Proof of Twin Prime Conjecture

K.H.K. Geerasee Wijesuriya

Research Scientist in Physics and Astronomy
PhD student in Astrophysics, Belarusian National Technical University
BSc (Hons) in Physics and Mathematics University of Colombo, Sri Lanka Doctorate Degree in Physics
geeraseew@gmail.com , geerasee1@gmail.com
December 2019

Author's Biography

The author of this research paper is K.H.K. Geerasee Wijesuriya . And this proof of twin prime conjecture is completely K.H.K. Geerasee Wijesuriya's proof.

Geerasee she studied before at Faculty of Science, University of Colombo Sri Lanka. And she graduated with BSc (Hons) in Physics and Mathematics from the University of Colombo, Sri Lanka in 2014. And in March 2018, she completed her first Doctorate Degree in Physics with first class recognition. Now she is following her second PhD in Astrophysics with Belarusian National Technical University.

Geerasee has been invited by several Astronomy/Physics institutions and organizations worldwide, asking to get involve with them. Also, She has received several invitations from some private researchers around the world asking to contribute to their researches. She worked as Mathematics tutor/Instructor at Mathematics department, Faculty of Engineering, University of Moratuwa, Sri Lanka. Furthermore she has achieved several other scientific achievements already.

List of Affiliations

Faculty of Science, University of Colombo, Sri Lanka, Belarusian National Technical University Belarus

Acknowledgement

I would be thankful to my parents who gave me the strength to go forward with mathematics and Physics knowledge and achieve my scientific goals.

Keywords: prime; contradiction; greater than ; natural number

Abstract

Twin prime numbers are two prime numbers which have the difference of 2 exactly. In other words, twin primes is a pair of prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Up to date there is no any valid proof/disproof for twin prime conjecture. Through this research paper, my attempt is to provide a valid proof for twin prime conjecture.

Literature Review

The question of whether there exist infinitely many twin primes has been one of the great open questions in number theory for many years. This is the content of the twin prime conjecture, which states that there are infinitely many primes p such that $\mathrm{p}+2$ is also prime. In 1849 , de Polignac made the more general conjecture that for every natural number k, there are infinitely many primes p such that $\mathrm{p}+2 \mathrm{k}$ is also prime. The case $\mathrm{k}=1$ of de Polignac's conjecture is the twin prime conjecture.

A stronger form of the twin prime conjecture, the Hardy-Littlewood conjecture, postulates a distribution law for twin primes akin to the prime number theorem. On April 17, 2013, Yitang Zhang announced a proof that for some integer N that is less than 70 million, there are infinitely many pairs of primes that differ by N. Zhang's paper was accepted by Annals of Mathematics in early May 2013. Terence Tao subsequently proposed a Polymath Project collaborative effort to optimize Zhang's bound. As of April 14, 2014, one year after Zhang's announcement, the bound has been reduced to 246 . Further, assuming the Elliott-Halberstam conjecture and its generalized form, the Polymath project wiki states that the bound has been reduced to 12 and 6 , respectively. These improved bounds were discovered using a different approach that was simpler than Zhang's and was discovered independently by James Maynard and Terence Tao.

Assumption

Let's assume that there are finitely many twin prime numbers.
Therefore we proceed by considering that there are finitely many twin prime numbers. Then let the highest twin prime numbers are $\mathrm{P}_{\mathrm{n}-1}$ and $\left(\mathrm{P}_{\mathrm{n}-1}+2\right)$. Then for all prime numbers P_{N} greater than $\mathrm{P}_{\mathrm{n}-1},\left(\mathrm{P}_{\mathrm{N}}-2\right)$ is not a prime number.

Methodology

With this mathematical proof, I use the contradiction method to prove that there are infinitely many twin prime numbers.

Let P_{n} is an odd number (because there are infinite number of odd numbers). And $\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{3} . \mathrm{Y} ; \mathrm{Y}$ is an integer (Here Y is not divisible by x_{3} and we choose integer Y as it gives $\left[x_{3} \mid\left(m_{1}+Y\right)\right]$. Then $P_{3} . m_{1}+P_{n}=x_{3} . Y^{\prime} ; Y^{\prime}$ is an integer. To see the meaning of P_{3}, x_{3} and m_{1}, please refer the below content.

And according to our consideration, $\left(\mathrm{P}_{\mathrm{n}}-2\right)$ is not a prime number (And P_{n} is an integer such that $\left(P_{n}-2\right)$ is divisible by x_{3}. And $\left(P_{n}-2\right)$ is not divisible by P_{3}. To see the meaning of x_{3} and P_{3}, please refer the below content).

But according to our consideration, $\left(\mathrm{P}_{\mathrm{n}}-2\right)$ is an odd number.
Thus for some prime number $\mathrm{P}_{1}\left(<\left[\left(\mathrm{P}_{\mathrm{n}}-2\right) / 2\right]\right) ;\left(\mathrm{P}_{\mathrm{n}}-2\right) / \mathrm{P}_{1}=\mathrm{x}_{1}$. Where we choose P_{1} such that x_{1} is a natural number.

Then $\left(\mathrm{P}_{\mathrm{n}}-2\right)=\mathrm{P}_{1} * \mathrm{x}_{1}$
Let P_{N} is a prime number greater than $\mathrm{P}_{\mathrm{n}-1}$. Then according to our assumption, $\left(\mathrm{P}_{\mathrm{N}}+2\right)$ is not a prime number. Here P_{N} is a prime number such that $\left(P_{N}+2\right)$ is dividing by prime number P_{2}. $\ldots \ldots \ldots \ldots \ldots \ldots$. (2) ${ }^{* * *}$ Here we should consider a prime number P_{N} such that $P_{3} \neq x_{3}$ and x_{3} is not divisible by P_{3}; whenever $\left(P_{N}-2\right)=P_{3} . x_{3}$. See the below content in the 'Proof' to see the verification of the existence of prime number P_{N} such that $P_{3} \neq x_{3}$ and x_{3} is not divisible by P_{3}; whenever $\left(\mathrm{P}_{\mathrm{N}}-2\right)=\mathrm{P}_{3} . \mathrm{x}_{3}$.

Thus $\left(\mathrm{P}_{\mathrm{N}}+2\right)=\mathrm{P}_{2} * \mathrm{x}_{2}$ for some x_{2} natural number. Because there are infinitely many prime numbers. Since P_{N} is a prime number, for some r_{2} (rational number which is not a natural number): $\mathrm{P}_{\mathrm{N}} / \mathrm{r}_{2}=\mathrm{P}_{2}$.

Thus $\left(\mathrm{P}_{\mathrm{N}}+2\right)=\mathrm{P}_{2} * \mathrm{X}_{2}$
(03) and $\mathrm{P}_{\mathrm{N}}=\mathrm{r}_{2} * \mathrm{P}_{2}$ \qquad
x_{1} and x_{2} are natural numbers and P_{1} and P_{2} are prime numbers.
Since P_{N} is a prime number, $\left(P_{N}-2\right)$ is also not a prime number (Since $\left.P_{N}-2>P_{n-1}\right)$
Then for some prime $P_{3},\left(P_{N}-2\right) / P_{3}=x_{3}$, Here we should considered prime number P_{N} such that $P_{3} \neq x_{3}$ and x_{3} is not divisible by P_{3}; whenever $\left(P_{N}-2\right)=P_{3} . x_{3}$. See the below content in the 'Proof' to see the verification of the existence of prime number P_{N} such that $P_{3} \neq x_{3}$ and x_{3} is not divisible by P_{3}; whenever $\left(P_{N}-2\right)=P_{3} . x_{3}$
$\left(\mathrm{P}_{\mathrm{N}}-2\right)=\mathrm{P}_{3} * \mathrm{x}_{3}$
By (04) and (05): $\mathrm{P}_{3} * \mathrm{x}_{3}=\mathrm{P}_{2} * \mathrm{r}_{2}-2$
But $\left(\mathrm{P}_{\mathrm{N}}+2\right),\left(\mathrm{P}_{\mathrm{n}}-2\right)$ both are odd numbers. Thus $\left(\mathrm{P}_{\mathrm{N}}+2\right)=\left(\mathrm{P}_{\mathrm{n}}-2\right)+2 . l$ for some l integer number. \qquad
Then $\left(\mathrm{P}_{\mathrm{N}}-2\right)=\left(\mathrm{P}_{\mathrm{n}}-2\right)+2 . l-4=\mathrm{P}_{\mathrm{n}}+2 . l-6=\mathrm{P}_{\mathrm{n}}+2 .(l-3)$ \qquad

And we know that $\left(\mathrm{P}_{\mathrm{N}}+2\right)=\left(\mathrm{P}_{\mathrm{n}}-2\right)+2 . l \rightarrow \mathrm{P}_{\mathrm{N}}=\mathrm{P}_{\mathrm{n}}+2 . l-4$ \qquad
Thus by $(*): \mathrm{P}_{\mathrm{n}}+2 . l-4=\mathrm{r}_{2} * \mathrm{P}_{2}$. Thus by (06): $\mathrm{P}_{3} * \mathrm{x}_{3}+2=\mathrm{P}_{\mathrm{n}}+2 . l-4$
Thus $\mathrm{P}_{3} * \mathrm{x}_{3}-2 . l+6=\mathrm{P}_{\mathrm{n}}$

Thus $\mathrm{P}_{3} * \mathrm{x}_{3}+2 .(l-3)=\mathrm{P}_{\mathrm{n}}+4 .(l-3)=\mathrm{P}_{\mathrm{n}}+2 \cdot \mathrm{P}_{\mathrm{N}}-4-2 \cdot \mathrm{P}_{\mathrm{n}}=2 \cdot \mathrm{P}_{\mathrm{N}}-4-\mathrm{P}_{\mathrm{n}}\left(\right.$ by $\left.(6.1)^{\prime}\right)$
Thus $\mathrm{P}_{3} * \mathrm{x}_{3}+2 .(l-3)=2 \cdot \mathrm{P}_{\mathrm{N}}-4-\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{\mathrm{n}}$,
Thus $\mathrm{P}_{3} * \mathrm{x}_{3}+2 .(l-3)=\mathrm{P}_{\mathrm{n}}$, \qquad
Thus $\mathrm{P}_{3} * \mathrm{x}_{3}+2 . l=6+2 . \mathrm{P}_{3} * \mathrm{x}_{3}-\mathrm{P}_{\mathrm{n}}$
$\mathrm{P}_{3} * \mathrm{x}_{3}+(2 . l+\mathrm{M})=\left(6+\mathrm{M}-\mathrm{P}_{\mathrm{n}}\right)+2 . \mathrm{P}_{3} * \mathrm{x}_{3} ;$ Where M is an integer
$(2 . l+M)=\left(6+M-P_{n}\right)+P_{3} * x_{3} ;$ Where M is an integer \qquad

But we chose M such that $-(6+M)=P_{3} . m_{1}$; for some integer $m_{1} \underline{\text { which is not divisible by } X_{3}}$. And let $(M+4)$ is not divisible by x_{3} as well. And we chose P_{n} such that $\left(P_{n}-2\right)$ divides by x_{3} $\ldots \ldots \ldots . .(9)$ And $\left(\mathrm{P}_{\mathrm{n}}-2\right)$ is not divisible by P_{3}.

Thus $(-6-M)=P_{3} \cdot m_{1}$ and $\left(P_{n}-2\right)=x_{3} \cdot m_{0}$ for some integer m_{1} and $m_{0} \cdot m_{0}$ is not divisible by P_{3}.

But $\left(P_{N}-2\right)$ divides by x_{3}. Thus according to our choice, $\left[\left(P_{N}-2\right)-\left(P_{n}-2\right)\right]$ is divisible by x_{3}. i.e. $\left(P_{N}-P_{n}\right)$ is divisible by x_{3}. Thus $P_{N}-P_{n}=x_{3}$. m_{2}; for some integer m_{2}.

Thus according to our choice: $\left[(-6-M)=P_{3} . m_{1}\right]$ and $\left[\left(P_{N}-P_{n}\right)=x_{3} . m_{2}\right]$ for some integer m_{1} and integer m_{2}.

But $(-6-M)=P_{3} \cdot m_{1}$. Thus $(M+4)=-\left(P_{3} \cdot m_{1}+2\right)=x_{3} \cdot m_{3}$
But we chose M such that $(4+M)=x_{3} \cdot m_{3}$; for a non-integer m_{3}
By (*): $\mathrm{P}_{\mathrm{N}}-\mathrm{P}_{\mathrm{n}}+4=2 . l$
Thus $2 . l+\mathrm{M}=\left(\mathrm{P}_{\mathrm{N}}-\mathrm{P}_{\mathrm{n}}\right)+4+\mathrm{M}=\mathrm{x}_{3} . \mathrm{m}_{2}+\mathrm{x}_{3} \cdot \mathrm{~m}_{3}=\mathrm{x}_{3} . \mathrm{r}^{\prime}$ (since m_{2} is an integer and since m_{3} is not an integer). And here r^{\prime} is not an integer. But r^{\prime} is a rational number.

But $\left(\mathrm{P}_{\mathrm{n}}-6-\mathrm{M}\right)=\mathrm{P}_{3} \cdot \mathrm{~m}_{1}+\mathrm{P}_{\mathrm{n}}$. Thus $\left(\mathrm{P}_{\mathrm{n}}-6-\mathrm{M}\right)=\mathrm{P}_{3} \cdot \mathrm{~m}_{1}+\mathrm{P}_{3} \cdot \mathrm{Y} ;=\mathrm{x}_{3} . \mathrm{Y}^{\prime} ; \mathrm{Y}^{\prime}$ is an integer.
Because either Y or m_{1} is not divisible by x_{3} and we chose integer Y in that manner as it gives $P_{3} \cdot \mathrm{~m}_{1}+\mathrm{P}_{3} \cdot \mathrm{Y}=\mathrm{x}_{3} . \mathrm{Y}^{\prime} ; \mathrm{Y}^{\prime}$ is an integer.

Thus by (8): $x_{3} \cdot r^{\prime}=-x_{3} \cdot Y^{\prime}+P_{3} * x_{3}$
Thus r' $=-Y^{\prime}+P_{3}$
But Y^{\prime} is an integer. And P_{3} is also an integer. But r^{\prime} is not an integer. Thus by (11), we have a contradiction.

Therefore the only possibility is: our assumption is false.
Therefore there are infinitely many Twin Prime Numbers.

Proof

Verification of existence of prime number $\mathbf{P}_{\mathbb{N}}\left(\right.$ greater than $\left.\mathbf{P}_{n-1}\right)$ such that $\left(\mathbf{P}_{\mathbf{N}}-2\right)=\mathbf{P}_{\mathbf{3}} \cdot \mathbf{x}_{3}$;

 for the integer number \mathbf{x}_{3} which is not divisible by P_{3}Let ϵ_{s} is a positive real number $\epsilon_{\mathrm{s}}=\left[-\mathrm{A}+\mathrm{C}_{\mathrm{s}}+\left(\mathrm{P}_{3}\right) . \mathrm{t}_{\mathrm{s}}\right] / \mathrm{P}_{\mathrm{s}}>0$ for all $\mathrm{s}>(\mathrm{R}-2)$, $\mathrm{g}_{\mathrm{s}}<\mathrm{P}_{\mathrm{s}} * \epsilon_{\mathrm{s}}$ (since the only existing $s>(\mathrm{R}-2)$ is $(\mathrm{R}-1) ; "$ for all $\mathrm{s}>(\mathrm{R}-2)$ means $\mathrm{s}=(\mathrm{R}-1)$ here $\mathbf{R - 2}>\mathbf{n - 1}$)". Where t_{s} is an integer number such that t_{s} is not divisible by P_{3}. Here the chosen t_{s} integer number is responsible for $g_{s}<P_{s} * \epsilon_{s}$ for all $s>(R-2)$ and t_{s} is responsible for $\epsilon_{R-1}>0$. That means here the value of t_{s} is responsible to say: " ϵ_{s} is existing such that $\mathrm{g}_{\mathrm{s}}<\mathrm{P}_{\mathrm{s}} *$ ϵ_{s}, for $s=(R-1)^{\prime \prime}$. Here $g_{j}=a_{j}$ for all $j<(R-1)=s$. And where $\Sigma a_{j}=A$ for $j<(R-1)=s$. Here $\mathbf{P}_{\mathbf{R}}>\mathbf{P}_{\mathrm{n}-1}$. Then for $\mathrm{C}_{\mathrm{s}}, \mathrm{g}_{\mathrm{s}}=\mathrm{P}_{\mathrm{s}}{ }^{*} \mathrm{E}_{\mathrm{s}}-\mathrm{C}_{\mathrm{s}}$; here $\mathrm{s} \equiv \mathrm{R}-1$. ${ }^{* * *}$ the meaning of ' j ' is the order number and g_{j} is the prime gap between P_{j+1} and P_{j}, please refer the below content and the $2^{\text {nd }}$ reference.

But $\mathrm{s} \equiv(\mathrm{R}-1)$. But here we chose $\mathrm{C}_{\mathrm{R}-1}$ such that $\mathrm{g}_{\mathrm{R}-1}=\mathrm{P}_{\mathrm{R}-1} * \epsilon_{\mathrm{R}-1}-\mathrm{C}_{\mathrm{R}-1}$
But $\mathrm{g}_{\mathrm{R}-1}=\mathrm{P}_{\mathrm{R}-1} * \epsilon_{\mathrm{R}-1}-\mathrm{C}_{\mathrm{R}-1}=\left(-\mathrm{A}+\mathrm{P}_{3} \cdot \mathrm{t}_{\mathrm{s}}\right)$. Where t_{s} is an integer number which is not divisible by P_{3}.

Now let's use the $2^{\text {nd }}$ reference to proceed further.
By $2^{\text {nd }}$ reference, $\mathrm{P}_{\mathrm{R}}=2+\sum_{j=1}^{R-1} g j$
But we know already that for $\epsilon_{\mathrm{R}-1}>0, \mathrm{~g}_{\mathrm{R}-1}<\mathrm{P}_{\mathrm{R}-1} * \epsilon_{\mathrm{R}-1}$ for $\mathrm{R}-1=\mathrm{s}$.
Here $\mathrm{s} \equiv(\mathrm{R}-1)$
(*** refer the $2^{\text {nd }}$ reference below)

Then we already know that for some $\mathrm{C}_{\mathrm{R}-1}$ positive number, $\mathrm{g}_{\mathrm{R}-1}=\mathrm{P}_{\mathrm{R}-1} * \epsilon_{\mathrm{R}-1}-\mathrm{C}_{\mathrm{R}-1}$.

But $g_{R-1}=P_{R-1} * \epsilon_{R-1}-C_{R-1}$ for $(R-1) \equiv s$
We know already that $\epsilon_{\mathrm{R}-1}=\left[-\mathrm{A}+\mathrm{C}_{\mathrm{R}-1}+\mathrm{P}_{3} . \mathrm{t}_{\mathrm{s}}\right] / \mathrm{P}_{\mathrm{R}-1}>0$.

And $g_{R-1}=P_{R-1} * \epsilon_{R-1}-C_{R-1}=\left(-A+P_{3} \cdot \mathrm{t}_{\mathrm{s}}\right)$. Where t_{s} is an integer number that is not divisible by P_{3}. We know already that the chosen t_{s} integer number is responsible for $\epsilon_{R-1}>0$.

We know that $g_{j}=a_{j}$ for all $\mathrm{j}<(\mathrm{R}-1)$. Where a_{j} is a natural number. Also we know that $\Sigma \mathrm{a}_{\mathrm{j}}=$ A for $\mathrm{j}<\mathrm{R}-1$. Here $\mathrm{R}-2>\mathrm{n}-1$

Thus by (i): $\mathrm{P}_{\mathrm{R}}=2+\mathrm{P}_{3} \cdot \mathrm{t}_{\mathrm{s}}-\mathrm{A}+\mathrm{A}=\mathrm{P}_{3} \cdot \mathrm{t}_{\mathrm{s}}+2$
Thus there exists prime number P_{R} such that $\left(P_{R}-2\right)=P_{3} \cdot t_{s} \ldots \ldots \ldots .(12)$ where t_{s} is not divisible by P_{3}.

Now put $N \equiv R$. And consider $t_{s}=x_{3}$. Then we can state that $\left(P_{N}-2\right)=P_{3} \cdot x_{3}$; for some integer x_{3} which is not divisible by P_{3}.

Discussion

We assumed initially that there are finitely many twin primes. After proceeding with that, I ended up with a contradiction. But to get the contradiction, I used that P_{N} as prime number greater than P_{n-1}. Also to get the contradiction, I used the facts that $\left(P_{N}+2\right)$ and $\left(P_{N}-2\right)$ as nonprimes since $\mathrm{P}_{\mathrm{N}}>\mathrm{P}_{\mathrm{n}-1}$. And also I have used that $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} as natural numbers (since, $\left(\mathrm{P}_{\mathrm{N}}+2\right)$ and $\left(\mathrm{P}_{\mathrm{N}}-2\right)$ are not prime numbers). Therefore to get the contradiction, I have used the facts got from our assumption. Then the only possibility is our assumption is false.

Results

Therefore I have used our assumption to get a contradiction finally as showed in (11). Therefore it is possible to conclude that our assumption is false.

Thus there are infinitely many twin prime numbers.

Appendix

Prime number: A natural number which divides by 1 and itself only.
Twin Prime Numbers: Two prime numbers which have the difference exactly 2.
We denote ' i ' th prime gap $\mathrm{g}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}+1}-\mathrm{P}_{\mathrm{i}}$
Then according to the $2^{\text {nd }}$ reference; Prime number $\mathrm{P}_{\mathrm{N}}=2+\sum_{j=1}^{N-1} g j$
Also by $2^{\text {nd }}$ reference: for all $€>0$, there is a natural number ' n ' such that for all $N-1>n$;
$\mathrm{g}_{\mathrm{N}-1}<\mathrm{P}_{\mathrm{N}-1} . \epsilon$

References

1. Zhang, Yitang (2014). "Bounded gaps between primes". Annals of Mathematics. 179 (3): 1121-1174.
2. https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/ Prime_gap.html
3. Terry Tao, Small and Large Gaps between the Primes
4. Maynard, James (2015), "Small gaps between primes", Annals of Mathematics, Second Series, 181 (1): 383-413
5. Tchudakoff, N. G. (1936). "On the difference between two neighboring prime numbers". Math. Sb. 1: 799-814.
6. Ingham, A. E. (1937). "On the difference between consecutive primes" Quarterly Journal of Mathematics. Oxford Series. 8 (1): 255-266.
