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Abstract

In this brief note, we propose a set of operations for the affinely extended real
number called infinity. Under the terms of the proposition, we show that the Riemann
zeta function has infinitely many non-trivial zeros on the complex plane.

§1 Definitions

Definition 1.1 Infinity is a number, not a real number, defined as

lim — =400 | and nh—{&;k:oo :

Definition 1.2 The real number line is a 1D space extending infinitely far in
both directions. It is represented in interval notation as

R = (—o0, 00)
Definition 1.3 A number z is a real number if and only if it is a cut in the

real number line:
(_007 OO) = <_007 .%') U [1;7 OO)

Definition 1.4 The affinely extended real numbers are constructed as R =
R U {+oo}. They are represented in interval notation as

R = [—00, o9]

Definition 1.5 An affinely extended real number = € R is £o00 or it is a cut
in the affinely extended real number line:

[007 OO] = [_Oo7m) U [ZL’, OO]
Theorem 1.6 Ifz € R and x # 400, then z € R.

Proof. Proof follows from Definition 1.4. =
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Definition 1.7 Infinity has the properties of additive and multiplicative ab-
sorption:

reR , >0

+zr+ 00 =00
+xr X oo = o0

Proposition 1.8 Suppose the additive absorptive property of +oo is taken
away when it appears as +£00. Further suppose that [o0]| = |oo], and that the
ordering of o0 is such that
n<oo—b<0—a< oo
—0<—X0+a<-—0+b<—n ,

for any positive a,b € R, a < b < n, and any natural number n € N.

Remark 1.9 Because |53 = |oo|, it is possible to express R in interval no-
tation as

—_

R =[50, x|
Theorem 1.10 If x = (00 —b) and 0 < b < n for some n € N, then x € R.

Proof. By the ordering given in Proposition 1.8, we have
[007 OO] = [—OO,I) U [LE, OO]

It follows from Definition 1.5 that z € R. Since o0 does not have additive
absorption and the theorem states that b > 0, it follows from the ordering
that

T # +00 and x # +oo .

It follows from Theorem 1.6 that x € R. =

Theorem 1.11 If 0 < b < n for some natural number n € N, then the
quotient n/ (00 — b) is identically zero.

Proof. For proof by contradiction, let z be any positive real number such that

n J—

X—b

Proposition 1.8 requires ||n|| < [|(c — b)|| so we have ||z||] < 1. All non-zero
real numbers have a multiplicative inverse. We find, therefore, that

z .

n

mzl — n=z(c0 —b)
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The hat on o0 only suppresses additive absorption so
n = (00— zb) .

This delivers a contradiction because Proposition 1.8 requires that n be less
that (60 — b) while z < 1 requires (50 — b) < (50 — 2b). &

Definition 1.12 A number is a complex number z € C if and only if

z=x+1y and r,ye R .

§2 Disproof of the Riemann Hypothesis

Theorem 2.1 If 0 < b < n for somen € N, zg = o0 — b, and ((z) is the
Riemann C function, then ((z) = 1.

Proof. Observe that the Dirichlet sum form of ¢ [1]

takes zy as

g(aa—b)_zn;b_zn—i_wznx_l . &

n=1 n=1 n=2

Theorem 2.2 The Riemann ( function has non-trivial zeros at certain z € C
outside of the critical strip.

Proof. Riemann’s functional form of ¢ [1] is

¢(z) = 2(27)* sin (%Z) P(1— 2)¢(1 - 2) .

We have solved for (50 —b) in Theorem 2.1 so we will use Riemann’s equation
to prove this theorem by solving for z = —(50 — b) + 1. To do so, we will use
the Euler definition of the I' function [2]



4 QUICK DISPROOF OF THE RIEMANN HYPOTHESIS

By Theorem 2.1, we have ((c0 — b) = 1 so we may use the functional form of
¢ to compute ((—o0 + b+ 1). Using Theorem 1.11, we have

I —b) = 1_b65<1+oo+b>1(1+%>66b
~oflo ()
3

fi() -

It follows that

(=B + b+ 1) = 2(2m) sm{ (=% ; bt 1)] I'(55 — b)((55 — b)
_2(2m)° o m(—o0 +b+1) _
- { k ](0)(1) 0. @

Remark 2.3 Since we have shown that ((—o0 + b + 1) is equal to zero for
any positive b € R less than some natural number, most of the zeros shown
in Theorem 2.2 cannot be what are called trivial zeros. Theorem 1.10 proves
zo € R, and it follows from Definition 1.12 that zy € C. Since these zeros do
not lie inside the critical strip, Theorem 2.2 is the negation of the Riemann
hypothesis.

Remark 2.4 To demonstrate that Riemann’s functional form of ( is robust,
and that Proposition 1.8 is sound, we should switch the 60 that appear on
the left and right sides of the functional form of ¢

¢(36 —b) = 2(2m)¥ " Lsin [@] I'(—o0+b+1)((—0+b+1) .

The I'" function evaluates to

N 1 cS b1 1< 1) 5o+1
N-a04+b+1)= —— 1-504 —— 1+— =0 ,
( ) —oo—l—b—l—lg( n )

(5 —b) = 1= 220" sin [@] (0)(0) = ()(0)

The right hand side of this equation is undefined so we do not obtain a con-
tradiction.
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Theorem 2.5 The Euler product from of ¢ has zeros at certain z € C with
negative real parts.

Proof. Consider a number 2z, € C such that
2o = —(00 —b) +iyo where b,yo € Ry .

Observe that the Euler product form of ¢ [3] takes z as

1

V4
~ (7w i
1 — PE5=b)—iyo iy 1— p(oo—b)—iyo
1

_ 11 1
a 1 __ 1 — pE-b-io
1- EPC’O [cos(yo In P) — isin(yo In P)] | P#P

Let yoIn P = 2n7 for some prime P and n € N or n = 0. Theorem 1.11 gives

1 1
C(’ZO) = (1 —65) H 1 _p(&?—b)—iyo = O : ég

p#P

Remark 2.6 Although ( does not absolutely converge to the Euler product
in the left complex half-plane, the case of n = 0 in Theorem 2.5 shows that the
product form of ¢ is exactly equal to the sum form for some z with Re(z) < 0.
Therefore, we have good reason to assume that the complex zeros defined by
n # 0 in Theorem 2.5 are non-trivial zeros of the Riemann ¢ function.
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