the radiative mass within the black hole.  
See references [1,2] for a detailed description of the model, which we will not reproduce here.  
We will only give the briefest of sketches, and then proceed to model the interior distribution 
of radiative mass, employing the truncated exponential function. 

In paper [1], we considered the event horizon.  We conjectured/hypothesized that a rip or tear 
in the spatial continuum occurs there, and not at the black hole center.  For it is there that we 
transition from 3-D space to 4-D space.  A 4 dimensional black hole filled with blackbody 
radiation has many advantages over a 3-D counterpart.  First, we can pack an enormous 
amount of mass, i.e., radiative energy within a, from our perspective, relatively small 3-D 
volume.  Second, employing such a model, the temperature decreases precipitously when we 
enter the black hole.  This follows from a generalized version of the Stefan-Boltzmann law, 
which was derived for radiative transfers between different adjoining spatial dimensions.  
Third, the energy density in all its forms, internal, heat, and pressure reduce significantly upon 
entering the 4-D space.  Fourth, we have a natural barrier which prevents wholesale entry of 
CMB photons, and potentially other forms of radiation, such as dark energy.  Fifth, there can 
only be zero, or net positive radiative inflow within this model, as outside net outflow is not 
allowed, except through evaporative processes such as Hawking radiation.  Sixth, we have an 
inherent positive radiative surface tension, which allows for inherent black hole formation, and 
keeps the event horizon positively curved and stable.  The Young-Laplace relations were also 
considered, and generalized, within a 3-D/4-D context.  All these factors/advantages were 
shown and derived in the first work.  For a detailed description we refer the reader to reference 
[1]. 

In the 2nd paper, reference [2], we focused on what the interior of a black hole might consist of.  
We modeled the radiative mass (energy) distribution as a probability distribution function.  The 
specific choice was a truncated Gaussian, i.e., Normal distribution.  It was shown that a uniform 
truncated distribution within this space cannot accommodate gravitational forces within its 
interior.  A temperature gradient is needed for that.  Moreover, this gradient increases as the 
radius decreases.  Thus the internal energy density, the heat density, the radiative pressure, the 
entropy density, etc.… all increased, as the radius decreased.  For a 4-D black body, the internal 
energy density is proportional to the fifth power of temperature, 𝑇𝑇𝑟𝑟5, where 𝑇𝑇𝑟𝑟 is the 
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temperature in an infinitesimal layer at radius, 𝑟𝑟.  The radiative pressure and radiative heat are 
likewise proportional to, 𝑇𝑇𝑟𝑟5, whereas the entropy density is proportional to 𝑇𝑇𝑟𝑟4.   

The entropy density is treated as a state variable, and it has a well-defined value within a 
specific layer.  Utilizing our truncated Gaussian distribution, we were able to derive localized, as 
well as global attributes/characteristics, within the black hole.  The localized quantities held 
within a particular layer, whereas the global properties were the cumulative effects up to, and 
including, a specific radius.  We could calculate the mass density as a function of radius, 𝑟𝑟, as 
well as other key variables, such as radiative pressure, radiative force, internal energy density, 
heat density, etc..  Our results were listed in table form.  We considered three black holes, 
which we labeled 𝐴𝐴,𝐵𝐵 and, 𝐶𝐶.  Black hole 𝐴𝐴 has a mass equal to that of the sun, whereas black 
holes, 𝐵𝐵 and 𝐶𝐶 had masses, 10 times, and, 106 times, the mass of the sun, respectively.  In this 
way comparisons could be made.  The localized quantities were given in tables, 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶, 
respectively, as a function of radius.  The global characteristics were tabulated under tables 
𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶, respectively for the three black holes under consideration. 

Of particular interest in the second paper was the probability distribution function [3-9].  All 
results relating to the interior of the black hole depended on this choice of function.  Quite 
simply, the pdf told us how the black hole is packed, radiative energy (mass) wise.  This 
determined the internal forces, the pressures and the densities within the black hole.  We 
chose a truncated Gaussian distribution.  In this paper we will select another pdf, the truncated 
exponential, EXP[𝜆𝜆; 0,𝑅𝑅].  The question is how will the results change qualitatively and 
quantitatively with this choice?  Are there specific peculiarities associated with this new choice?  
To this we now turn.  We keep in mind that the truncated exponential distribution is 
particularly simple in that it is determined by one, and only one, parameter, 𝜆𝜆, the shape 
parameter.  This parameter is defined over the range and has support, 𝑟𝑟 ∈ [0,𝑅𝑅]; outside this 
range, it does not exist. 

Our general outline follows that of reference [2], although in less detail.  In section II, we 
introduce the exponential pdf, and determine the shape parameters needed for each of the 
three black holes under consideration.  We analyze the same three black holes as was done in 
reference [2], black holes 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶,  such that direct comparisons can be made.  In this 
section, we use the temperature just inside the event horizon, within the 4-D black hole to find, 
(𝜆𝜆𝐴𝐴,𝜆𝜆𝐵𝐵, 𝜆𝜆𝐶𝐶).  With these values, we will be in a position to map out the interior.  Since we also 
know the densities, pressures, and forces at the surface, we can determine these values within 
the interior.  In section three, we consider the localized variables which hold within a particular 
layer, within the interior of the 4-D black hole.  In section IV, we derive and calculate the global 
properties.  These are the cumulative effects, which hold at a particular radius.  The localized 
properties are tabulated under tables 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶, in appendix, 𝐴𝐴, following the references.  
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The global characteristics are listed under tables 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶, in appendix 𝐵𝐵, following 
appendix 𝐴𝐴.  The key formulae are given in the text.  Finally in section V, we discuss our results, 
and remark upon the similarities, as well as deviations, from the corresponding Normal 
distribution counterparts. 

 

II. The Exponential Distribution 
We first derive a general relation which all pdf’s have to obey within our model [1].  On the 
inside surface of a black hole, just inside the event horizon, the radiative force is given by 
 
   𝐹𝐹𝑅𝑅

(4) ≡ 𝑝𝑝1
(4)𝐴𝐴𝑅𝑅

(4) = .8 𝑝𝑝2
(3)𝐴𝐴𝑅𝑅

(3) 

          = .8 𝑢𝑢2
(3)/3  𝐴𝐴𝑅𝑅

(3) 

        = .8 𝑎𝑎(3)/3  (2.725)4 4𝜋𝜋𝑅𝑅2              (2 − 1) 

We have assumed that the outside temperature is the CMB temperature and that, 
consequently, 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0, where 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is the radiative heat entering the black hole.  An 
isolated, static black hole is in thermal equilibrium with its surroundings at this external 

temperature.  In equation, (2 − 1), 𝑝𝑝1
(4) is the radiative pressure just inside the event horizon, 

where the temperature is 𝑇𝑇1.  The black body radiative pressure just outside the event horizon, 

on the 3-D side, is given by,  𝑝𝑝2
(3), and this is defined at a different temperature, 𝑇𝑇2.  For an 

isolated, static black hole, where, 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0, the outside temperature, 𝑇𝑇2 = 2.725 𝐾𝐾.  The 

quantity, 𝐴𝐴𝑅𝑅
(4) = 2𝜋𝜋2𝑅𝑅3, is the 4-D surface area.  The three dimensional surface area is, 𝐴𝐴𝑅𝑅

(3) =
4𝜋𝜋𝑅𝑅2.  The internal energy density, 𝑢𝑢2

(3), on the 3-D side is equal to, 𝑢𝑢2
(3) = 𝑎𝑎(3) 𝑇𝑇24 =

4/𝑐𝑐 𝜎𝜎(3)𝑇𝑇24 = 4/𝑐𝑐 𝜎𝜎(3) 2.7254, where, 𝜎𝜎(3) = 5.68 ∗ 10−8 𝑊𝑊𝑎𝑎𝑑𝑑𝑑𝑑𝑊𝑊/𝑚𝑚2𝐾𝐾4, is the Stefan 
Boltzmann constant.  The constant, 𝑎𝑎(3) ≡ 4𝜎𝜎(3)/𝑐𝑐 = 7.5657 ∗ 10−16, in 𝑀𝑀𝐾𝐾𝑀𝑀 units.  All 
superscripts within brackets over a quantity refer to the spatial dimension over which the 
quantity is defined.  If it is obvious that we are in 4 spatial dimensions, we will dispense with the 
superscript, such as in sections III, IV, and V. 

We next recognize that, according to our model, the radiative pressure just inside the 4-D black 

hole surface, is related to the radiative mass density, 𝜌𝜌1
(4), at that radius, by means of 

    𝜌𝜌1
(4) = 𝑒𝑒1

(4)/𝑐𝑐2 = 10 𝑝𝑝1
(4)/𝑐𝑐2                (2 − 2) 

In this relation, the radiative energy density, 𝑒𝑒1
(4), is defined at temperature, 𝑇𝑇1, which is the 

temperature just inside the event horizon.  The total 4-D energy density, which consists of 
internal energy density, radiative pressure, and heat density, is assumed to contribute to the 
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radiative mass.  When multiplied by a 4-D volume and/or 4-D surface area, 𝐴𝐴𝑟𝑟
(4) the units 

match.  For example,  

    𝑒𝑒𝑟𝑟
(4)𝐴𝐴𝑟𝑟

(4) = 𝑢𝑢𝑟𝑟
(4)𝐴𝐴𝑟𝑟

(4) + 𝑝𝑝𝑟𝑟
(4)𝐴𝐴𝑟𝑟

(4) + 𝑞𝑞𝑟𝑟
(4)𝐴𝐴𝑟𝑟

(4)              (2 − 3) 

The heat density at radius, 𝑟𝑟, is designated by, 𝑞𝑞𝑟𝑟
(4).  As shown in reference [1], this can be 

rewritten a variety of ways, 

    𝑒𝑒𝑟𝑟
(4)𝐴𝐴𝑟𝑟

(4) = 10/4   𝑢𝑢𝑟𝑟
(4)𝐴𝐴𝑟𝑟

(4)  

       = 10   𝑝𝑝𝑟𝑟
(4)𝐴𝐴𝑟𝑟

(4) 

       = 2   𝑞𝑞𝑟𝑟
(4)𝐴𝐴𝑟𝑟

(4)                 (2 − 4) 

This is due to the particular coefficients, which hold only in 4-D space,  

 𝑝𝑝𝑟𝑟
(4) = 𝑢𝑢𝑟𝑟

(4)/4  𝑞𝑞𝑟𝑟
(4) = 5/4  𝑢𝑢𝑟𝑟

(4) 𝑊𝑊𝑟𝑟
(4) = 5/4 𝑢𝑢𝑟𝑟

(4)/𝑇𝑇𝑟𝑟              (2 − 5) 

In another spatial dimension, these factors would assume different values.  Equation, (2 − 5), 
gives us the relative contributions towards total energy density within any layer at radius 𝑟𝑟, or 
at a particular radius 𝑟𝑟.  Those contributions are,  𝑞𝑞𝑟𝑟 = (1/2) 𝑒𝑒𝑟𝑟 ,   𝑝𝑝𝑟𝑟 = (1/10) 𝑒𝑒𝑟𝑟  , and, 𝑢𝑢𝑟𝑟 =
(4/10) 𝑒𝑒𝑟𝑟. 

We multiply equation, (2 − 2), by the 4-D surface area, 𝐴𝐴𝑟𝑟
(4).  And then, we use equation, (2 −

1), to eliminate, 𝑝𝑝1
(4)𝐴𝐴𝑅𝑅

(4), on the right hand side of the new expression obtained.  The result is  

   𝜌𝜌1
(4)𝐴𝐴𝑅𝑅

(4) = (10/𝑐𝑐2 ) (8/3) 𝑎𝑎(3) (2.725)4  4𝜋𝜋𝑅𝑅2              (2 − 6) 

According to our model, this is precisely equal to, 

     𝜌𝜌1
(4)𝐴𝐴𝑅𝑅

(4) = 𝑓𝑓𝑅𝑅 𝑀𝑀𝑅𝑅                (2 − 7) 

, where, 𝑓𝑓𝑅𝑅, is the value of the probability distribution function at 𝑟𝑟 = 𝑅𝑅.  The 𝑅𝑅 is the full radius 
of the black hole, related to its mass via the Schwarzschild relation, 𝑅𝑅 = 2𝐺𝐺𝑀𝑀𝑅𝑅/𝑐𝑐2.  A quick 
proof follows. 

We introduce, quite generally, a pdf, 𝑓𝑓𝑟𝑟, which satisfies, 

    𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃. (𝑟𝑟1 ≤ 𝑟𝑟 ≤ 𝑟𝑟2) = ∫ 𝑓𝑓𝑟𝑟  𝑑𝑑𝑟𝑟𝑟𝑟2
𝑟𝑟1

               (2 − 8) 

For a truncated pdf with limits or bounds, [𝑎𝑎, 𝑃𝑃] = [0,𝑅𝑅], we thus have 

    𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃. (0 ≤ 𝑟𝑟 ≤ 𝑅𝑅) = ∫ 𝑓𝑓𝑟𝑟 𝑑𝑑𝑟𝑟𝑅𝑅
0 = 1               (2 − 9) 
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, i.e., 100% probable.  The cumulative distribution function (cdf), 𝐹𝐹𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶, is defined as, 

     𝐹𝐹𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶 ≡ ∫ 𝑓𝑓𝑟𝑟 𝑑𝑑𝑟𝑟𝑟𝑟
0                           (2 − 10) 

The cdf is the sum of all probabilities starting from 𝑟𝑟 = 0 up to, and including, radius, 𝑟𝑟.  The 
radiative mass within the black hole is assumed to obey such a function.  In other words, 

    𝑀𝑀𝑟𝑟 = 𝑀𝑀𝑅𝑅  ∫ 𝑓𝑓𝑟𝑟  𝑑𝑑𝑟𝑟𝑟𝑟
0 = 𝑀𝑀𝑅𝑅 𝐹𝐹𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶                        (2 − 11) 

Moreover, since 𝑀𝑀𝑟𝑟 = 𝜌𝜌𝑟𝑟 𝑑𝑑𝑑𝑑𝑟𝑟 = 𝜌𝜌𝑟𝑟𝐴𝐴𝑟𝑟 𝑑𝑑𝑟𝑟 is the radiative mass contained within volume, 

𝑑𝑑𝑑𝑑𝑟𝑟
(4) = 𝐴𝐴𝑟𝑟

(4) 𝑑𝑑𝑟𝑟, within a layer between 𝑟𝑟 and 𝑟𝑟 + 𝑑𝑑𝑟𝑟, we see that, 

     𝑀𝑀𝑟𝑟 =  ∫ 𝜌𝜌𝑟𝑟𝐴𝐴𝑟𝑟 𝑑𝑑𝑟𝑟𝑟𝑟
0               (2 − 12) 

Comparing the last two equations, we see that 

     𝜌𝜌𝑟𝑟 𝐴𝐴𝑟𝑟 = 𝑀𝑀𝑅𝑅 𝑓𝑓𝑟𝑟               (2 − 13) 

Equation, (2 − 7), is a special case of relation, (2 − 13). 

We next set the right hand side of equation, (2 − 7), equal to the right hand side of equation, 
(2 − 6), and solve for 𝑓𝑓𝑅𝑅.  This gives 

    𝑓𝑓𝑅𝑅 = (32𝜋𝜋/3) (𝑅𝑅2/𝑀𝑀𝑅𝑅𝑐𝑐2) 𝑎𝑎(3) (2.725)4            (2 − 14) 

We now make use of the Schwarzschild relation to further simplify this expression.  Using the 
relation, 𝑅𝑅 = 2𝐺𝐺𝑀𝑀𝑅𝑅/𝑐𝑐2, we eliminate 𝑀𝑀𝑅𝑅 in favor of 𝑅𝑅, to obtain for (2 − 14),  

𝑓𝑓𝑅𝑅 = (64𝜋𝜋𝐺𝐺/3𝑐𝑐2) 𝑎𝑎(3) (2.725)4 𝑅𝑅              

     = 2.31 ∗ 10−56 𝑅𝑅                        (2 − 15) 

To obtain the last line, we have used the numerical value, 𝑎𝑎(3) = 7.5657 ∗ 10−16, in 𝑀𝑀𝐾𝐾𝑀𝑀 units.  
Equation, (2 − 15), tells us that the value of the probability distribution function is very small 
just inside the event horizon, on the 4-D side.  Therefore, the radiative energy density, the 
internal energy density, the radiative pressure, etc.… are also close to being zero.  See equation, 
(2 − 7).  This holds even for very massive black holes, where the radius is significant.  In fact, 
𝑓𝑓𝑅𝑅 scales as, or is proportional to, 𝑅𝑅.  In previous cosmological epochs, the CMB temperature 
was higher, and the factor sitting out in front of 𝑅𝑅 in equation, (2 − 15), would be different.  
However the proportionality with respect to 𝑅𝑅 would not change.  Even though the numerical 
value of 𝑓𝑓𝑅𝑅 is small, it is not insignificant.  This value will set the boundary condition for the 
radiative mass profile, and internal energy profile, the heat profile, the entropy density profile, 
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etc.… within the black hole.  All that has to be chosen is an appropriate pdf.  Equation, (2 −
15), will hold for any pdf chosen. 

In this paper, we consider three specific black holes.  Black hole 𝐴𝐴 has a mass equal to that of 
the sun.  Black holes 𝐵𝐵 and 𝐶𝐶 will have masses 10 times and 106 times the mass of the sun, 
respectively.  For the masses chosen, the radii are given by the Schwarzschild relation, and we 
obtain, 

(𝑀𝑀𝐴𝐴,𝑀𝑀𝐵𝐵,𝑀𝑀𝐶𝐶) = (1.989 ∗ 1030, 1.989 ∗ 1031, 1.989 ∗ 1036) 𝑘𝑘𝑔𝑔 

  → (𝑅𝑅𝐴𝐴,𝑅𝑅𝐵𝐵,𝑅𝑅𝐶𝐶) = (2.954 ∗ 103, 2.954 ∗ 104, 2.954 ∗ 109) 𝑚𝑚𝑒𝑒𝑑𝑑𝑒𝑒𝑟𝑟𝑊𝑊          (2 − 16) 

Substituting these radii into equation, (2 − 15), gives 

     �𝑓𝑓𝑅𝑅,𝐴𝐴,𝑓𝑓𝑅𝑅,𝐵𝐵,𝑓𝑓𝑅𝑅,𝐶𝐶� = (6.8292 ∗ 10−53, 6.8292 ∗ 10−52, 6.8292 ∗ 10−47) 𝑚𝑚𝑒𝑒𝑑𝑑𝑒𝑒𝑟𝑟𝑊𝑊−1      (2 − 17) 

We see very clearly that these values are quite low, even for very massive black holes. 

We now specify the exponential distribution.  The probability distribution function can be 
written in the form, 

     𝑓𝑓𝑟𝑟 = 𝜆𝜆 𝑒𝑒−𝜆𝜆𝑟𝑟/(1 − 𝑒𝑒−𝜆𝜆𝑅𝑅)             (2 − 18) 

, where, 𝜆𝜆, is the shape parameter, the only parameter associated with the exponential 
distribution.  Equation, (2 − 18), satisfies equations, (2 − 8) and (2 − 9).  The associated cdf 
defined by equation, (2 − 10), is easily derived.  The resulting expression is, 

     𝐹𝐹𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶 = (1 −  𝑒𝑒−𝜆𝜆𝑟𝑟)/(1− 𝑒𝑒−𝜆𝜆𝑅𝑅)            (2 − 19) 

It is obvious that, 𝐹𝐹𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶 = 1.  From equation, (2-18), it follows that 

   𝑓𝑓𝑟𝑟/𝑓𝑓𝑅𝑅 =  𝑒𝑒𝜆𝜆(𝑅𝑅−𝑟𝑟) (𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑟𝑟𝑢𝑢𝑡𝑡𝑐𝑐𝑎𝑎𝑑𝑑𝑒𝑒𝑑𝑑 𝑒𝑒𝑒𝑒𝑝𝑝𝑃𝑃𝑡𝑡𝑒𝑒𝑡𝑡𝑑𝑑𝑒𝑒𝑎𝑎𝑃𝑃)           (2 − 20) 

This is to be contrasted to what we had previously, in reference [2], where we considered the 
truncated Gaussian.  There the corresponding expression was, 

   𝑓𝑓𝑟𝑟/𝑓𝑓𝑅𝑅 =  𝑒𝑒(𝑅𝑅2−𝑟𝑟2)/2𝜎𝜎2  (𝑇𝑇𝐺𝐺 = 𝑑𝑑𝑟𝑟𝑢𝑢𝑡𝑡𝑐𝑐𝑎𝑎𝑑𝑑𝑒𝑒𝑑𝑑 𝑔𝑔𝑎𝑎𝑢𝑢𝑊𝑊𝑊𝑊𝑒𝑒𝑎𝑎𝑡𝑡)        (2 − 21) 

For the Gaussian or Normal distribution, the parameters, (𝜇𝜇,𝜎𝜎) = (0,𝜎𝜎), such that the mode 
was found at 𝑟𝑟 = 0.  The quantity, 𝜎𝜎, is the shape parameter for the 𝑇𝑇𝐺𝐺 distribution.  These two 
expressions, equations, (2 − 20) and, (2 − 21), will lead to very different results for what 
happens within the black hole, as we shall soon see. 
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We now will fix the exponential shape parameters for the three black holes being analyzed.  We 
do this by specializing equation, (2 − 12), to 𝑟𝑟 = 𝑅𝑅, which places us 4-dimensionally, just inside 
the event horizon.  There, 

𝑓𝑓𝑅𝑅 = 𝜆𝜆 𝑒𝑒−𝜆𝜆𝑅𝑅/(1 − 𝑒𝑒−𝜆𝜆𝑅𝑅)             (2 − 22) 

For our three black holes, we have specific 𝑓𝑓𝑅𝑅 values, as seen from equations, (2 − 17).  We 
substitute these on the left hand side of equation, (2 − 22).  We also know the respective radii, 
as these are given by our relations, (2 − 16).   If we substitute the appropriate radii on the right 
hand side, then we can then use a trial and error approach to find the respective 𝜆𝜆 values for 
each of the black holes.  The equalities will hold in each instance only for a unique value of 𝜆𝜆.  
We find that equation, (2 − 22), is satisfied, if we make the following choices: 

  (𝜆𝜆𝐴𝐴,𝜆𝜆𝐵𝐵, 𝜆𝜆𝐶𝐶) = (. 039569, .0037996, 3.01229 ∗ 10−8)  𝑚𝑚𝑒𝑒𝑑𝑑𝑒𝑒𝑟𝑟𝑊𝑊−1         (2 − 23) 

An analytical expression/solution for 𝜆𝜆 in equation, (2 − 22), does not seem possible as 𝜆𝜆 
occurs at various places on the right hand side. 

 

III  Radiative Pressure, Internal Energy Density, Heat Density, and other Quantities 
within Specific Layers 
Next we construct tables for black holes 𝐴𝐴,𝐵𝐵 and 𝐶𝐶, where we calculate important attributes as 
a function of radii.  This will give us a snapshot of how the black hole is structured internally. 
According to our exponential distribution, we will have a very specific profile for all the key 
attributes within the black hole.  We consider in this section, the radiative mass density, 𝜌𝜌𝑟𝑟

(4)  , 
the internal energy density, 𝑢𝑢𝑟𝑟

(4), the heat density, 𝑞𝑞𝑟𝑟
(4), the entropy density, 𝑊𝑊𝑟𝑟

(4), the 
temperature, 𝑇𝑇𝑟𝑟 , the radiative force, 𝐹𝐹𝑟𝑟

(4) , among other values.  These are all defined in 4-D 
space, and henceforth, we will suppress the superscripts unless comparisons with three 
dimensional quantities are made.  The tables 𝐴𝐴,𝐵𝐵 and 𝐶𝐶, in appendix 𝐴𝐴 will hold for black holes 
𝐴𝐴,𝐵𝐵 and 𝐶𝐶, respectively.  We go through the same steps and follow the same format, as was 
done in reference [2], for a truncated Gaussian distribution.  We extend the analysis to the 
exponential distribution. 
 
As was shown in reference [2], the temperature just inside the black hole is determined by the 
black hole mass, or equivalently, by its radius, because of the Schwarzschild proportionality.  
The result was, 

     𝑇𝑇1 = .569 𝑅𝑅−1/5                (3 − 1) 

, where, 𝑇𝑇1, is the temperature just inside the black hole event horizon, at radius, 𝑅𝑅.  Using this 
expression, the temperatures for the three black holes under consideration are, 
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  �𝑇𝑇1,𝐴𝐴,𝑇𝑇1,𝐵𝐵,𝑇𝑇1,𝐶𝐶� = (. 115 𝐾𝐾, .0726 𝐾𝐾, .00726 𝐾𝐾)                                    (3 − 2) 

This allows us to find the internal energy density, the radiative pressure, the heat density, and 
the entropy density just inside the black hole event horizon.  As shown in reference [2], 

 �𝑢𝑢1,𝐴𝐴,𝑢𝑢1,𝐵𝐵,𝑢𝑢1,𝐶𝐶� = (9.60 ∗ 10−18, 9.60 ∗ 10−19, 9.60 ∗ 10−24)   𝐽𝐽/𝑚𝑚4                  (3 − 3) 

 �𝑝𝑝1,𝐴𝐴,𝑝𝑝1,𝐵𝐵,𝑝𝑝1,𝐶𝐶� = (2.40 ∗ 10−18, 2.40 ∗ 10−19, 2.40 ∗ 10−24)   𝑁𝑁/𝑚𝑚3                 (3 − 4) 

 �𝑞𝑞1,𝐴𝐴,𝑞𝑞1,𝐵𝐵,𝑞𝑞1,𝐶𝐶� = (1.20 ∗ 10−17, 1.20 ∗ 10−18, 1.20 ∗ 10−23)   𝐽𝐽/𝑚𝑚4                  (3 − 5)

 �𝑊𝑊1,𝐴𝐴, 𝑊𝑊1,𝐵𝐵, 𝑊𝑊1,𝐶𝐶� = (1.04 ∗ 10−16, 1.65 ∗ 10−17, 1.65 ∗ 10−21)   𝐽𝐽/(𝑚𝑚4𝐾𝐾)             (3 − 6) 

These values are very small, but then the temperature, just within the event horizon is very 
small.  According to equation, (2 − 2), we can also write, 

 �𝜌𝜌1,𝐴𝐴,𝜌𝜌1,𝐵𝐵,𝜌𝜌1,𝐶𝐶� = (2.67 ∗ 10−34, 2.67 ∗ 10−35, 2.67 ∗ 10−40)   𝑘𝑘𝑔𝑔/𝑚𝑚4               (3 − 7) 

These are the radiative mass densities just inside the event horizon, defined in 4-D space.  We 
note that the units in all the above quantities conform to 4-D space.  The subscript “1” in all 
these quantities refers to the temperature, 𝑇𝑇1, which is the temperature just inside the event 
horizon, within the black hole.  This subscript could just as well be replaced by “𝑅𝑅”, as this 
temperature holds at radius, 𝑅𝑅.  In other words, 𝑢𝑢1,𝐴𝐴 = 𝑢𝑢𝑅𝑅,𝐴𝐴,  𝑢𝑢1,𝐵𝐵 = 𝑢𝑢𝑅𝑅,𝐵𝐵, 𝑒𝑒𝑑𝑑𝑐𝑐..  The subscripts, 
𝐴𝐴,𝐵𝐵,𝐶𝐶, refer to black holes, 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶, respectively. 

We next make use of our relations, (2 − 13), and, (2 − 20).  Combining both expressions, we 
see that, 

(𝜌𝜌𝑟𝑟 𝐴𝐴𝑟𝑟)/(𝜌𝜌𝑅𝑅 𝐴𝐴𝑅𝑅) = 𝑓𝑓𝑟𝑟/𝑓𝑓𝑅𝑅 = exp [𝜆𝜆 (𝑅𝑅 − 𝑟𝑟)]                         (3 − 8) 

This equation allows us to find 𝜌𝜌𝑟𝑟 𝐴𝐴𝑟𝑟  at any radius, 𝑟𝑟, within the black hole.  We know the radii 
as these are specified under equations, (2 − 16).  We also have specific values for the shape 
parameters as these are worked out in equations, (2 − 23).  Finally we have the mass densities 
at the surface.  See relations, (3 − 7).  The 4-D surface area, 𝐴𝐴𝑅𝑅 = 2𝜋𝜋2𝑅𝑅3.  So we have all that 
is needed to calculate, 𝜌𝜌𝑟𝑟𝐴𝐴𝑟𝑟  , and, 𝜌𝜌𝑟𝑟, within the interior.  At any radius, 𝑟𝑟, the surface area, 
𝐴𝐴𝑟𝑟 = 2𝜋𝜋2𝑟𝑟3.  Because the radius varies, we have to tabulate the above quantities in table form, 
and these values are listed as entries in tables 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶, presented in appendix, 𝐴𝐴.  Under 
column one, we consider various radii.  In column two, we calculate the function indicated by 
equation, (3 − 8).  And under column three, various radiative mass density values are worked 
out. 

Once 𝜌𝜌𝑟𝑟 is specified, we can easily evaluate the internal energy density, 𝑢𝑢𝑟𝑟, the radiative 
pressure, 𝑝𝑝𝑟𝑟,  the heat density, 𝑞𝑞𝑟𝑟 , and the temperature, 𝑇𝑇𝑟𝑟 .  These are given under columns 
4, 5, 6, and, 7, respectively in tables 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶.  We have made use of the following relations, 
which are easily proved once we realize that, in 4-D space [1],  

𝑢𝑢𝑟𝑟
(4) = 𝑢𝑢(4)(𝑟𝑟) = 𝑎𝑎(4) 𝑇𝑇𝑟𝑟5 
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      = 3𝜋𝜋/2𝑐𝑐  𝜎𝜎(4) 𝑇𝑇𝑟𝑟5 

      = 4.7481 ∗ 10−13 𝑇𝑇𝑟𝑟5               (3 − 9) 

The Stefan-Boltzmann constant in 4-D space [10-12] is given by,  𝜎𝜎(4) = 3.021 ∗  10−5 𝑊𝑊𝑎𝑎𝑑𝑑𝑑𝑑𝑊𝑊/
(𝑚𝑚3𝐾𝐾5).  Using equation, (3 − 9), and the relations, (2 − 2), with (2 − 5), we can show that, 
 
  𝑢𝑢𝑟𝑟/𝑢𝑢𝑅𝑅 = 𝑞𝑞𝑟𝑟/𝑞𝑞𝑅𝑅 = 𝑝𝑝𝑟𝑟/𝑝𝑝𝑅𝑅 = 𝑒𝑒𝑟𝑟/𝑒𝑒𝑅𝑅 = 𝜌𝜌𝑟𝑟/𝜌𝜌𝑅𝑅 = (𝑇𝑇𝑟𝑟/𝑇𝑇𝑅𝑅)5                        (3 − 10) 

We know 𝜌𝜌𝑟𝑟/𝜌𝜌𝑅𝑅, from equation, (3 − 8).   The 𝜌𝜌𝑅𝑅 values are listed under equations, (3 − 7). 
And the 𝜌𝜌𝑟𝑟 values are listed under column 3 in each of the tables.   We also know the 𝑢𝑢𝑅𝑅 values, 
the 𝑝𝑝𝑅𝑅 values, the 𝑞𝑞𝑅𝑅 values, and, the 𝑇𝑇𝑅𝑅 values.  These are given by equations, (3 − 3), (3 −
4), (3 − 5), and, (3 − 2), respectively.  Therefore, using equations, (3 − 10), and, (3 − 8), it is 
possible to find, 𝑢𝑢𝑟𝑟 , 𝑝𝑝𝑟𝑟 ,  𝑞𝑞𝑟𝑟 , and, 𝑇𝑇𝑟𝑟 , as a function of radius. 

When comparing these values with those in reference [2], which holds for a truncated 
Gaussian, we notice a difference.  The black holes are the same, and we had the same 
temperatures, densities, and radiative pressures at the surface.  However the distribution is 
now different as we are using a truncated exponential, and therefore, the radiative mass 
density, the energy densities, and the pressures are “packed” differently within the black hole.  
Hence, we have the differences in the tabulated entries.  We will come back to this point when 
we make formal comparisons between the two distributions (pdf’s) in section V. 

The entropy density, 𝑊𝑊𝑟𝑟 , will be considered next.  This is most easily evaluated by using the 
relation, 𝑊𝑊𝑟𝑟 = 𝑞𝑞𝑟𝑟/𝑇𝑇𝑟𝑟, which is a consequence of equations, (2 − 5𝑃𝑃), and, (2 − 5𝑐𝑐).  The 𝑞𝑞𝑟𝑟 and 
the 𝑇𝑇𝑟𝑟 values are listed under columns 6, and 7, respectively.  So all we have to do is take the 
value in one column and divide out by its corresponding value in the other column.  The 𝑊𝑊𝑟𝑟 
values are entered under column 8 in each of the tables. 

An alternative method is to recognize that the ratio 

𝑊𝑊𝑟𝑟/𝑊𝑊𝑅𝑅 = (𝑞𝑞𝑟𝑟/𝑞𝑞𝑅𝑅)(𝑇𝑇𝑅𝑅/𝑇𝑇𝑟𝑟) = (𝑅𝑅/𝑟𝑟)3  (𝑓𝑓𝑟𝑟/𝑓𝑓𝑅𝑅)  (𝑇𝑇𝑅𝑅/𝑇𝑇𝑟𝑟)    

                        = (𝑅𝑅/𝑟𝑟)3  (𝑓𝑓𝑟𝑟/𝑓𝑓𝑅𝑅)  (𝑅𝑅/𝑟𝑟)−3/5(𝑓𝑓𝑟𝑟/𝑓𝑓𝑅𝑅)−1/5   

            = (𝑅𝑅/𝑟𝑟)12/5  (𝑓𝑓𝑟𝑟/𝑓𝑓𝑅𝑅)4/5 

            = (𝑅𝑅/𝑟𝑟)12/5  exp [.8𝜆𝜆 (𝑅𝑅 − 𝑟𝑟)]                 (3 − 11) 

For the first line, we used equations (2 − 5𝑃𝑃, 𝑐𝑐), (3 − 10), and the first equality in (3 − 8).  For 
the second line, another equality in equation, (3 − 10), and the first equality in (3 − 8), were 
employed.  And for the 4th line, the second equality in (3 − 8) was utilized. 

An even simpler formulation is to use another version of equation, (3 − 10), and realize that it 
is also possible to write, 

    𝑊𝑊𝑟𝑟/𝑊𝑊𝑅𝑅 = (𝑞𝑞𝑟𝑟/𝑞𝑞𝑅𝑅)(𝑇𝑇𝑅𝑅/𝑇𝑇𝑟𝑟) = (𝑇𝑇𝑅𝑅/𝑇𝑇𝑟𝑟)4            (3 − 12) 
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We can use either equation, (3 − 11), or equation, (3 − 12), to evaluate 𝑊𝑊𝑟𝑟.  For the former, 
we need, 𝑊𝑊𝑅𝑅 , 𝑅𝑅, 𝜆𝜆, and 𝑟𝑟.  However, these are specified by equations, (3 − 6), (2 − 16), (2 −
23), and column 3.  The other alternative is to use equation, (3 − 12).  There, we need only, 𝑊𝑊𝑅𝑅 
, 𝑇𝑇𝑅𝑅 , and the 𝑇𝑇𝑟𝑟 values specified under column 6.  The 𝑊𝑊𝑅𝑅 and 𝑇𝑇𝑅𝑅 values are listed in equations, 
(3 − 6), and, (3 − 2), respectively.  These are alternative approaches to calculating the 
entropy density.   

Equation, (3 − 11), makes explicit use of the shape parameter, full radius, and considered 
radius, 𝑟𝑟.  The final expression is quite different than the one obtained for a truncated Gaussian 
(𝑇𝑇𝐺𝐺) distribution, obtained in reference [2].  There we had, 

    𝑊𝑊𝑟𝑟/𝑊𝑊𝑅𝑅 = (𝑅𝑅/𝑟𝑟)12/5  exp [.4 (𝑅𝑅2 − 𝑟𝑟2)/𝜎𝜎2]           (𝑇𝑇𝐺𝐺)       (3 − 13) 

For that distribution, the shape parameters for the three black holes under consideration were 
evaluated, and the results were, 

(𝜎𝜎𝐴𝐴,𝜎𝜎𝐵𝐵,𝜎𝜎𝐶𝐶) = (1.951 ∗ 102, 1.992 ∗ 103, 2.241 ∗ 108) 𝑚𝑚         (𝑇𝑇𝐺𝐺)     (3 − 14) 

Again, a different pdf leads to a different distribution of radiative mass, and other quantities 
within the black hole for the same size, or same total mass, black hole. 

The next column entry in the tables is column 9, which relates to radiative force.  By definition 
the radiative force is the radiative pressure at a particular 𝑟𝑟 value, multiplied by the surface 
area at the same radius, 𝑟𝑟.  When looked at from the interior, this is a force acting inwards.  
When looked at from the outside, it is a force directed outwards.  Per definition, 

    𝐹𝐹𝑟𝑟 = 𝐹𝐹𝑟𝑟
(4) = 𝑝𝑝𝑟𝑟

(4)𝐴𝐴𝑟𝑟
(4) = 𝑝𝑝𝑟𝑟 𝐴𝐴𝑟𝑟 = 𝑝𝑝𝑟𝑟 2𝜋𝜋2𝑟𝑟3            (3 − 15) 

Using this definition, and equations, (3 − 10), with, (3 − 8), we can convince ourselves that 

  𝐹𝐹𝑟𝑟/𝐹𝐹𝑅𝑅 = 𝑝𝑝𝑟𝑟𝐴𝐴𝑟𝑟/(𝑝𝑝𝑅𝑅𝐴𝐴𝑅𝑅) = 𝜌𝜌𝑟𝑟𝐴𝐴𝑟𝑟/(𝜌𝜌𝑅𝑅𝐴𝐴𝑅𝑅) = 𝑓𝑓𝑟𝑟/𝑓𝑓𝑅𝑅 = exp [𝜆𝜆(𝑅𝑅 − 𝑟𝑟)]          (3 − 16) 

For a particular value of  𝑟𝑟, we can evaluate the right hand side recognizing that both 𝜆𝜆 and 𝑅𝑅 
are known for the three black holes being analyzed.  We can also easily evaluate 𝐹𝐹𝑅𝑅 on the left 
hand side, as this is just, 𝐹𝐹𝑅𝑅 = 𝑝𝑝𝑅𝑅𝐴𝐴𝑅𝑅 = 𝑝𝑝𝑅𝑅 2𝜋𝜋2𝑅𝑅3.  The radii to be employed are as listed in 
equations, (2 − 16).  The radiative pressure at the surface, just inside the black hole, is 
specified by equations, (3 − 4).  Thus it is possible for us to determine, 𝐹𝐹𝑅𝑅, and using the right 
hand side of equation, (3 − 16), the values for 𝐹𝐹𝑟𝑟 , as well.  These are the values worked out in 
column 9.   

An alternative evaluation for 𝐹𝐹𝑟𝑟 would have been to multiply the column entries for pressure, 
given under column 5, with the corresponding surface areas, evaluated as, 𝐴𝐴𝑟𝑟 = 2𝜋𝜋2𝑟𝑟3.  This 
approach, however, which is equation, (3 − 15), does not show us directly how the distribution 
and shape parameters come into play.  Equation, (3 − 16), on the other hand, does.  Equation, 
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(3 − 16), can also be compared to its corresponding counterpart, where a truncated Gaussian 
is chosen as the pdf.  This was worked out in reference [2], and we had 

    𝐹𝐹𝑟𝑟/𝐹𝐹𝑅𝑅 = 𝑓𝑓𝑟𝑟/𝑓𝑓𝑅𝑅 = exp [(𝑅𝑅2 − 𝑟𝑟2)/2𝜎𝜎2]       (𝑇𝑇𝐺𝐺)              (3 − 17) 

The function on the right hand side is different, and thus the radiative force within the interior 
of the black hole has a different profile.  The surface radiative force,  𝐹𝐹𝑅𝑅, however, has the same 
value for both distributions, and in fact, for all distributions. 

We give three further columns in tables, 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶.  In column 10, we give the temperature 
gradient, 𝑑𝑑𝑇𝑇𝑟𝑟/𝑑𝑑𝑟𝑟 , as a function of 4-D radius within the black hole.  Under column 11, we list 
the specific heat, 𝐶𝐶𝑟𝑟 ≡ 𝑑𝑑𝑢𝑢𝑟𝑟/𝑑𝑑𝑇𝑇𝑟𝑟 , as a function of radius.  And finally, under column 12, we 
calculate the internal energy gradient, 𝑑𝑑𝑢𝑢𝑟𝑟/𝑑𝑑𝑟𝑟 , within the black hole.  We take each in turn. 

We start with the results of equations, (3 − 11), and (3 − 12).  These can be equated to each 
other since the left hand sides are equal.  From this we see that, 

    𝑇𝑇𝑟𝑟/𝑇𝑇𝑅𝑅 = (𝑅𝑅/𝑟𝑟)3/5 𝑒𝑒 .2𝜆𝜆(𝑅𝑅−𝑟𝑟)              (3 − 18) 

We differentiate this expression with respect to 𝑟𝑟, both left and right hand sides.  We find that, 

 (1/𝑇𝑇𝑅𝑅) 𝑑𝑑𝑇𝑇𝑟𝑟/𝑑𝑑𝑟𝑟 = 𝑒𝑒 .2𝜆𝜆(𝑅𝑅−𝑟𝑟) [−.2𝜆𝜆 (𝑅𝑅/𝑟𝑟)
3
5  + 𝑅𝑅3/5(−3/5) 𝑟𝑟−3/5]            (3 − 19) 

We next divide the left hand side of equation, (3 − 19), by the left hand side of equation, (3 −
18), and do the same on the right hand side.  The result is 

   (1/𝑇𝑇𝑟𝑟) 𝑑𝑑𝑇𝑇𝑟𝑟/𝑑𝑑𝑟𝑟 = −.2𝜆𝜆 − (3/5)𝑟𝑟−8/5 𝑟𝑟3/5 

      = −.2𝜆𝜆 − 3/(5𝑟𝑟)              (3 − 20) 

Therefore,  

    𝑑𝑑𝑇𝑇𝑟𝑟/𝑑𝑑𝑟𝑟 = −(𝜆𝜆 + 3/𝑟𝑟)  𝑇𝑇𝑟𝑟/5   (𝑇𝑇𝑇𝑇)           (3 − 21) 

We know 𝜆𝜆 and 𝑇𝑇𝑟𝑟 for each of the black holes.  The exponential shape parameters, 𝜆𝜆, are listed 
in equations, (2 − 23).  And the 𝑇𝑇𝑟𝑟 values are listed under column 7 in each of the tables.  
Therefore, with the help of equation, (3 − 21), we can evaluate 𝑑𝑑𝑇𝑇𝑟𝑟/𝑑𝑑𝑟𝑟 for selected values of 
radii, 𝑟𝑟.  As mentioned, these values are tabulated under column 10 in tables, 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶. 

For a truncated Gaussian distribution, the counterpart to equation, (3 − 21), was 

    𝑑𝑑𝑇𝑇𝑟𝑟/𝑑𝑑𝑟𝑟 = −(𝑟𝑟/𝜎𝜎2 + 3/𝑟𝑟)  𝑇𝑇𝑟𝑟/5  (𝑇𝑇𝐺𝐺)           (3 − 22) 
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This was worked out in reference [2].  Upon comparing the two results, we notice that the 
second terms on the right hand side are equal.  The first term differs due to the differing shape 
parameters. 

For the 11th column, we want to evaluate the quantity, 𝑑𝑑𝑢𝑢𝑟𝑟/𝑑𝑑𝑇𝑇𝑟𝑟, which can be identified as the 
specific heat.  To calculate this we make use of equation, (3 − 9).  We differentiate both left 
and right hand sides of this expression with respect to temperature, 𝑇𝑇𝑟𝑟.  The result is 

   𝑑𝑑𝑢𝑢𝑟𝑟
(4)/𝑑𝑑𝑇𝑇𝑟𝑟 = 5 𝑎𝑎(4)𝑇𝑇𝑟𝑟4 = 5 𝑢𝑢𝑟𝑟

(4)/𝑇𝑇𝑟𝑟 = 4 𝑞𝑞𝑟𝑟/𝑇𝑇𝑟𝑟 = 4 𝑊𝑊𝑟𝑟           (3 − 23) 

Equations, (2 − 5𝑃𝑃), and, (2 − 5𝑐𝑐), have been used.  The specific heat, therefore, in 4-D space, 
is equal to 4 times the entropy density, a simple result.  We use the entries under entropy, 
column 8, and multiply these by a factor of four to find, 𝐶𝐶𝑟𝑟 = 𝑑𝑑𝑢𝑢𝑟𝑟/𝑑𝑑𝑇𝑇𝑟𝑟 .  Those particular values 
are entered under column 11 in each of the tables. 

For the last entries, column 12, we evaluate the internal energy density gradient, 𝑑𝑑𝑢𝑢𝑟𝑟/𝑑𝑑𝑟𝑟.  The 
simplest way to do that is to make use of the identity, 

          𝑑𝑑𝑢𝑢𝑟𝑟/𝑑𝑑𝑟𝑟 = (𝑑𝑑𝑢𝑢𝑟𝑟/𝑑𝑑𝑇𝑇𝑟𝑟) (𝑑𝑑𝑇𝑇𝑟𝑟/𝑑𝑑𝑟𝑟) = 𝐶𝐶𝑟𝑟  (𝑑𝑑𝑇𝑇𝑟𝑟/𝑑𝑑𝑟𝑟)            (3 − 24) 

We just determined both, 𝐶𝐶𝑟𝑟  and, 𝑑𝑑𝑇𝑇𝑟𝑟/𝑑𝑑𝑟𝑟.  These are given under columns 11, and 10, 
respectively.  Therefore we multiply the entry in column 10 by the corresponding entry in 
column 11 to obtain the internal energy density gradient, 𝑑𝑑𝑢𝑢𝑟𝑟/𝑑𝑑𝑟𝑟, at a particular radius.  These 
drop off rather dramatically with increasing radius, as can be seen in tables 𝐴𝐴,𝐵𝐵, and 𝐶𝐶, for the 
three black holes being analyzed. 

 

IV Radiative Mass, Gravitational Forces, and Entropy as Functions of Radius 
We have focused on radiative mass density, internal energy density, radiative pressure, heat 
density, entropy density, temperature, and radiative forces within the black hole.  These held 
within specific layers inside the black hole.  It is now time to consider cumulative effects.  What 
is the total mass contained within a radius, 𝑟𝑟 ?  What is the total internal energy, the total heat, 
the total gravitational force, the total entropy, etc. at radius, 𝑟𝑟 ?  And what are the values at the 
surface, when 𝑟𝑟 = 𝑅𝑅?  It is now time to consider these questions.  We gave an answer to these 
questions in a previous paper but these held for a truncated Gaussian distribution.  We wish to 
formulate answers but ones, which now hold for a truncated exponential.  The goal is to 
compare results, and see what the similarities and differences are. 
 
We will follow the same format as in reference [2].  We investigate the same variables, and give 
similar tables, which will summarize our results.  In the next section we will compare what we 
discover here with what was determined in paper [2], where we had a different pdf.  Just like in 
the previous paper, we construct three tables, 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶, which are given in appendix 𝐵𝐵, 
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at the end of the references.  Table 𝐴𝐴𝐴𝐴 holds for black hole 𝐴𝐴, which has one solar mass.  
Tables, 𝐵𝐵𝐵𝐵, and 𝐶𝐶𝐶𝐶 refer to black holes 𝐵𝐵 and 𝐶𝐶 , respectively.  They have masses 10 times, and 
106 times, the mass of the sun. 
 
We start with the cumulative distribution function (cdf), defined by equation, (2 − 10).  For the 
pdf under consideration, the exponential distribution, the integral gives equation, (2 − 19).   
We know the values for 𝑅𝑅 and 𝜆𝜆 as these are fixed in equations, (2 − 16), and, (2 − 23), for 
the three black holes under investigation.  Therefore it is straightforward to calculate the cdf, 
𝐹𝐹𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶, using equation, (2 − 19).  The results are presented under column 2 in each of the 
tables,𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶.  Moreover, from equation, (2 − 11), we also can calculate the 
radiative mass from 𝑟𝑟 = 0 up to, and including, radius, 𝑟𝑟.  We simply multiply the total mass, 
which is given, by the appropriate cdf value.  These results are presented under column 3 in 
each of the tables. 

The radiative energy at radius, 𝑟𝑟 , is also quite simple.  We know that the radiative energy at 
radius 𝑟𝑟, between 𝑟𝑟 and 𝑟𝑟 + 𝑑𝑑𝑟𝑟, must equal 𝑑𝑑𝑇𝑇𝑟𝑟 = 𝑒𝑒𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟 = 𝑒𝑒𝑟𝑟𝐴𝐴𝑟𝑟𝑑𝑑𝑟𝑟 = 𝜌𝜌𝑟𝑟𝑐𝑐2𝐴𝐴𝑟𝑟𝑑𝑑𝑟𝑟.  The 𝑑𝑑𝑑𝑑𝑟𝑟 is 
the infinitesimal volume associated with that layer.  This infinitesimal energy contribution can 
be integrated to find the radiative energy, up to, and including radius, 𝑟𝑟.   The result is, using 
equations, (2 − 13), (2 − 10),  and (2 − 11), 

   𝑇𝑇𝑟𝑟 = ∫ 𝜌𝜌𝑟𝑟𝑐𝑐2𝐴𝐴𝑟𝑟𝑑𝑑𝑟𝑟
𝑟𝑟
0 = 𝑀𝑀𝑅𝑅𝑐𝑐2 ∫ 𝑓𝑓𝑟𝑟

𝑟𝑟
0 𝑑𝑑𝑟𝑟 = 𝑀𝑀𝑟𝑟𝑐𝑐2               (4 − 1) 

All quantities are 4-D, and we have dispensed with the superscripts (4) over the individual 
entities.  As expected, the total radiative energy up to a particular radius is simply, 𝑀𝑀𝑟𝑟𝑐𝑐2. 

The total radiative energy is not entered under any specific column.  Rather, we focus on the 
constituent parts, which are the internal energy, 𝑈𝑈𝑟𝑟, the heat energy, 𝑑𝑑𝑟𝑟, and the work done 
against radiative pressure, 𝑊𝑊𝑟𝑟, which has to be contained by gravity.  The sum of these three 
contributions will give us, 𝑇𝑇𝑟𝑟 = 𝑀𝑀𝑟𝑟𝑐𝑐2.  In 4-D space we found that [2], 

 𝑈𝑈𝑟𝑟 = 4
10
𝑀𝑀𝑟𝑟 𝑐𝑐2   𝑑𝑑𝑟𝑟 = 1

2
𝑀𝑀𝑟𝑟 𝑐𝑐2    𝑊𝑊𝑟𝑟 = 1

10
𝑀𝑀𝑟𝑟 𝑐𝑐2             (4 − 2) 

The factors of 4
10

, 5
10

 , and, 1
10

 , in all these relations remain the same, whether we consider, a 
layer, an enclosing volume, or the total volume.  The factors are imposed upon us by the 
dimensionality of space and the fact that we are dealing with blackbody radiation.  What is 
obvious with these relations is the fact that the internal energy makes up 40% of the total 
energy, the trapped heat represents 50% of the total energy, and the work done against 
pressure makes up 10% of the total.  In 3-D space, the proportions would be different.  In three 
dimensions, the corresponding proportions would be, 3

8
= 37.5% , 4

8
= 50% , and,  1

8
= 12.5%. 
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The values for, 𝑈𝑈𝑟𝑟, 𝑑𝑑𝑟𝑟, and, 𝑊𝑊𝑟𝑟, are entered under columns 4, 5, and, 6, respectively in each of 
the tables, 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶.  Again their sum equals, 𝑇𝑇𝑟𝑟 = 𝑀𝑀𝑟𝑟𝑐𝑐2, as we are assuming that all 
contributions make up the mass of the black hole.  What holds the black hole together under 
radiative forces, which wants to blow it out, is gravity.  This provides the surface tension 
necessary to contain the enclosed radiation.   As was shown in a previous work, the 4-D 
hydrostatic equation reads 

   𝑑𝑑𝑝𝑝𝑟𝑟
(4)/𝑑𝑑𝑟𝑟 = −𝐺𝐺𝑟𝑟

(4)𝑀𝑀𝑟𝑟
(4)𝜌𝜌𝑟𝑟

(4)/𝑟𝑟3 − 3 𝑝𝑝𝑟𝑟
(4)/𝑟𝑟               (4 − 3) 

The net radiative pressure pushing out is balanced by the gravitational force pulling in.  The 
second term on the right hand side takes into account the change in areas between the upper 
part of the layer and the lower part.  Equation, (4 − 3), holds for each layer making up the 4-D 
black hole.  See references [2] for more details. 
 
We next focus on the gravitational force.  Equation, (4 − 3), will be our starting point.  We 
know from equations, (3 − 10), and, (3 − 8), that 
 
   𝑝𝑝𝑟𝑟𝐴𝐴𝑟𝑟/(𝑝𝑝𝑅𝑅𝐴𝐴𝑅𝑅) = 𝜌𝜌𝑟𝑟𝐴𝐴𝑟𝑟/(𝜌𝜌𝑅𝑅𝐴𝐴𝑅𝑅) = 𝑒𝑒𝜆𝜆(𝑅𝑅−𝑟𝑟)               (4 − 4) 

We take the derivative of the first and last part of this equation with respect to radius, and find 

   (𝑑𝑑𝑝𝑝𝑟𝑟/𝑑𝑑𝑟𝑟 𝐴𝐴𝑟𝑟 + 𝑝𝑝𝑟𝑟𝑑𝑑𝐴𝐴𝑟𝑟/𝑑𝑑𝑟𝑟)/(𝑝𝑝𝑅𝑅𝐴𝐴𝑅𝑅) = −𝜆𝜆 𝑒𝑒𝜆𝜆(𝑅𝑅−𝑟𝑟)              (4 − 5) 

We next divide the left hand side of equation, (4 − 5), by the left hand side of equation, (4 −
4).  We do the same for the right hand side.  This allows us to write, 

   (1/𝑝𝑝𝑟𝑟 𝑑𝑑𝑝𝑝𝑟𝑟/𝑑𝑑𝑟𝑟 + 1/𝐴𝐴𝑟𝑟  𝑑𝑑𝐴𝐴𝑟𝑟/𝑑𝑑𝑟𝑟) = −𝜆𝜆                (4 − 6) 

However, in 4-D space, 𝐴𝐴𝑟𝑟 = 2𝜋𝜋2𝑟𝑟3, and thus, 𝑑𝑑𝐴𝐴𝑟𝑟/𝑑𝑑𝑟𝑟 = 6𝜋𝜋2𝑟𝑟2.  Therefore, we can simplify 
equation, (4 − 6), to 
    𝑑𝑑𝑝𝑝𝑟𝑟/𝑑𝑑𝑟𝑟 = −(𝜆𝜆 + 3/𝑟𝑟) 𝑝𝑝𝑟𝑟                 (4 − 7) 

 
This we substitute into equation, (4 − 3), to obtain 
 

−(𝜆𝜆 + 3/𝑟𝑟) 𝑝𝑝𝑟𝑟 = −𝐺𝐺𝑟𝑟
(4)𝑀𝑀𝑟𝑟𝜌𝜌𝑟𝑟/𝑟𝑟3 − 3𝑝𝑝𝑟𝑟/𝑟𝑟                                     (4 − 8) 

The second terms on both left and right hand sides cancel.  Our next step is to recognize that, 

     𝜌𝜌𝑟𝑟 = 𝑒𝑒𝑟𝑟/𝑐𝑐2 = 10 𝑝𝑝𝑟𝑟/𝑐𝑐2                (4 − 9) 

The second equality in equation, (2 − 4), has been utilized to obtain the final equality.  We also 
substitute this expression into equation, (4 − 8), in order to eliminate the 𝜌𝜌𝑟𝑟 term.  This allows 
us to write, after we cancel the 𝑝𝑝𝑟𝑟 term, 
  

𝐺𝐺𝑟𝑟
(4)𝑀𝑀𝑟𝑟 = .1𝑐𝑐2𝜆𝜆 𝑟𝑟3                 (𝑇𝑇𝑇𝑇)               (4 − 10) 
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This is a remarkably simple expression, and shows us that the 4-D gravitational “constant” is not 
a constant.  In fact, this expression is quite similar to that obtained for the truncated Gaussian 
distribution in reference [2].  There we had, as a corresponding expression, 
 

𝐺𝐺𝑟𝑟
(4)𝑀𝑀𝑟𝑟 = .1𝑐𝑐2 𝑟𝑟4/𝜎𝜎2                 (𝑇𝑇𝐺𝐺)               (4 − 11) 

We notice a certain degree of similarity.  The difference is in the power law.  In equation, (4 −
10), 𝐺𝐺𝑟𝑟

(4)𝑀𝑀𝑟𝑟 is proportional to 𝑟𝑟3, whereas equation, (4 − 11), it is proportional to 𝑟𝑟4, for a 
given size (mass) black hole.  The 𝐺𝐺𝑟𝑟

(4)𝑀𝑀𝑟𝑟 values, as calculated in equation, (4 − 10), are 
tabulated under column 7 for each of the black holes under consideration, in tables, 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, 
and, 𝐶𝐶𝐶𝐶.  Also listed in the tables, under column 8, are the 𝐺𝐺𝑟𝑟

(4)values as calculated using 
equation, (4 − 10).  It is clearly seen that 𝐺𝐺𝑟𝑟

(4) varies with 4-D radius, which seems to be a 
feature of 4-D space.  The units are also different. 
 
We specialize equation, (4 − 10), to 𝑟𝑟 = 𝑅𝑅.  At the event horizon,  
 

𝐺𝐺𝑅𝑅
(4)𝑀𝑀𝑅𝑅 = .1𝑐𝑐2𝜆𝜆 𝑅𝑅3                 (𝑇𝑇𝑇𝑇)               (4 − 12) 

Using the Schwarzschild relation, 𝑅𝑅 = 2𝐺𝐺𝑀𝑀𝑅𝑅/𝑐𝑐2, this equation can be recast in the form, 

𝐺𝐺𝑅𝑅
(4) = .2𝐺𝐺 𝜆𝜆 𝑅𝑅2                 (𝑇𝑇𝑇𝑇)               (4 − 13) 

There will be a sharp discontinuity in the gravitational constant from its 3-D value, G, which is 

Newton’s constant, to a new value, 𝐺𝐺𝑅𝑅
(4), upon entering 4-D space.  It will turn out 

that, .2 𝜆𝜆 𝑅𝑅2 ≠ 1.   From the tables, it is seen that, 𝐺𝐺𝑅𝑅
(4) ≫ 𝐺𝐺.  We have listed  𝐺𝐺𝑟𝑟

(4) under 
column 8.  This drastic and abrupt increase in gravitational coupling “constant” when entering 
4-D space has to do with the discontinuity of space itself.  Even though the radius does not 
change, the surface area, and volume do.  Therefore many quantities upon entry into the 4-D 
black hole experience a sharp discontinuity.  The temperature decreases abruptly.  So do the 
internal energy density, the radiative pressure, the heat density, etc.  We referred to this as our 
waterfall model, and the details are explained in reference [1]. 

For the truncated Gaussian distribution, detailed in reference [2], we had a similar state of 
affairs.  We found that at 𝑟𝑟 = 𝑅𝑅, the counterpart to equations, (4 − 12), and, (4 − 13), are, 

𝐺𝐺𝑅𝑅
(4)𝑀𝑀𝑅𝑅 = .1𝑐𝑐2 𝑅𝑅4/𝜎𝜎2                (𝑇𝑇𝐺𝐺)               (4 − 14) 

And, 

𝐺𝐺𝑅𝑅
(4) = .2𝐺𝐺  𝑅𝑅3/𝜎𝜎2                 (𝑇𝑇𝐺𝐺)               (4 − 15) 

Except for the power law, we see a certain similarity between these equations, and equations, 
(4 − 12), and, (4 − 13).   
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We next derive a surprising result.  As shown in reference [2], utilizing a 4-D version of Gauss’ 
law, we saw, quite generally, that the gravitational acceleration within the black hole, reduced 

to, 𝑔𝑔𝑟𝑟 = −𝐺𝐺𝑟𝑟
(4)𝑀𝑀𝑟𝑟/𝑟𝑟3.  Spherical symmetry was assumed in 4-D space.  If we substitute 

equation, (4 − 10), into this expression, we obtain, 

   𝑔𝑔𝑟𝑟 = −𝐺𝐺𝑟𝑟
(4)𝑀𝑀𝑟𝑟/𝑟𝑟3 = −.1𝑐𝑐2 𝜆𝜆 = 𝑎𝑎 𝑐𝑐𝑃𝑃𝑡𝑡𝑊𝑊𝑑𝑑𝑎𝑎𝑡𝑡𝑑𝑑      (𝑇𝑇𝑇𝑇)         (4 − 16) 

A test particle within the 4-D black hole will thus experience the same gravitational force, 
irrespective of radius!  Moreover, the exponential shape parameter, which depends only on the 
mass, or size, of the black hole, will determine its numerical strength.  This holds true only for 
the truncated exponential distribution.  Even though the acceleration due to gravity is a 
constant for the truncated exponential distribution (𝑇𝑇𝑇𝑇), we have listed them under column 9 
for each black hole being analyzed in tables, 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵, and 𝐶𝐶𝐶𝐶.  This is to emphasize a point, but 
also to show the differences between the various masses. 

For the truncated Gaussian distribution, we had quite another result.  There, we obtained, 

   𝑔𝑔𝑟𝑟 = −𝐺𝐺𝑟𝑟
(4)𝑀𝑀𝑟𝑟/𝑟𝑟3 = −.1𝑐𝑐2 𝑟𝑟/𝜎𝜎2                                (𝑇𝑇𝐺𝐺)         (4 − 17) 

, which is proportional to, 𝑟𝑟, for a given size (mass) black hole.  The gravitational acceleration 
increased linearly with radius in 4-D space, even though the radiative mass density was not a 
constant.  What we see with these two examples is that the pdf chosen will determine the 
gravitational “packing” within the black hole, i.e., how radiative mass is stored, and contained 
within the black hole. 

We have already mentioned that at the 3-D/4-D interface, which is at the surface, or event 
horizon, of the black hole in our model, we can expect discontinuities.  This holds true for the 
gravitational acceleration as well.  We consider the gravitational acceleration at the event 
horizon, where 𝑟𝑟 = 𝑅𝑅.  Using equations, (4 − 16), and, (4 − 17), we notice that 

 𝑔𝑔𝑅𝑅 = −.1𝑐𝑐2 𝜆𝜆   (𝑇𝑇𝑇𝑇)   𝑔𝑔𝑅𝑅 = −.1𝑐𝑐2 𝑅𝑅/𝜎𝜎2   (𝑇𝑇𝐺𝐺)           (4 − 18) 

These values can be compared to the acceleration due to gravity on the 3-D side.  There we 

would obtain, 𝑔𝑔𝑅𝑅
(3) = −𝐺𝐺𝑀𝑀𝑅𝑅/𝑅𝑅2 = −.5𝑐𝑐2/𝑅𝑅, where in the second equality, we have used 

Schwarzschild relation.  It is clear that all three values are different, and unique.  None can be 
made to equal the other, and so, we have a discontinuity. 

We next turn to the gravitational potential, φ𝑟𝑟  .  This is a four dimensional quantity which 
depends on radius, 𝑟𝑟.  The defining equation is 

𝜑𝜑𝑟𝑟 − 𝜑𝜑0 = −∫ 𝑔𝑔𝑟𝑟 𝑑𝑑𝑟𝑟𝑟𝑟
0               (4 − 19) 
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The constant of integration will be fixed by setting the gravitational potential in 4-D space equal 
to that in 3-D space at the event horizon.  In this way we can guarantee for the same 
equipotential surface in both spaces. 
 
For the truncated exponential distribution, we saw that the gravitational acceleration within a 
specific black hole is just a constant.  Refer to equation, (4 − 16).  The integral thus becomes 
trivial, and we obtain, 

𝜑𝜑𝑟𝑟 − 𝜑𝜑0 = (.1𝑐𝑐2) (𝜆𝜆 𝑟𝑟)              (4 − 20) 

This becomes, at radius, R, 

𝜑𝜑𝑟𝑟 − 𝜑𝜑0 = (.1𝑐𝑐2) (𝜆𝜆 𝑅𝑅)              (4 − 21) 

We demand that, 𝜑𝜑𝑅𝑅
(4) = 𝜑𝜑𝑅𝑅

(3) = −𝐺𝐺𝑀𝑀𝑅𝑅/𝑅𝑅.  This gives 

𝜑𝜑0 + (.1𝑐𝑐2 𝜆𝜆 𝑅𝑅) = −𝐺𝐺𝑀𝑀𝑅𝑅/𝑅𝑅 = −.5 𝑐𝑐2             (4 − 22)    

For the last equality, the Schwarzschild relation was used.  Therefore, putting all this together, 
we obtain for the constant of integration, 
 
                                              𝜑𝜑0 = −𝑐𝑐2(.5 + .1 𝜆𝜆𝑅𝑅) = −𝐺𝐺𝑀𝑀𝑅𝑅/𝑅𝑅 (1 + .2 𝜆𝜆𝑅𝑅)             (4 − 23) 
 
This we substitute into equation, (4 − 20), and simplify.  The final result for the gravitational 
potential is thus, 
                                         𝜑𝜑𝑟𝑟 = 𝜑𝜑0 + .1𝑐𝑐2 𝜆𝜆 𝑟𝑟 = −𝐺𝐺𝑀𝑀𝑅𝑅/𝑅𝑅 [1 + .2 𝜆𝜆(𝑅𝑅 − 𝑟𝑟)]         (𝑇𝑇𝑇𝑇)       (4 − 24) 
 
We note that at, 𝑟𝑟 = 𝑅𝑅, we obtain the three dimensional result.  Also, as the radius decreases, 
the gravitational potential becomes more and more negative. 
 
Equation, (2 − 24), can be compared to the corresponding truncated Gaussian result, worked 
out in reference [2].  There we found that 
 

𝜑𝜑𝑟𝑟 = (−𝐺𝐺𝑀𝑀𝑅𝑅/𝑅𝑅) [1 + .1 (𝑅𝑅2 − 𝑟𝑟2)/𝜎𝜎2]              (𝑇𝑇𝐺𝐺)       (4 − 25) 

Upon comparing results, there is a certain similarity in that solutions match at the 3-D/4-D 
interface, and the gravitational potential becomes more and more negative as the radius 
decreases.  But there the similarity ends as we have, in equation, (4 − 24), an entirely different 
function. 
 
We have tabulated the values for the gravitational potential, using equation, (4 − 24), for 
various radii.  These values are given under column 10, in tables, 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶.  All that was 
needed were the total radii, and the shape parameters, for each of the black holes we are 
investigating.  These values were specified in equations, (2 − 16), and, (2 − 23). 
 
We have two more column entries, columns 11 and 12.  Under column 11 we calculate the 
gravitational force at particular radii, and under column 12, we give the entropy, also as a 
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function of radius.  We first consider the 4-D gravitational force.  Within a layer between, 𝑟𝑟, 
and, 𝑟𝑟 + 𝑑𝑑𝑟𝑟, we have a well-defined gravitational force acting on that layer, 
  

𝑑𝑑𝐹𝐹𝐺𝐺,𝑟𝑟 = (𝑔𝑔𝑟𝑟 𝑑𝑑𝑀𝑀𝑟𝑟) = (−.1𝑐𝑐2 𝜆𝜆)(𝑑𝑑𝑀𝑀𝑟𝑟)                         (4 − 26) 

Equation, (4 − 16), was used.  To find the total gravitational force at a specific radius, we 
integrate this expression, and find, 
 
    𝐹𝐹𝐺𝐺,𝑟𝑟 = ∫ −.1𝑐𝑐2 𝜆𝜆 𝑑𝑑𝑀𝑀𝑟𝑟 = −.1𝑐𝑐2 𝜆𝜆 𝑀𝑀𝑟𝑟

𝑟𝑟
0                         (4 − 27) 

From this equation, we see that the gravitational force at radius, 𝑟𝑟, is simply proportional to the 
radiative energy enclosed within that radius, 𝑀𝑀𝑟𝑟𝑐𝑐2.  The shape parameter determines the 
constant of proportionality.  That the gravitational force should be proportional to 𝑀𝑀𝑟𝑟 is not 
surprising, but that it depends on little else is.  In fact, a force which is proportional to stored 
energy is very unusual.  The gravitational force is listed under column 11 in tables 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 
𝐶𝐶𝐶𝐶.  We only need the 𝑀𝑀𝑟𝑟 values, given under column 2, and the shape parameters, specified 
by equations, (2 − 16). 
 
For a truncated Gaussian or Normal distribution, the corresponding expression for the 
gravitational force was somewhat different.  There we needed the 4-D radiative force at the 
surface, 𝐹𝐹𝑅𝑅.  The expression for the gravitational force was [2], 
 

𝐹𝐹𝐺𝐺,𝑟𝑟 = ∫ (𝑔𝑔𝑟𝑟)(𝜌𝜌𝑟𝑟𝐴𝐴𝑟𝑟𝑑𝑑𝑟𝑟)𝑟𝑟
0 = ∫ (−.1 𝑐𝑐2𝑟𝑟/𝜎𝜎2)(𝑀𝑀𝑅𝑅𝑓𝑓𝑟𝑟𝑑𝑑𝑟𝑟)𝑟𝑟

0   (𝑇𝑇𝐺𝐺) 

                           = (−.1 𝑀𝑀𝑅𝑅𝑐𝑐2)∫ (𝑟𝑟/𝜎𝜎2)(𝑓𝑓𝑟𝑟𝑑𝑑𝑟𝑟)𝑟𝑟
0   

     = (−.1 𝑀𝑀𝑅𝑅𝑐𝑐2)∫ (𝑟𝑟/𝜎𝜎2)(𝑓𝑓𝑅𝑅 exp �𝑅𝑅
2−𝑟𝑟2

2𝜎𝜎2
� 𝑑𝑑𝑟𝑟)𝑟𝑟

0  

     = (−.1 𝑀𝑀𝑅𝑅𝑐𝑐2𝑓𝑓𝑅𝑅)∫ (𝑟𝑟/𝜎𝜎2)(exp �𝑅𝑅
2−𝑟𝑟2

2𝜎𝜎2
� 𝑑𝑑𝑟𝑟)𝑟𝑟

0  

     = − 𝐹𝐹𝑅𝑅 [𝑒𝑒𝑅𝑅2/2𝜎𝜎2 − 𝑒𝑒(𝑅𝑅2−𝑟𝑟2)/2𝜎𝜎2]               (4 − 28) 

As stated, 𝐹𝐹𝑅𝑅 = 𝑝𝑝1
(4)𝐴𝐴𝑅𝑅

(4), is the 4-D radiative force just inside the black hole, at radius, 𝑅𝑅.  This 
radiative force can be calculated.  We find, using the arguments of reference [2], 
 
  𝐹𝐹𝑅𝑅 = 𝐹𝐹𝑅𝑅

(4) = 𝑝𝑝1
(4)𝐴𝐴𝑅𝑅

(4) = .8 𝑝𝑝2
(3)𝐴𝐴𝑅𝑅

(3)      (𝐼𝐼𝑀𝑀𝐵𝐵𝐼𝐼) 

     = .8 𝑢𝑢2
(3)/3  4𝜋𝜋𝑅𝑅2 

     = 32𝜋𝜋/30  𝑎𝑎(3)(2.725)4 𝑅𝑅2    

     = 16𝜋𝜋/15  (7.5657 ∗ 10−16) (2.725)4 𝑅𝑅2 

     = 1.398 ∗ 10−13 𝑅𝑅2              (4 − 29) 
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Equation, (4 − 29), holds for an isolated static black hole (𝐼𝐼𝑀𝑀𝐵𝐵𝐼𝐼), and all quantities are in the 
𝑀𝑀𝐾𝐾𝑀𝑀 system of units.  Using equation, (4 − 29), we can determine the gravitational force, in 
equation, (4 − 28).  Even though equation, (4 − 29), holds technically only for an isolated, 
static black hole, it can also be applied with a new temperature, 𝑇𝑇2 > 2.725 𝐾𝐾, for a dynamic 
situation, when there is net inflow.  The point is that the gravitational force can be calculated in 
terms of the radiative force, in either scenario. 

We next compare the gravitational forces at the event horizon, where, 𝑟𝑟 = 𝑅𝑅,  for both the 
exponential distribution and the Gaussian distribution.  We focus on a static situation.  For the 
truncated exponential distribution, we use equation, (4 − 27), and for the truncated Gaussian 
distribution, we use equation, (4 − 28), with equation, (4 − 29).  For the former we obtain, 

     𝐹𝐹𝐺𝐺,𝑅𝑅 = −.1 𝑀𝑀𝑅𝑅𝑐𝑐2 𝜆𝜆              (𝑇𝑇𝑇𝑇)           (4 − 30) 

For the latter, we find, 

     𝐹𝐹𝐺𝐺,𝑅𝑅 = −𝐹𝐹𝑅𝑅 [𝑒𝑒𝑅𝑅2/2𝜎𝜎2 − 1]  (𝑇𝑇𝐺𝐺)           (4 − 31) 

We evaluate numerically both sets of values for each of the black holes under consideration.  
We have the radii specified in equations, (2 − 16) .  The 𝜆𝜆 values are indicated in equations, 
(2 − 23).  We also have the 𝜎𝜎 values specified for each of the black holes in equations, (3 −
14).  Numerically, the results are, 

     �𝐹𝐹𝐺𝐺,𝑅𝑅
𝐴𝐴 ,  𝐹𝐹𝐺𝐺,𝑅𝑅

𝐵𝐵 ,  𝐹𝐹𝐺𝐺,𝑅𝑅
𝐶𝐶 � = (7.07 ∗ 1044, 6.79 ∗ 1044, 5.38 ∗ 1044) 𝑁𝑁𝑒𝑒𝑁𝑁𝑑𝑑𝑃𝑃𝑡𝑡𝑊𝑊       (𝑇𝑇𝑇𝑇)      (4 − 32) 

These forces are for the truncated exponential.  For the truncated Gaussian, the corresponding 
calculations give, 

     �𝐹𝐹𝐺𝐺,𝑅𝑅
𝐴𝐴 ,  𝐹𝐹𝐺𝐺,𝑅𝑅

𝐵𝐵 ,  𝐹𝐹𝐺𝐺,𝑅𝑅
𝐶𝐶 � = (7.30 ∗ 1043, 7.16 ∗ 1045, 6.36 ∗ 1043) 𝑁𝑁𝑒𝑒𝑁𝑁𝑑𝑑𝑃𝑃𝑡𝑡𝑊𝑊       (𝑇𝑇𝐺𝐺)      (4 − 33) 

Upon comparing these two sets of results, we notice that they are comparable in value. 

Finally, let us consider the entropy.  There are many ways to calculate the entropy, 𝑀𝑀𝑟𝑟 = 𝑀𝑀𝑅𝑅
(4),, 

as a function of radius.  Perhaps the most direct way is to use equation, (3 − 11).  First, we 
recognize that within a particular layer, between 𝑟𝑟 and, 𝑟𝑟 + 𝑑𝑑𝑟𝑟, the entropy amounts to, 𝑑𝑑𝑀𝑀𝑟𝑟 =
𝑊𝑊𝑟𝑟 𝑑𝑑𝑑𝑑𝑟𝑟 = 𝑊𝑊𝑟𝑟 𝐴𝐴𝑟𝑟𝑑𝑑𝑟𝑟, where, 𝐴𝐴𝑟𝑟 = 2𝜋𝜋2𝑟𝑟3, is the 4-D surface area.  If we multiply equation, (3 −
11), by 𝐴𝐴𝑟𝑟/𝐴𝐴𝑅𝑅, we obtain 

    𝑊𝑊𝑟𝑟𝐴𝐴𝑟𝑟/(𝑊𝑊𝑅𝑅𝐴𝐴𝑅𝑅) = (𝑟𝑟/𝑅𝑅)3 (𝑅𝑅/𝑟𝑟)12/5 𝑒𝑒 .8𝜆𝜆(𝑅𝑅−𝑟𝑟) 

      = (𝑟𝑟/𝑅𝑅)3/5  𝑒𝑒 .8𝜆𝜆(𝑅𝑅−𝑟𝑟)             (4 − 34) 

We next integrate both the left and right hand sides over𝑑𝑑𝑟𝑟.  The result is, 
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  ∫ 𝑊𝑊𝑟𝑟𝐴𝐴𝑟𝑟/(𝑊𝑊𝑅𝑅𝐴𝐴𝑅𝑅)   𝑑𝑑𝑟𝑟𝑟𝑟
0 = ∫ (𝑟𝑟/𝑅𝑅)3/5  𝑒𝑒 .8𝜆𝜆(𝑅𝑅−𝑟𝑟) 𝑑𝑑𝑟𝑟𝑟𝑟

0  

  1/(𝑊𝑊𝑅𝑅𝐴𝐴𝑅𝑅) [𝑀𝑀𝑟𝑟 − 𝑀𝑀0] = −(5/𝑅𝑅)
3
5  � 1

4𝜆𝜆
�
8
5  �5𝛤𝛤 �8

5
, .8𝜆𝜆𝑟𝑟� − 3𝛤𝛤 �3

5
��  𝑒𝑒 .8𝜆𝜆𝑅𝑅     (4 − 35) 

In this equation, 𝛤𝛤(𝑊𝑊, 𝑒𝑒), is the upper incomplete gamma function, and, 𝛤𝛤(𝑊𝑊), is the regular 
gamma function.  We set our constant of integration, 𝑀𝑀0 , equal to zero since, at 𝑟𝑟 = 0, we can 
assume no entropy. 

We next multiply equation, (4 − 35), through by 𝑊𝑊𝑅𝑅𝐴𝐴𝑅𝑅, and simplify to obtain, 

𝑀𝑀𝑟𝑟 = −𝑊𝑊𝑅𝑅 2𝜋𝜋2 𝑅𝑅12/5 (5/4𝜆𝜆)8/5  �𝛤𝛤 �8
5

, .8𝜆𝜆𝑟𝑟� − 3
5
𝛤𝛤 �3

5
��  𝑒𝑒 .8𝜆𝜆𝑅𝑅       (4 − 36) 

We have values for, 𝑊𝑊𝑅𝑅 ,𝑅𝑅, and, 𝜆𝜆, for each of the black holes being analyzed.  Refer to 
equations, (3 − 6), (2 − 16), and, (2 − 23), respectively.  Therefore, 𝑀𝑀𝑟𝑟 , can be evaluated as a 
function of radius for each of the black holes in question.  We have listed the 𝑀𝑀𝑟𝑟 entries under 
column 12 in tables, 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶, for the specific radii indicated under column 1. 

We can specialize to, 𝑟𝑟 = 𝑅𝑅, and compare these values for entropy.  We find, upon referring to 
the last row in tables, 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶, that the following values for total entropy hold. 

     (𝑀𝑀𝑅𝑅𝐴𝐴,  𝑀𝑀𝑅𝑅𝐵𝐵,  𝑀𝑀𝑅𝑅𝐶𝐶) = (4.01 ∗ 1036, 1.65 ∗ 1040, 1.99 ∗ 1046) 𝐽𝐽𝑃𝑃𝑢𝑢𝑃𝑃𝑒𝑒𝑊𝑊/𝐾𝐾       (𝑇𝑇𝑇𝑇)             (4 − 37) 

These values are very low when compared to the Bekenstein entropy [13-14], just as in the 
truncated Gaussian case.  This would seem to suggest that, if this model is correct, the black 
hole is a highly ordered state.  This is very contrary to what is commonly thought. 

We have calculated the entropy using our truncated Gaussian distribution.  As seen in reference 
[2], we obtained,  

𝑀𝑀𝑟𝑟 = (−𝐹𝐹𝑅𝑅/𝑇𝑇𝑅𝑅) 𝑅𝑅−
3
5  (5/2)

9
5  [𝛤𝛤 �4

5
, 2𝑟𝑟

2

5𝜎𝜎2
� − 𝛤𝛤 �4

5
�] 𝜎𝜎8/5𝑒𝑒(2𝑅𝑅

2

5𝜎𝜎2
)            

     = (+𝐹𝐹𝑅𝑅/𝑇𝑇𝑅𝑅) 𝑅𝑅−
3
5  (5/2)

9
5   𝛾𝛾 �4

5
, 2𝑟𝑟

2

5𝜎𝜎2
�  𝜎𝜎8/5𝑒𝑒(2𝑅𝑅

2

5𝜎𝜎2
)          (𝑇𝑇𝐺𝐺)     (4 − 38) 

Here, 𝛾𝛾(𝑊𝑊, 𝑒𝑒) =  𝛤𝛤(𝑊𝑊) − 𝛤𝛤(𝑊𝑊, 𝑒𝑒) > 0, is the lower incomplete gamma function.  We notice that 
the term within the brackets on the right hand side of equation, (4 − 36), involving the gamma 
functions, cannot be simplified.  But here, in equation, (4 − 38), the terms can be combined.  
Both equations, (4 − 36), and, (4 − 38), are rather complicated, but they both give values for 
the total entropy, which are low.  Perhaps black holes are indeed, highly ordered objects.  The 
counterpart to equation, (4 − 37), is 
 
     (𝑀𝑀𝑅𝑅𝐴𝐴,  𝑀𝑀𝑅𝑅𝐵𝐵,  𝑀𝑀𝑅𝑅𝐶𝐶) = (1.63 ∗ 1037, 6.59 ∗ 1040, 7.24 ∗ 1046) 𝐽𝐽𝑃𝑃𝑢𝑢𝑃𝑃𝑒𝑒𝑊𝑊/𝐾𝐾       (𝑇𝑇𝐺𝐺)             (4 − 39) 
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This holds for a truncated Gaussian, and these results are obtained using equation, (4 − 38).  
When compared to equation, (4 − 37), we see that these values are comparable.  They are 
however, definitely larger in value.  It is well known that the truncated Gaussian has the 
maximum mathematical entropy of all probability distribution functions.  This holds true with 
support, 𝑟𝑟 ∈ [0,𝑅𝑅], or without. 
 

V  Discussion of Results 
Now that the values have been evaluated, and entered into the tables, it is time to compare 
results.  We start with tables 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶.  We consider values at 𝑟𝑟 = .01 𝑅𝑅, and compare those 
values to the corresponding quantities at the surface.  The radius, 𝑟𝑟 = .01 𝑅𝑅, is close to the 
core, and it will be insightful to compare those values to surface values.  We will also give, right 
next to the truncated exponential values, the corresponding truncated Gaussian values.  This 
will enable us to make further comparisons. 
 
We start with temperature.  Ultimately, for a black body, everything depends on temperature.  
This includes the internal energy density, the radiative pressure, the radiative forces, the heat 
density, the entropy density, etc..   These quantities are, by and large, some factor times the 
temperature taken to the fifth power.  Entropy density is an exception, as well as radiative 
force.  The temperature, 𝑇𝑇.01𝑅𝑅 , holds at 𝑟𝑟 = .01 𝑅𝑅, whereas, 𝑇𝑇1 = 𝑇𝑇𝑅𝑅, is the temperature at the 
surface, just inside the black hole.  The superscripts 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶, refer to the three specific 
black holes under consideration.  The corresponding tables are called 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶, and are 
found in appendix 𝐴𝐴.  Resorting to the tables, we find (all temperatures are in K) 
 
 [𝑇𝑇.01𝑅𝑅

𝐴𝐴 ,  𝑇𝑇𝑅𝑅𝐴𝐴] = [2.05 ∗ 1010, .115] 

 [𝑇𝑇.01𝑅𝑅
𝐵𝐵 ,  𝑇𝑇𝑅𝑅𝐵𝐵] = [5.16 ∗ 109, 7.26 ∗ 10−2]   (𝑇𝑇𝑇𝑇)              (5 − 1) 

 [𝑇𝑇.01𝑅𝑅
𝐶𝐶 ,  𝑇𝑇𝑅𝑅𝐶𝐶] = [5.16 ∗ 106, 7.26 ∗ 10−3] 

We see very clearly that the smaller the black hole (lessor mass), the higher the core 
temperature.  Equations, (5 − 1), can be compared to the corresponding values for a truncated 
Normal distribution.  These values were worked out in reference [2], and referring to those 
tables, we had 
 
             [𝑇𝑇.01𝑅𝑅

𝐴𝐴 ,  𝑇𝑇𝑅𝑅𝐴𝐴] = [1.64 ∗ 1010, .115] 

 [𝑇𝑇.01𝑅𝑅
𝐵𝐵 ,  𝑇𝑇𝑅𝑅𝐵𝐵] = [4.11 ∗ 109, 7.26 ∗ 10−2]   (𝑇𝑇𝐺𝐺)              (5 − 2) 

 [𝑇𝑇.01𝑅𝑅
𝐶𝐶 ,  𝑇𝑇𝑅𝑅𝐶𝐶] = [4.02 ∗ 106, 7.26 ∗ 10−3] 

The surface temperatures are the same as in equations, (5 − 1).  The core temperatures are 
comparable, but less than in relations, (5 − 2).  The least massive black holes have the highest 
core temperatures. 
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Another quantity we focus on as it relates to tables, 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶, is radiative force, 𝐹𝐹𝑟𝑟.  The 
radiative force, 𝐹𝐹.01𝑅𝑅, will refer to the radiative force at, 𝑟𝑟 = .01 𝑅𝑅, whereas, 𝐹𝐹𝑅𝑅, is the value at 
the surface.  The superscripts refer to the black holes being analyzed.  The radiative force can 
be calculated, using, 𝐹𝐹𝑟𝑟 = 𝑝𝑝𝑟𝑟𝐴𝐴𝑟𝑟 = 𝑝𝑝𝑟𝑟 2𝜋𝜋2𝑟𝑟3.  The pressure values are entered under column 4, 
and we multiply the pressure by the 4-D surface area to find the 𝐹𝐹𝑟𝑟 values.  We find 
 
             [𝐹𝐹.01𝑅𝑅

𝐴𝐴 ,  𝐹𝐹𝑅𝑅𝐴𝐴] = [2.20 ∗ 1044, 1.22 ∗ 10−6] 

 [𝐹𝐹.01𝑅𝑅
𝐵𝐵 ,  𝐹𝐹𝑅𝑅𝐵𝐵] = [2.22 ∗ 1044, 1.22 ∗ 10−4]   (𝑇𝑇𝑇𝑇)              (5 − 3) 

 [𝐹𝐹.01𝑅𝑅
𝐶𝐶 ,  𝐹𝐹𝑅𝑅𝐶𝐶] = [2.22 ∗ 1044, 1.22 ∗ 10+6] 

All forces are measured in 𝑁𝑁𝑒𝑒𝑁𝑁𝑑𝑑𝑃𝑃𝑡𝑡𝑊𝑊.  As is plain to see, the radiative forces are close to zero at 
the surface but quite substantial at the core.  In fact, at the core, they have almost identical 
values. 
 
Equations, (5 − 3), can be compared to the corresponding values for a truncated Normal 
distribution.  Those values are found in the same manner, and referring to the tables in 
reference [2], we obtain, 
 
             [𝐹𝐹.01𝑅𝑅

𝐴𝐴 ,  𝐹𝐹𝑅𝑅𝐴𝐴] = [7.23 ∗ 1043, 1.22 ∗ 10−6] 

 [𝐹𝐹.01𝑅𝑅
𝐵𝐵 ,  𝐹𝐹𝑅𝑅𝐵𝐵] = [7.08 ∗ 1043, 1.22 ∗ 10−4]   (𝑇𝑇𝐺𝐺)              (5 − 4) 

 [𝐹𝐹.01𝑅𝑅
𝐶𝐶 ,  𝐹𝐹𝑅𝑅𝐶𝐶] = [6.31 ∗ 1043, 1.22 ∗ 10+6] 

The surface radiative forces are the same as in equations, (5 − 3).  The core values are likewise 
very close to each other, irrespective of the size (mass) of the black hole.  The core radiative 
forces in equations, (5 − 4), are less than those indicated in equations, (5 − 3). 
 
We next proceed to tables, 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶.  These quantities are cumulative in nature, i.e., 
they hold from, 𝑟𝑟 = 0, up to, and including, some finite value for 𝑟𝑟.   We start with radiative 
mass.  Using the same conventions as before, and referring to the tables in the appendix 𝐵𝐵, we 
find, 
 [𝑀𝑀.01𝑅𝑅

𝐴𝐴 ,  𝑀𝑀𝑅𝑅
𝐴𝐴] = [1.37 ∗ 1030, 1.99 ∗ 1030] 

 [𝑀𝑀.01𝑅𝑅
𝐵𝐵 ,  𝑀𝑀𝑅𝑅

𝐵𝐵] = [1.34 ∗ 1031, 1.99 ∗ 1031]   (𝑇𝑇𝑇𝑇)              (5 − 5) 

 [𝑀𝑀.01𝑅𝑅
𝐶𝐶 ,  𝑀𝑀𝑅𝑅

𝐶𝐶] = [1.17 ∗ 1036, 1.99 ∗ 1036] 

These masses are in, 𝑘𝑘𝑔𝑔.  Upon comparing the core values to the surface values, we notice 
something surprising.  The core values are exceedingly large in relation to the total mass.  
Within one percent of the radius, we already have the following proportions of the entire 
(total) mass. 
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 (1.37/1.99, 1.34/1.99, 1.17/1.99) = (69 %,   67 %, 59 %) (𝑇𝑇𝑇𝑇)             (5 − 6) 
 
These proportions are quite high but then we are dealing with an exponential distribution, 
where the concentration is very near the center.  This is the distribution which comes closest to 
mimicking a singularity at the center.  It comes close to being singular but still is finite at, 𝑟𝑟 = 0, 
as can be seen from equation, (2 − 18).   If we set 𝑟𝑟 = 0 in this equation, then, 𝑓𝑓0 = 𝜆𝜆 /(1 −
𝑒𝑒−𝜆𝜆𝑅𝑅).   Even though this value is large, it is not infinite. 
 
The truncated Normal distribution does not come close to packing/concentrating the radiative 
mass (energy) within such a small volume.  As can be seen by referring to the tables in 
reference [2], we have 
 
 [𝑀𝑀.01𝑅𝑅

𝐴𝐴 ,  𝑀𝑀𝑅𝑅
𝐴𝐴] = [2.39 ∗ 1029, 1.99 ∗ 1030] 

 [𝑀𝑀.01𝑅𝑅
𝐵𝐵 ,  𝑀𝑀𝑅𝑅

𝐵𝐵] = [2.35 ∗ 1030, 1.99 ∗ 1031]   (𝑇𝑇𝐺𝐺)              (5 − 7) 

 [𝑀𝑀.01𝑅𝑅
𝐶𝐶 ,  𝑀𝑀𝑅𝑅

𝐶𝐶] = [2.09 ∗ 1035, 1.99 ∗ 1036] 

These values are decidedly less.  Here the corresponding proportions are, 
 
 (.239/1.99, .235/1.99, .209/1.99) = (12 %,   12 %, 11 %) (𝑇𝑇𝐺𝐺)             (5 − 8) 
 
These percentages are still, surprisingly, relatively high, indicating large packing within the 
interior, but they are not as high as in equations, (5 − 6). 
 
Another series of entries in tables, 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶, in appendix 𝐵𝐵, deal with the gravitational 
“constant” in 4-D space.  As we can clearly see, these values are not constant, but radius 
dependent.  See equation, (4 − 10).  For the truncated Gaussian distribution, we had a similar 
state of affairs, i.e., 𝐺𝐺𝑟𝑟

(4) was a function of radius.  There the evaluation rests on relation, (4 −
11).   Moreover, in both instances, when we transition from 3-D space, where 𝐺𝐺 is a constant, 
to 4-D space where it is no longer a constant, we find a jump or discontinuity in value.  We 
obtain a dramatic increase in the gravitational coupling constant.  We have found this condition 
for many variables because in transitioning from three-dimensional space, to 4-D space, there is 
a break in spatial dimension.  In reference [1], this was referred to as a “waterfall” model. 
 
We first give the gravitational coupling in 4-D space using our truncated exponential 
distribution.  Using the same notation as before, and referring to the tables in appendix, 𝐵𝐵, we 
find, 
 [𝐺𝐺.01𝑅𝑅

𝐴𝐴 ,  𝐺𝐺𝑅𝑅𝐴𝐴] = [6.69 ∗ 10−12, 4.61 ∗ 10−6] 

 [𝐺𝐺.01𝑅𝑅
𝐵𝐵 ,  𝐺𝐺𝑅𝑅𝐵𝐵] = [6.56 ∗ 10−11, 4.43 ∗ 10−5]   (𝑇𝑇𝑇𝑇)              (5 − 9) 

 [𝐺𝐺.01𝑅𝑅
𝐶𝐶 ,  𝐺𝐺𝑅𝑅𝐶𝐶] = [5.95 ∗ 10−6, 3.51 ∗ 100] 



 
 

25 
 

The units are different than their three dimensional counterpart, 𝐺𝐺 = 6.67 ∗ 10−11𝑁𝑁𝑒𝑒𝑁𝑁𝑑𝑑𝑃𝑃𝑡𝑡𝑊𝑊 ∗
𝑚𝑚2/𝑘𝑘𝑔𝑔2.  In 4-D space, 𝐺𝐺𝑟𝑟 = 𝐺𝐺𝑟𝑟

(4) is measured in, 𝑁𝑁𝑒𝑒𝑁𝑁𝑑𝑑𝑃𝑃𝑡𝑡𝑊𝑊 ∗ 𝑚𝑚3/𝑘𝑘𝑔𝑔2.  We notice that, at the 
event horizon, we have a sharp increase in gravitational coupling upon entering the 4-D space.  
Second, the gravitational coupling decreases substantially as one enters the black holes interior.  
Thirdly, the largest, most massive, black holes have the largest gravitational coupling constants.  
And finally, upon entering 4-D space, the units change. 
 
We compare the results in equations, (5 − 9), with the corresponding values for a truncated 
Gaussian distribution.  These were worked out in reference [2], and we repeat them here in 
order to make comparisons.  The values obtained there were 
 
 [𝐺𝐺.01𝑅𝑅

𝐴𝐴 ,  𝐺𝐺𝑅𝑅𝐴𝐴] = [7.51 ∗ 10−13, 9.04 ∗ 10−6] 

 [𝐺𝐺.01𝑅𝑅
𝐵𝐵 ,  𝐺𝐺𝑅𝑅𝐵𝐵] = [7.36 ∗ 10−12, 8.67 ∗ 10−5]   (𝑇𝑇𝐺𝐺)            (5 − 10) 

 [𝐺𝐺.01𝑅𝑅
𝐶𝐶 ,  𝐺𝐺𝑅𝑅𝐶𝐶] = [6.53 ∗ 10−7, 6.85 ∗ 100] 

Again, we notice the discontinuous increase in gravitational coupling between masses upon 
entry from 3-D space.  Again, the gravitational coupling decreases as one enters the interior.  
And, as before, the largest, most massive black holes have the strongest gravitational couplings.  
The units for gravitational coupling also change when entering 4-D space from 3-D space.  The 
values here depend on the Gaussian shape parameter, 𝜎𝜎.  Comparatively, the results in 
equations, (5 − 9), and, (5 − 10), are quite similar, although equations, (5 − 10), have 
somewhat stronger values at the surface.  Close to the core, however, the exponential 
distribution gives larger 𝐺𝐺𝑟𝑟 values.  This comes as no surprise because the mass concentration is 
more intense there. 
 
Next, we look at the gravitational acceleration.  For a truncated exponential distribution, the 
surprising result is that it is a constant throughout the black hole.  Therefore, referring to the 
tables in appendix, 𝐵𝐵, we find that 
 

             [𝑔𝑔.01𝑅𝑅
𝐴𝐴 ,  𝑔𝑔𝑅𝑅𝐴𝐴] = [−3.56 ∗ 1014, −3.56 ∗ 1014] 

 [𝑔𝑔.01𝑅𝑅
𝐵𝐵 ,  𝑔𝑔𝑅𝑅𝐵𝐵] = [−3.41 ∗ 1013, −3.41 ∗ 1013]  (𝑇𝑇𝑇𝑇)            (5 − 11) 

 [𝑔𝑔.01𝑅𝑅
𝐶𝐶 ,  𝑔𝑔𝑅𝑅𝐶𝐶] = [−2.71 ∗ 108, −2.71 ∗ 108] 

 
For black holes with larger mass, the gravitational acceleration does decrease.  However, for a 
specific mass, this value is uniform.  We compare this to the corresponding values if one were 
to use a truncated Normal distribution instead.  Employing the tables in reference [2], we 
notice that 
 
             [𝑔𝑔.01𝑅𝑅

𝐴𝐴 ,  𝑔𝑔𝑅𝑅𝐴𝐴] = [−6.97 ∗ 1012, −6.97 ∗ 1014] 

 [𝑔𝑔.01𝑅𝑅
𝐵𝐵 ,  𝑔𝑔𝑅𝑅𝐵𝐵] = [−6.69 ∗ 1011, −6.69 ∗ 1013]  (𝑇𝑇𝐺𝐺)            (5 − 12) 
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 [𝑔𝑔.01𝑅𝑅
𝐶𝐶 ,  𝑔𝑔𝑅𝑅𝐶𝐶] = [−5.28 ∗ 106, −5.28 ∗ 108] 

 
Here, obviously, the values are not constant within the black hole.  The gravitational 
acceleration does decrease, as one decreases the 4-D radius.  When equation, (5 − 12), is 
compared to equation, (5 − 11), we see that the values at the surface are comparable.  
However within the interior, we have far lessor values for gravitational acceleration if the 
distribution is Gaussian versus exponential.  For the truncated Gaussian, the gravitational 
acceleration is proportional to radius, 𝑟𝑟, as can be seen by equation, (4 − 17). 
 
We focus on two more sets of entries.  The first is the gravitational force, 𝐹𝐹𝐺𝐺,𝑟𝑟, at radius 𝑟𝑟. 
Referring to the tables in appendix, 𝐵𝐵, we see that 
 
             �𝐹𝐹𝐺𝐺,.01𝑅𝑅

𝐴𝐴 ,  𝐹𝐹𝐺𝐺,𝑅𝑅
𝐴𝐴 � = [4.88 ∗ 1044, 7.07 ∗ 1044] 

 �𝐹𝐹𝐺𝐺,.01𝑅𝑅
𝐵𝐵 ,  𝐹𝐹𝐺𝐺,𝑅𝑅

𝐵𝐵 � = [4.58 ∗ 1044, 6.79 ∗ 1044]  (𝑇𝑇𝑇𝑇)            (5 − 13) 

 �𝐹𝐹𝐺𝐺,.01𝑅𝑅
𝐶𝐶 ,  𝐹𝐹𝐺𝐺,𝑅𝑅

𝐶𝐶 � = [3.17 ∗ 1044, 5.38 ∗ 1044] 

 
All values are in, 𝑁𝑁𝑒𝑒𝑁𝑁𝑑𝑑𝑃𝑃𝑡𝑡𝑊𝑊.  Looking at these values, we notice that there is very little variation.  
In fact, in terms of percentages, the core values are a substantial part of the total gravitational 
force at the surface.  We have 
 
 (4.88/7.07, 4.58/6.79, 3.17/5.38) = (69 %,   67 %, 59 %) (𝑇𝑇𝑇𝑇)           (5 − 14) 
 
These are the same percentages as in equations, (5 − 6), which hold for the radiative mass.  
That the two are proportional is not surprising.  That the core values are a high percentage of 
the total is.  The gravitational force at the surface is a major contribution to the surface tension, 
as shown in reference [1]. 
 
We compare this to the corresponding expressions for the truncated normal distribution.  
Referring to the tables, 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, and, 𝐶𝐶𝐶𝐶, in reference [2], we find that 
 
             �𝐹𝐹𝐺𝐺,.01𝑅𝑅

𝐴𝐴 ,  𝐹𝐹𝐺𝐺,𝑅𝑅
𝐴𝐴 � = [8.32 ∗ 1041, 7.30 ∗ 1043] 

 �𝐹𝐹𝐺𝐺,.01𝑅𝑅
𝐵𝐵 ,  𝐹𝐹𝐺𝐺,𝑅𝑅

𝐵𝐵 � = [7.83 ∗ 1043, 7.16 ∗ 1045]   (𝑇𝑇𝐺𝐺)            (5 − 15) 

 �𝐹𝐹𝐺𝐺,.01𝑅𝑅
𝐶𝐶 ,  𝐹𝐹𝐺𝐺,𝑅𝑅

𝐶𝐶 � = [5.50 ∗ 1041, 6.36 ∗ 1043] 

 
With the exception of black hole 𝐵𝐵, these values are weaker than the above.  Also the 
percentages are far smaller if we compare the core values with the surface values.  Setting up 
the ratios, we obtain, 
 
    (.0832/7.30, .0783/7.16, .055/6.36) = (1.14 %,   1.09 %, .865 %)       (𝑇𝑇𝐺𝐺)        (5 − 16) 
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These values seem reasonable, given that the core radius is 1% of the surface radius.  We are 
not sure why black hole, 𝐵𝐵, has a much greater gravitational force both within, and on the 
surface, when compared to the other values.  The entries have been checked more than once, 
and we find the same results.  This anomaly of the truncated Gaussian must have an 
explanation, but one which is not obvious.  
 
Finally, we consider the entropy, 𝑀𝑀𝑟𝑟 .  Using our by now familiar formalism, for a TE distribution, 
we find, 
 
             [𝑀𝑀.01𝑅𝑅

𝐴𝐴 ,  𝑀𝑀𝑅𝑅𝐴𝐴] = [1.46 ∗ 1036, 4.01 ∗ 1036] 

 [𝑀𝑀.01𝑅𝑅
𝐵𝐵 ,  𝑀𝑀𝑅𝑅𝐵𝐵] = [5.75 ∗ 1039, 1.65 ∗ 1040]  (𝑇𝑇𝑇𝑇)                         (5 − 17) 

 [𝑀𝑀.01𝑅𝑅
𝐶𝐶 ,  𝑀𝑀𝑅𝑅𝐶𝐶] = [5.29 ∗ 1045, 1.99 ∗ 1046] 

 
The units are in, 𝐽𝐽𝑃𝑃𝑢𝑢𝑃𝑃𝑒𝑒𝑊𝑊/𝐾𝐾.  We see that the largest, i.e., most massive black holes have the 
highest entropies.  But when compared to the values, as predicted by Bekenstein, these values 
are very low.  Bekenstein calculates the entropy as an intrinsic (surface dependent), versus 
extrinsic (volume dependent) variable.  His formula for entropy is, 𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = (1/4) 𝑐𝑐3 𝑘𝑘𝐵𝐵/
(𝐺𝐺 ħ)  (4𝜋𝜋𝑅𝑅2) .   Using this formula, the entropy at the surface would calculate to, (1.50 ∗
1054, 1.50 ∗ 1056, 1.50 ∗ 1066), all in 𝐽𝐽𝑃𝑃𝑢𝑢𝑃𝑃𝑒𝑒𝑊𝑊/𝐾𝐾, for black holes 𝐴𝐴,𝐵𝐵, and, 𝐶𝐶, respectively.  
When compare to the surface values in equations, (5 − 17), we notice that our values are 
exceedingly low.  As mentioned, our values would seem to indicate that black holes are much 
more highly ordered states, than what is commonly thought. 
 
It is also noteworthy to mention that the core values for entropy, in equations, (5 − 17), are a 
high percentage of the surface values.  This seems to be a pattern for the exponential 
distribution.  If we calculate the percentages, we find, 
 
 (1.46/4.01, 5.75/16.5, 5.29/19.9) = (36 %,   35 %, 27 %) (𝑇𝑇𝑇𝑇)           (5 − 18) 
 
Within the core we already have a substantial proportion of the total black hole entropy. 
 
For comparison purposes, we also give the corresponding values for a truncated Gaussian 
distribution.  Referring to the tables in reference [2], we obtain 
 
             [𝑀𝑀.01𝑅𝑅

𝐴𝐴 ,  𝑀𝑀𝑅𝑅𝐴𝐴] = [4.08 ∗ 1035, 1.63 ∗ 1037] 

 [𝑀𝑀.01𝑅𝑅
𝐵𝐵 ,  𝑀𝑀𝑅𝑅𝐵𝐵] = [1.60 ∗ 1039, 6.59 ∗ 1040]   (𝑇𝑇𝐺𝐺)            (5 − 19) 

 [𝑀𝑀.01𝑅𝑅
𝐶𝐶 ,  𝑀𝑀𝑅𝑅𝐶𝐶] = [1.45 ∗ 1045, 7.24 ∗ 1046] 

 
These values are comparable to the above, as indicated by equations, (5 − 17).  And they are 
also very much less than the Bekenstein entropy values calculated above.  In terms of 
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percentages, the core values here are very much less than the surface values.  In fact, we find 
using the numbers in equations, (5 − 19), that  
 
 (.0408/1.63, .160/6.59, .145/7.24) = (2.5 %,   2.4 %, 2.0 %) (𝑇𝑇𝐺𝐺)           (5 − 20) 
 
When compared to the corresponding percentages in equations, (5 − 18), we notice a large 
difference.  For a truncated Gaussian, the entropy is not concentrated disproportionately at the 
center. 
 
Summarizing, by studying various pdf’s, we have a rich structure by which to analyze and 
explore various scenarios for the internal structure of a black hole.  If we accept this model of a 
4-D spatial ball for a black hole filled with black body radiation (and potentially other forms of 
radiation), we can investigate various unique characteristics within the black hole.  These 
characteristics within the black hole will lead to specific surface conditions which can be 
measured from our 3-D perspective.   We are thinking of surface forces, surface entropy, 
surface acceleration, etc., attributes, which will define which pdf is best suited for modeling the 
interior.  In this way valuable insights can be gained, and perhaps, finally, a complete picture as 
to what is happening within the black hole, and with space itself.  This concludes our discussion. 
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APPENDIX A:  TABLES A, B, C 

 

TABLE A - for a Blackhole having 1 Solar Mass - Truncated Exponential Distribution
r/R fr/fR ρr ur pr qr Tr sr Fr dTr/dr Cr = dur/dTr dur/dr

(kg/m4)  (Joules/m4) (Newtons/m3) (Joules/m4)  (K)  (Joules/(m4K)  (Newtons) (K/m) (Joules/m4K) (Joules/m5)
0.000001 5.81E+50 1.55E+35 5.57E+51 1.39E+51 6.97E+51 6.51E+12 1.07E+39 7.09E+44 -1.32E+15 4.28E+39 -5.66E+54

0.03 1.74E+49 1.72E+20 6.19E+36 1.55E+36 7.74E+36 6.65E+09 1.16E+27 2.13E+43 -9.77E+07 4.65E+27 -4.55E+35
0.06 5.23E+47 6.46E+17 2.32E+34 5.80E+33 2.90E+34 2.18E+09 1.33E+25 6.38E+41 -2.46E+07 5.33E+25 -1.31E+33
0.09 1.57E+46 5.74E+15 2.06E+32 5.16E+31 2.58E+32 8.46E+08 3.05E+23 1.91E+40 -8.61E+06 1.22E+24 -1.05E+31
0.12 4.70E+44 7.26E+13 2.61E+30 6.53E+29 3.26E+30 3.53E+08 9.24E+21 5.74E+38 -3.39E+06 3.70E+22 -1.25E+29
0.15 1.41E+43 1.12E+12 4.01E+28 1.00E+28 5.01E+28 1.53E+08 3.27E+20 1.72E+37 -1.42E+06 1.31E+21 -1.86E+27
0.18 4.23E+41 1.94E+10 6.96E+26 1.74E+26 8.70E+26 6.81E+07 1.28E+19 5.17E+35 -6.16E+05 5.11E+19 -3.15E+25
0.21 1.27E+40 3.66E+08 1.32E+25 3.29E+24 1.64E+25 3.08E+07 5.34E+17 1.55E+34 -2.73E+05 2.14E+18 -5.84E+23
0.24 3.81E+38 7.35E+06 2.64E+23 6.61E+22 3.30E+23 1.41E+07 2.34E+16 4.65E+32 -1.23E+05 9.37E+16 -1.16E+22
0.27 1.14E+37 1.55E+05 5.57E+21 1.39E+21 6.96E+21 6.51E+06 1.07E+15 1.39E+31 -5.64E+04 4.27E+15 -2.41E+20

0.3 3.43E+35 3.39E+03 1.22E+20 3.04E+19 1.52E+20 3.03E+06 5.02E+13 4.18E+29 -2.61E+04 2.01E+14 -5.23E+18
0.5 2.41E+25 5.15E-08 1.85E+09 4.63E+08 2.31E+09 2.08E+04 1.11E+05 2.94E+19 -1.73E+02 4.45E+05 -7.70E+07

1 1.00E+00 2.67E-34 9.60E-18 2.40E-18 1.20E-17 1.15E-01 1.04E-16 1.22E-06 -9.34E-04 4.17E-16 -3.89E-19

TABLE B - for a Blackhole having 10 Solar Masses - Truncated Exponential Distribution
r/R fr/fR ρr ur pr qr Tr sr Fr dTr/dr Cr = dur/dTr dur/dr

(kg/m4)  (Joules/m4) (Newtons/m3) (Joules/m4)  (K)  (Joules/(m4K)  (Newtons) (K/m) (Joules/m4K) (Joules/m5)
0.000001 5.58E+48 1.49E+32 5.35E+48 1.34E+48 6.69E+48 1.62E+12 4.12E+36 6.81E+44 -3.30E+13 1.65E+37 -5.43E+50

0.03 1.92E+47 1.90E+17 6.83E+33 1.71E+33 8.54E+33 1.70E+09 5.01E+24 2.35E+43 -2.45E+06 2.00E+25 -4.91E+31
0.06 6.63E+45 8.19E+14 2.95E+31 7.36E+30 3.68E+31 5.74E+08 6.42E+22 8.09E+41 -6.30E+05 2.57E+23 -1.62E+29
0.09 2.29E+44 8.37E+12 3.01E+29 7.52E+28 3.76E+29 2.29E+08 1.64E+21 2.79E+40 -2.26E+05 6.56E+21 -1.48E+27
0.12 7.88E+42 1.22E+11 4.38E+27 1.09E+27 5.47E+27 9.84E+07 5.56E+19 9.62E+38 -9.14E+04 2.23E+20 -2.03E+25
0.15 2.72E+41 2.15E+09 7.73E+25 1.93E+25 9.66E+25 4.39E+07 2.20E+18 3.32E+37 -3.93E+04 8.81E+18 -3.46E+23
0.18 9.38E+39 4.29E+07 1.54E+24 3.86E+23 1.93E+24 2.01E+07 9.61E+16 1.14E+36 -1.75E+04 3.85E+17 -6.73E+21
0.21 3.23E+38 9.32E+05 3.35E+22 8.38E+21 4.19E+22 9.33E+06 4.49E+15 3.95E+34 -7.99E+03 1.80E+16 -1.43E+20
0.24 1.11E+37 2.15E+04 7.74E+20 1.93E+20 9.67E+20 4.39E+06 2.20E+14 1.36E+33 -3.71E+03 8.82E+14 -3.27E+18
0.27 3.84E+35 5.21E+02 1.87E+19 4.69E+18 2.34E+19 2.09E+06 1.12E+13 4.69E+31 -1.74E+03 4.49E+13 -7.83E+16

0.3 1.33E+34 1.31E+01 4.71E+17 1.18E+17 5.89E+17 9.98E+05 5.90E+11 1.62E+30 -8.26E+02 2.36E+12 -1.95E+15
0.5 2.36E+24 5.04E-10 1.81E+07 4.53E+06 2.27E+07 8.25E+03 2.75E+03 2.88E+20 -6.60E+00 1.10E+04 -7.26E+04

1 1.00E+00 2.67E-35 9.60E-19 2.40E-19 1.20E-18 7.26E-02 1.65E-17 1.22E-04 -5.67E-05 6.61E-17 -3.74E-21

TABLE C - for a Blackhole having 106 Solar Masses - Truncated Exponential Distribution
r/R fr/fR ρr ur pr qr Tr sr Fr dTr/dr Cr = dur/dTr dur/dr

(kg/m4)  (Joules/m4) (Newtons/m3) (Joules/m4)  (K)  (Joules/(m4K)  (Newtons) (K/m) (Joules/m4K) (Joules/m5)
0.000001 4.42E+38 1.18E+17 4.24E+33 1.06E+33 5.30E+33 1.55E+09 3.42E+24 5.39E+44 -3.15E+05 1.37E+25 -4.31E+30

0.03 3.06E+37 3.03E+02 1.09E+19 2.72E+18 1.36E+19 1.87E+06 7.27E+12 3.74E+43 -2.39E-02 2.91E+13 -6.96E+11
0.06 2.12E+36 2.62E+00 9.43E+16 2.36E+16 1.18E+17 7.24E+05 1.63E+11 2.59E+42 -6.81E-03 6.51E+11 -4.43E+09
0.09 1.47E+35 5.38E-02 1.93E+15 4.84E+14 2.42E+15 3.33E+05 7.27E+09 1.79E+41 -2.76E-03 2.91E+10 -8.01E+07
0.12 1.02E+34 1.57E-03 5.66E+13 1.41E+13 7.07E+13 1.64E+05 4.31E+08 1.24E+40 -1.27E-03 1.72E+09 -2.18E+06
0.15 7.06E+32 5.58E-05 2.01E+12 5.02E+11 2.51E+12 8.42E+04 2.98E+07 8.61E+38 -6.21E-04 1.19E+08 -7.40E+04
0.18 4.89E+31 2.24E-06 8.04E+10 2.01E+10 1.01E+11 4.42E+04 2.27E+06 5.97E+37 -3.16E-04 9.09E+06 -2.88E+03
0.21 3.39E+30 9.76E-08 3.51E+09 8.77E+08 4.39E+09 2.36E+04 1.86E+05 4.13E+36 -1.65E-04 7.42E+05 -1.23E+02
0.24 2.35E+29 4.53E-09 1.63E+08 4.07E+07 2.04E+08 1.28E+04 1.59E+04 2.86E+35 -8.79E-05 6.37E+04 -5.60E+00
0.27 1.63E+28 2.21E-10 7.93E+06 1.98E+06 9.91E+06 6.99E+03 1.42E+03 1.98E+34 -4.74E-05 5.67E+03 -2.69E-01

0.3 1.13E+27 1.11E-11 4.00E+05 1.00E+05 5.01E+05 3.85E+03 1.30E+02 1.38E+33 -2.58E-05 5.20E+02 -1.34E-02
0.5 2.10E+19 4.49E-20 1.61E-03 4.03E-04 2.02E-03 8.06E+01 2.50E-05 2.57E+25 -5.18E-07 1.00E-04 -5.19E-11

1 1.00E+00 2.67E-40 9.60E-24 2.40E-24 1.20E-23 7.26E-03 1.65E-21 1.22E+06 -4.52E-11 6.61E-21 -2.99E-31
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APPENDIX B:  TABLES AA, BB, CC 

 

TABLE AA - for a Blackhole having 1 Solar Mass - Truncated Exponential Distribution
r/R FCDF

r Mass = Mr Ur Qr Wr Gr Mr Gr gr  φG,r FG,r Sr

(kg) (Joules) (Joules) (Joules) (N m3/kg) (N m3/kg2) (m/s2) (Joules/kg) (Newtons) (Joules/K)
0.000001 1.17E-04 2.32E+26 8.36E+42 1.04E+43 2.09E+42 9.17E+06 3.94E-20 -3.56E+14 -1.10E+18 8.27E+40 1.57E+30

0.01 6.89E-01 1.37E+30 4.93E+46 6.16E+46 1.23E+46 9.17E+18 6.69E-12 -3.56E+14 -1.08E+18 4.88E+44 1.46E+36
0.02 9.03E-01 1.80E+30 6.46E+46 8.08E+46 1.62E+46 7.33E+19 4.08E-11 -3.56E+14 -1.07E+18 6.39E+44 2.73E+36
0.03 9.70E-01 1.93E+30 6.94E+46 8.67E+46 1.73E+46 2.48E+20 1.28E-10 -3.56E+14 -1.06E+18 6.86E+44 3.41E+36
0.04 9.91E-01 1.97E+30 7.08E+46 8.85E+46 1.77E+46 5.87E+20 2.98E-10 -3.56E+14 -1.05E+18 7.01E+44 3.74E+36
0.05 9.97E-01 1.98E+30 7.13E+46 8.91E+46 1.78E+46 1.15E+21 5.78E-10 -3.56E+14 -1.04E+18 7.05E+44 3.89E+36
0.06 9.99E-01 1.99E+30 7.14E+46 8.93E+46 1.79E+46 1.98E+21 9.96E-10 -3.56E+14 -1.03E+18 7.07E+44 3.96E+36
0.07 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 3.14E+21 1.58E-09 -3.56E+14 -1.02E+18 7.07E+44 3.99E+36
0.08 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 4.69E+21 2.36E-09 -3.56E+14 -1.01E+18 7.07E+44 4.00E+36
0.09 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 6.68E+21 3.36E-09 -3.56E+14 -1.00E+18 7.07E+44 4.01E+36

0.1 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 9.17E+21 4.61E-09 -3.56E+14 -9.90E+17 7.07E+44 4.01E+36
0.5 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 1.15E+24 5.76E-07 -3.56E+14 -5.70E+17 7.07E+44 4.01E+36

1 1.00E+00 1.99E+30 7.15E+46 8.94E+46 1.79E+46 9.17E+24 4.61E-06 -3.56E+14 -4.49E+16 7.07E+44 4.01E+36

TABLE BB - for a Blackhole having 10 Solar Masses - Truncated Exponential Distribution
r/R FCDF

r Mass = Mr Ur Qr Wr Gr Mr Gr gr  φG,r FG,r Sr

(kg) (Joules) (Joules) (Joules) (N m3/kg) (N m3/kg2) (m/s2) (Joules/kg) (Newtons) (Joules/K)
0.000001 1.12E-04 2.23E+27 8.03E+43 1.00E+44 2.01E+43 8.80E+08 3.94E-19 -3.41E+13 -1.05E+18 7.62E+40 6.46E+33

0.01 6.75E-01 1.34E+31 4.82E+47 6.03E+47 1.21E+47 8.80E+20 6.56E-11 -3.41E+13 -1.04E+18 4.58E+44 5.75E+39
0.02 8.94E-01 1.78E+31 6.39E+47 7.99E+47 1.60E+47 7.04E+21 3.96E-10 -3.41E+13 -1.03E+18 6.07E+44 1.09E+40
0.03 9.66E-01 1.92E+31 6.90E+47 8.63E+47 1.73E+47 2.38E+22 1.24E-09 -3.41E+13 -1.02E+18 6.56E+44 1.38E+40
0.04 9.89E-01 1.97E+31 7.07E+47 8.84E+47 1.77E+47 5.63E+22 2.86E-09 -3.41E+13 -1.01E+18 6.72E+44 1.52E+40
0.05 9.96E-01 1.98E+31 7.12E+47 8.91E+47 1.78E+47 1.10E+23 5.55E-09 -3.41E+13 -1.00E+18 6.77E+44 1.59E+40
0.06 9.99E-01 1.99E+31 7.14E+47 8.93E+47 1.79E+47 1.90E+23 9.57E-09 -3.41E+13 -9.93E+17 6.78E+44 1.62E+40
0.07 1.00E+00 1.99E+31 7.15E+47 8.93E+47 1.79E+47 3.02E+23 1.52E-08 -3.41E+13 -9.83E+17 6.79E+44 1.64E+40
0.08 1.00E+00 1.99E+31 7.15E+47 8.94E+47 1.79E+47 4.51E+23 2.27E-08 -3.41E+13 -9.73E+17 6.79E+44 1.65E+40
0.09 1.00E+00 1.99E+31 7.15E+47 8.94E+47 1.79E+47 6.42E+23 3.23E-08 -3.41E+13 -9.63E+17 6.79E+44 1.65E+40

0.1 1.00E+00 1.99E+31 7.15E+47 8.94E+47 1.79E+47 8.80E+23 4.43E-08 -3.41E+13 -9.53E+17 6.79E+44 1.65E+40
0.5 1.00E+00 1.99E+31 7.15E+47 8.94E+47 1.79E+47 1.10E+26 5.53E-06 -3.41E+13 -5.49E+17 6.79E+44 1.65E+40

1 1.00E+00 1.99E+31 7.15E+47 8.94E+47 1.79E+47 8.80E+26 4.43E-05 -3.41E+13 -4.49E+16 6.79E+44 1.65E+40

TABLE CC - for a Blackhole having 106 Solar Masses - Truncated Exponential Distribution
r/R FCDF

r Mass = Mr Ur Qr Wr Gr Mr Gr gr  φG,r FG,r Sr

(kg) (Joules) (Joules) (Joules) (N m3/kg) (N m3/kg2) (m/s2) (Joules/kg) (Newtons) (Joules/K)
0.000001 8.90E-05 1.77E+32 6.36E+48 7.95E+48 1.59E+48 6.98E+18 3.94E-14 -2.71E+08 -8.45E+17 4.79E+40 7.78E+39

0.01 5.89E-01 1.17E+36 4.21E+52 5.27E+52 1.05E+52 6.98E+30 5.95E-06 -2.71E+08 -8.37E+17 3.17E+44 5.30E+45
0.02 8.31E-01 1.65E+36 5.94E+52 7.43E+52 1.49E+52 5.58E+31 3.38E-05 -2.71E+08 -8.29E+17 4.48E+44 1.09E+46
0.03 9.31E-01 1.85E+36 6.66E+52 8.32E+52 1.66E+52 1.88E+32 1.02E-04 -2.71E+08 -8.21E+17 5.01E+44 1.47E+46
0.04 9.72E-01 1.93E+36 6.95E+52 8.68E+52 1.74E+52 4.47E+32 2.31E-04 -2.71E+08 -8.13E+17 5.23E+44 1.70E+46
0.05 9.88E-01 1.97E+36 7.07E+52 8.83E+52 1.77E+52 8.72E+32 4.44E-04 -2.71E+08 -8.05E+17 5.32E+44 1.83E+46
0.06 9.95E-01 1.98E+36 7.12E+52 8.90E+52 1.78E+52 1.51E+33 7.62E-04 -2.71E+08 -7.97E+17 5.36E+44 1.90E+46
0.07 9.98E-01 1.99E+36 7.14E+52 8.92E+52 1.78E+52 2.39E+33 1.21E-03 -2.71E+08 -7.89E+17 5.37E+44 1.94E+46
0.08 9.99E-01 1.99E+36 7.14E+52 8.93E+52 1.79E+52 3.57E+33 1.80E-03 -2.71E+08 -7.81E+17 5.38E+44 1.96E+46
0.09 1.00E+00 1.99E+36 7.15E+52 8.94E+52 1.79E+52 5.09E+33 2.56E-03 -2.71E+08 -7.73E+17 5.38E+44 1.97E+46

0.1 1.00E+00 1.99E+36 7.15E+52 8.94E+52 1.79E+52 6.98E+33 3.51E-03 -2.71E+08 -7.65E+17 5.38E+44 1.98E+46
0.5 1.00E+00 1.99E+36 7.15E+52 8.94E+52 1.79E+52 8.72E+35 4.39E-01 -2.71E+08 -4.45E+17 5.38E+44 1.99E+46

1 1.00E+00 1.99E+36 7.15E+52 8.94E+52 1.79E+52 6.98E+36 3.51E+00 -2.71E+08 -4.49E+16 5.38E+44 1.99E+46


