Proof of Twin Prime Conjecture

K.H.K. Geerasee Wijesuriya

Research Scientist in Physics and Astronomy
PhD student in Astrophysics, Belarusian National Technical University
BSc (Hons) in Physics and Mathematics University of Colombo, Sri Lanka
Doctorate Degree in Physics
geeraseew@gmail.com ,geerasee1@gmail.com
August 2019

Author's Biography

The author of this research paper is K.H.K. Geerasee Wijesuriya. And this proof of twin prime conjecture is completely K.H.K. Geerasee Wijesuriya's proof.

Geerasee is now 30 years old and she studied before at Faculty of Science, University of Colombo Sri Lanka. And she graduated with BSc (Hons) in Physics and Mathematics from the University of Colombo, Sri Lanka in 2014. And in March 2018, she completed her first Doctorate Degree in Physics with first class recognition. Now she is following her second PhD in Astrophysics with Belarusian National Technical University.

Geerasee has been invited by several Astronomy/Physics institutions and organizations worldwide, asking to get involve with them. Also, She has received several invitations from some private researchers around the world asking to contribute to their researches. She worked as Mathematics tutor/Instructor at Mathematics department, Faculty of Engineering, University of Moratuwa, Sri Lanka. Furthermore she has achieved several other scientific achievements already.

List of abbreviations

Faculty of Science, University of Colombo, Sri Lanka , Belarusian National Technical University Belarus

Acknowledgement

I would be thankful to my parents who gave me the strength to go forward with mathematics and Physics knowledge and achieve my scientific goals.

Keywords: prime; contradiction; greater than ; natural number

Abstract

A twin prime numbers are two prime numbers which have the difference of 2 exactly. In other words, twin primes is a pair of prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Up to date there is no any valid proof/disproof for twin prime conjecture. Through this research paper, my attempt is to provide a valid proof for twin prime conjecture.

Literature Review

The question of whether there exist infinitely many twin primes has been one of the great open questions in number theory for many years. This is the content of the twin prime conjecture, which states that there are infinitely many primes p such that $p+2$ is also prime. In 1849 , de Polignac made the more general conjecture that for every natural number k, there are infinitely many primes p such that $\mathrm{p}+2 \mathrm{k}$ is also prime. The case $\mathrm{k}=1$ of de Polignac's conjecture is the twin prime conjecture.

A stronger form of the twin prime conjecture, the Hardy-Littlewood conjecture (see below), postulates a distribution law for twin primes akin to the prime number theorem. On April 17, 2013, Yitang Zhang announced a proof that for some integer N that is less than 70 million, there are infinitely many pairs of primes that differ by N. Zhang's paper was accepted by Annals of Mathematics in early May 2013. Terence Tao subsequently proposed a Polymath Project collaborative effort to optimize Zhang's bound. As of April 14, 2014, one year after Zhang's announcement, the bound has been reduced to 246. Further, assuming the ElliottHalberstam conjecture and its generalized form, the Polymath project wiki states that the bound has been reduced to 12 and 6 , respectively. These improved bounds were discovered using a different approach that was simpler than Zhang's and was discovered independently by James Maynard and Terence Tao.

Assumption

Let's assume that there are finitely many twin prime numbers.
Therefore we proceed by considering that there are finitely many twin prime numbers. Then let the highest twin prime numbers are $\mathrm{P}_{\mathrm{n}-1}$ and $\left(\mathrm{P}_{\mathrm{n}-1}+2\right)$. Then for all prime numbers P_{n} greater than $P_{n-1},\left(P_{n}-2\right)$ is not a prime number.

Methodology

With this mathematical proof, I use the contradiction method to prove the twin prime conjecture.

Let P_{n} is an arbitrary prime number greater than P_{n-1} (because there are infinite number of prime numbers). Then according to our consideration, $\left(P_{n}-2\right)$ is not a prime number. Since $P_{n}>2$ and since P_{n} is a prime number and since P_{n} is an odd number, for all prime numbers P_{i} :
$\mathrm{P}_{\mathrm{i}}\left(<\mathrm{P}_{\mathrm{n}} / 2\right): \mathrm{P}_{\mathrm{n}} / \mathrm{P}_{\mathrm{i}}=\mathrm{r}_{1}$

Thus $\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{\mathrm{i}} * \mathrm{r}_{1}$.
Where r_{1} is a rational number (which is not a natural number)
But according to our consideration, $\left(\mathrm{P}_{\mathrm{n}}-2\right)$ is not a prime number. Also since P_{n} is a prime number greater than 2 , $\left(\mathrm{P}_{\mathrm{n}}-2\right)$ is an odd number.

Thus for some prime number $\mathrm{P}_{1}\left(<\left[\left(\mathrm{P}_{\mathrm{n}}-2\right) / 2\right]\right) ;\left(\mathrm{P}_{\mathrm{n}}-2\right) / \mathrm{P}_{1}=\mathrm{x}_{1}$. Where we choose P_{1} such that x_{1} is a natural number. But since previously chose P_{i} is any arbitrary prime number less than (Pn / 2); now we consider $\mathrm{P}_{1}=\mathrm{P}_{\mathrm{i}}$

Then $\left(\mathrm{P}_{\mathrm{n}}-2\right)=\mathrm{P}_{1} * \mathrm{x}_{1} \ldots \ldots \ldots . . .(02)$ and $\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{1} * \mathrm{r}_{1}$ \qquad
Let P_{N} is a prime number (greater than P_{n}). Then according to our assumption, $\left(\mathrm{P}_{\mathrm{N}}+2\right)$ is not a prime number. Here P_{N} is a prime number such that $\left(\mathrm{P}_{\mathrm{N}}+2\right)$ is dividing by prime number P_{2}.
\qquad
Thus $\left(\mathrm{P}_{\mathrm{N}}+2\right)=\mathrm{P}_{2} * \mathrm{x}_{2}$ for some x_{2} natural number. Because there are infinitely many prime numbers.

Since P_{N} is a prime number, for some r_{2} (rational number which is not a natural number):
$\mathrm{P}_{\mathrm{N}} / \mathrm{r}_{2}=\mathrm{P}_{2}$.
Thus $\left(\mathrm{P}_{\mathrm{N}}+2\right)=\mathrm{P}_{2} * \mathrm{X}_{2}$
.(03) and $\mathrm{P}_{\mathrm{N}}=\mathrm{r}_{2} * \mathrm{P}_{2}$ \qquad
x_{1} and x_{2} are natural numbers and P_{1} and P_{2} are prime numbers.
Since P_{N} is a prime number, $\left(P_{N}-2\right)$ is also not a prime number (Since $\left.P_{N}-2>P_{n-1}\right)$
Then for some prime $P_{3},\left(P_{N}-2\right) / P_{3}=x_{3}$
$\left(P_{N}-2\right)=P_{3} * x_{3}$
By (04) and (05): $\mathrm{P}_{3} * \mathrm{x}_{3}=\mathrm{P}_{2} * \mathrm{r}_{2}-2$
But according to the below induction method proof, there exists primes P_{n} and P_{N} such that $\left(P_{N}-2\right)$ and $\left(P_{n}-2\right)$ both are divisible by 3 (where $\left.P_{1}=3\right) .{ }^{* * *}$ To see the induction method proof, please refer the 'Proof ' below.

Then $\left(P_{N}-2\right)=\left(P_{n}-2\right)+3.1$ for some I natural number.
Thus $\mathrm{P}_{\mathrm{N}}=\mathrm{P}_{\mathrm{n}}+3.1$ \qquad
By (*): $\mathrm{P}_{1} . \mathrm{r}_{1}+3 . l=\mathrm{r}_{2} * \mathrm{P}_{2}$. Thus by (06): $\mathrm{P}_{3} * \mathrm{x}_{3}=\mathrm{P}_{1} . \mathrm{r}_{1}+3 .(l-1)+1$
But $P_{1} . r_{1}\left(=P_{n}\right)$ is an odd number. Thus $\left[P_{1} \cdot r_{1}+1\right]$ is an even number. Thus $\left[P_{1} . r_{1}+1\right]$ is not divisible by $3\left(=P_{1}\right)$. Therefore, when we write $\left[P_{1} . r_{1}+1\right]=P_{1} . r$; where r is not a natural number and r is a rational number. Thus by (6.1): $P_{3} * x_{3}=P_{1} . r+3 .(l-1)$.

Thus $\mathrm{P}_{3} * \mathrm{X}_{3}-3 .(l-1)=\mathrm{P}_{1} . \mathrm{r}$
Choose $l=\mathrm{m} . \mathrm{P}_{1}+1$; where m is a natural number.
***Please refer the proof below to see the existence of ' I ' natural number such that $\mathbf{P}_{\mathrm{N}}=\mathbf{P}_{\mathrm{n}}+3.1$.
i.e. there exists $l\left(=\left(m . P_{1}+1\right)\right)$ natural number such that $P_{N}=P_{n}+3 .\left(m \cdot P_{1}+1\right)$

Where we consider that $I=m \cdot P_{1}+1$

NOW BEFORE READING THE NEXT PART BELOW, PLEASE REFER ‘PROOF’.
Then:

For $l=m \cdot P_{1}+1$, by (08): $\left(\mathrm{P}_{3} * \mathrm{x}_{3}\right)-\left[3^{*} \mathrm{~m} \cdot \mathrm{P}_{1}\right]=\mathrm{P}_{1} * \mathrm{r}$
where m is a natural number. Also ($\mathrm{m} \cdot \mathrm{P}_{1}+1$) is a natural number.
But for the prime number P_{N} and P_{n} (greater than $\mathrm{P}_{\mathrm{n}-1}$), there exists $\mathrm{P}_{1}(=3)$ prime number such that $\left(P_{N}-2\right) / P_{1}=x_{3}$ \qquad (10) (According to the equation (13) in the "Proof" mentioned below)

Because we chose $\left(\mathrm{P}_{\mathrm{N}}-2\right)$ in that manner. Where P_{N} is a prime number.
Thus in (09): $\mathrm{P}_{3} \equiv \mathrm{P}_{1}$.
Thus by (09): $\left(\mathrm{P}_{1} * \mathrm{x}_{3}\right)-\left[3 . \mathrm{m} \cdot \mathrm{P}_{1}\right]=\mathrm{P}_{1} *\left(\mathrm{x}_{3}-3 . \mathrm{m}\right)=\mathrm{P}_{1} * \mathrm{r}$
Thus $\mathrm{x}_{3}-\left[3^{*} \mathrm{~m}\right]=\mathrm{r}$. But $\left(3^{*} \mathrm{~m}\right)$ is a natural number. Thus $\mathrm{x}_{3}-\left[3^{*} \mathrm{~m}\right]$ is a natural number.
But r is not a natural number \qquad
Thus by (11), there is a contradiction.
Therefore the only possibility is: our assumption is false.
Therefore there are infinitely many Twin Prime Numbers.

Proof

We know the equation related to "prime gap" as written below.
$\mathrm{P}_{\mathrm{N}}=2+\sum_{j=1}^{N-1} g j \ldots \ldots \ldots \ldots \ldots .$. (i) $\quad * * *$ refer the $2^{\text {nd }}$ reference.
Let $g_{j}=a_{j} \ldots \ldots$..(ii) for all $\mathrm{j}<(\mathrm{N}-1)$. Where a_{j} is a natural number. Let $\Sigma \mathrm{a}_{\mathrm{j}}=\mathrm{A}$ for $\mathrm{j}<\mathrm{N}-1$.
But for all $\epsilon_{\mathrm{N}-1}>0$, there exists ' $\mathrm{N}-2$ ' natural number such that for all $\mathrm{N}-1>\mathrm{N}-2$,
$\mathrm{g}_{\mathrm{N}-1}<\mathrm{P}_{\mathrm{N}-1} * \epsilon_{\mathrm{N}-1}$
*** refer the $2^{\text {nd }}$ reference below.

Then for some $\mathrm{C}_{\mathrm{N}-1}$ positive number, $\mathrm{g}_{\mathrm{N}-1}=\mathrm{P}_{\mathrm{N}-1} * \mathrm{C}_{\mathrm{N}-1}-\mathrm{C}_{\mathrm{N}-1}$ for all $\mathrm{\epsilon}_{\mathrm{N}-1}>0$

But $\mathrm{g}_{\mathrm{N}-1}=\mathrm{P}_{\mathrm{N}-1} * \mathrm{C}_{\mathrm{N}-1}-\mathrm{C}_{\mathrm{N}-1}$ for all $\mathrm{N}-1>\mathrm{N}-2$

Choose $\epsilon_{\mathrm{N}-1}=\left[\left(\mathrm{P}_{\mathrm{n}}+3 . \mathrm{m} \cdot \mathrm{P}_{1}+1-\mathrm{A}\right)+\mathrm{C}_{\mathrm{N}-1}\right] / \mathrm{P}_{\mathrm{N}-1}>0$. Then $\mathrm{g}_{\mathrm{N}-1}=\mathrm{P}_{\mathrm{N}-1} * \mathrm{C}_{\mathrm{N}-1}-\mathrm{C}_{\mathrm{N}-1}=$ $\left(P_{n}+3 . m \cdot P_{1}-A+1\right)$. Here the chosen m natural number is responsible for $\epsilon_{N-1}>0$

Thus by (i): $P_{N}=2+P_{n}+3 \cdot m \cdot P_{1}-A+1+A=P_{n}+3 \cdot m \cdot P_{1}+3=P_{n}+3 \cdot\left(m \cdot P_{1}+1\right)$
Therefore there exists a natural number $l\left(=m \cdot P_{1}+1\right)$ such that $P_{N}=P_{n}+3 .\left(m \cdot P_{1}+1\right)$
\qquad
Now let's prove that there exists infinite number of Prime numbers P_{N} (greater than $\mathrm{P}_{\mathrm{n}-1}$) such that $3 \mid\left(\mathrm{P}_{\mathrm{N}}-2\right)$, by using mathematical induction method as below.

Let's consider the statement $\mathrm{Q}(\mathrm{n}):[\mathrm{P}(\mathrm{n})-2] / 3=\mathrm{x}(\mathrm{n})$; where $\mathrm{P}(\mathrm{n})$ is the nth prime number which obeys $P(n)+3=3$. $x(n)$. And the meaning of $x(n)$ is similar to that.
$\mathrm{Q}(1)$: $[5-2] / 3=1=x(1)=$ a natural number. Thus for $\mathrm{n}=1$, the result holds.

Now assume for $\mathrm{n}=\mathrm{s}$, the result $\mathrm{Q}(\mathrm{s})$ holds. Then $\left[\mathrm{P}_{\mathrm{s}}-2\right] / 3=\mathrm{x}(\mathrm{s})=$ natural number.
Then let's show for $n=s+1, \mathrm{Q}(\mathrm{s}+1)$ holds. We denote $\mathrm{P}(\mathrm{s}+1)=\mathrm{P}_{\mathrm{M}}$
But we know $\left[\mathrm{P}_{\mathrm{s}}-2\right] / 3=\mathrm{x}(\mathrm{s})$ \qquad
Now let's use the $2^{\text {nd }}$ reference to proceed further.
By $2^{\text {nd }}$ reference, $\mathrm{P}_{\mathrm{M}}=2+\sum_{j=1}^{M-1} h j$ \qquad
Let $h_{j}=b_{j}$ for all $j<(M-1)$. Where b_{j} is a natural number. Let $\Sigma b_{j}=B$ for $j<M-1$.
But for all $\epsilon_{M-1}>0$, there exists ' $\mathrm{M}-2$ ' natural number such that for all $\mathrm{M}-1>\mathrm{M}-2$,
$\mathrm{G}_{\mathrm{M}-1}<\mathrm{P}_{\mathrm{M}-1} * \mathrm{G}_{\mathrm{M}-1}$
*** refer the $2^{\text {nd }}$ reference below.
Then for some $\mathrm{C}_{\mathrm{M}-1}$ positive number, $\mathrm{g}_{\mathrm{M}-1}=\mathrm{P}_{\mathrm{M}-1} * \mathrm{C}_{\mathrm{M}-1}-\mathrm{C}_{\mathrm{M}-1}$ for all $\mathrm{C}_{\mathrm{M}-1}>0$

But $g_{\mathrm{M}-1}=\mathrm{P}_{\mathrm{M}-1} * \epsilon_{\mathrm{M}-1}-\mathrm{C}_{\mathrm{M}-1}$ for all $\mathrm{M}-1>\mathrm{M}-2$

Choose $\epsilon_{\mathrm{M}-1}=\left[\left(\mathrm{P}_{\mathrm{s}}-\mathrm{B}+\mathrm{C}_{\mathrm{M}-1}-2+6 . \mathrm{k}{ }^{\prime}\right] / \mathrm{P}_{\mathrm{M}-1}>0\right.$. Then $\mathrm{g}_{\mathrm{M}-1}=\mathrm{P}_{\mathrm{M}-1} * \epsilon_{\mathrm{M}-1}-\mathrm{C}_{\mathrm{M}-1}=$ ($\mathrm{P}_{\mathrm{s}}-\mathrm{B}-2+6 . \mathrm{k}^{\prime}$). Where k^{\prime} is a natural number. Here the chosen k^{\prime} natural number is responsible for $\epsilon_{M-1}>0$

Thus by (ii): $P_{M}=2+P_{s}+6 \cdot k^{\prime}-B-2+B=P_{s}+6 . k^{\prime}$ \qquad
But $\left(P_{s}-2\right)$ is divisible by $3\left(=P_{1}\right)$ according to (12.1). Thus $\left(P_{M}-2\right)$ is divisible by $3\left(=P_{1}\right)$ according to (12.2), since 6.k’ is divisible by 3 .

Thus $\left(P_{M}-2\right)$ is divisible by $3\left(=P_{1}\right)$. i.e. $[P(s+1)-2]$ is divisible by $3\left(=P_{1}\right)$.
Thus for $\mathrm{n}=\mathrm{s}+1$, the result $\mathrm{Q}(\mathrm{n}+1)$ holds. Thus by mathematical induction method:
There exists infinite number of prime numbers P_{M} (greater than $\mathrm{P}_{\mathrm{n}-1}$) such that $3 \mid\left(\mathrm{P}_{\mathrm{M}}-2\right)$
Thus there exists P_{n} and P_{N} primes (greater than P_{n-1}) such that $\left(P_{n}-2\right)$ and $\left(P_{N}-2\right)$ both are divisible by $3\left(=P_{1}\right)$. Thus $\left(P_{N}-2\right)$ is divisible by $P_{1}(=3)$.

That means we have the capability to consider $\mathrm{P}_{3} \equiv \mathrm{P}_{1}$ in the equations in the methodology

Discussion

We assumed initially that there are finitely many twin primes. After proceeding with that, I ended up with a contradiction. But to get the contradiction, I used that P_{n} and P_{N} as primes numbers greater than P_{n-1}. Also to get the contradiction, I used the facts that $\left(\mathrm{P}_{\mathrm{n}}-2\right)$ and $\left(\mathrm{P}_{\mathrm{N}}-2\right)$ as non-primes. And also I have used that x_{1}, x_{3} as natural numbers (since $P_{n}-2$ and $P_{N}-2$ are not prime numbers). Therefore to get the contradiction, I have used the facts got from our assumption. Then the only possibility is our assumption is false.

Results

Therefore I have used our assumption to get a contradiction finally as showed in (11). Therefore it is possible to conclude that our assumption is false.

Thus there are infinitely many twin prime numbers.

Appendix

Prime number: A natural number which divides by 1 and itself only.
Twin Prime Numbers: Two prime numbers which have the difference exactly 2.
We denote ' i ' th prime gap $\mathrm{g}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}+1}-\mathrm{P}_{\mathrm{i}}$
Then according to the $2^{\text {nd }}$ reference; Prime number $\mathrm{P}_{\mathrm{N}}=2+\sum_{j=1}^{N-1} g j$
Also by $2^{\text {nd }}$ reference: for all $€>0$, there is a natural number ' n ' such that for all $N-1>n$;
$\mathrm{g}_{\mathrm{N}-1}<\mathrm{P}_{\mathrm{N}-1} . \mathrm{C}$

References

1. Zhang, Yitang (2014). "Bounded gaps between primes". Annals of Mathematics. 179 (3): 1121-1174.
2. https://en.wikipedia.org/wiki/Prime_gap
3. Terry Tao, Small and Large Gaps between the Primes
4. Maynard, James (2015), "Small gaps between primes", Annals of Mathematics, Second Series, 181 (1): 383-413
5. Tchudakoff, N. G. (1936). "On the difference between two neighboring prime numbers". Math. Sb. 1: 799-814.
6. Ingham, A. E. (1937). "On the difference between consecutive primes". Quarterly Journal of Mathematics. Oxford Series. 8 (1): 255-266.
