Quick Disproof of the Riemann Hypothesis

Jonathan W. Tooker

June 13, 2019

Abstract

In this brief note, we propose a set of operations for the affinely extended real number called infinity. Under the terms of the proposition, we show that the Riemann zeta function has infinitely many non-trivial zeros on the complex plane.

§1 Definitions

Definition 1.1 Infinity is a number, not a real number, defined as

$$\lim_{x \to 0^{\pm}} \frac{1}{x} = \pm \infty \quad , \qquad \text{and} \qquad \lim_{n \to \infty} \sum_{k=1}^{n} k = \infty \quad .$$

Definition 1.2 The real number line is a 1D space extending infinitely far in both directions. It is represented in interval notation as

$$\mathbb{R}\equiv (-\infty,\infty)$$
 .

Definition 1.3 A number x is a real number if and only if it is a cut in the real number line:

$$(-\infty,\infty) = (-\infty,x) \cup [x,\infty)$$
.

Definition 1.4 The affinely extended real numbers are constructed as $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$. They are represented in interval notation as

$$\overline{\mathbb{R}} \equiv [-\infty,\infty]$$
 .

Definition 1.5 An affinely extended real number $x \in \overline{\mathbb{R}}$ is $\pm \infty$ or it is a cut in the affinely extended real number line:

$$[\infty,\infty] = [-\infty,x) \cup [x,\infty] \quad .$$

Theorem 1.6 If $x \in \overline{\mathbb{R}}$ and $x \neq \pm \infty$, then $x \in \mathbb{R}$.

Proof. Proof follows from Definition 1.4.

Ø

Definition 1.7 Infinity has the properties of additive and multiplicative absorption:

$$x \in \mathbb{R} \ , \ x > 0 \quad \Longrightarrow \quad \begin{cases} \pm x + \infty = \infty \\ \pm x \times \infty = \pm \infty \end{cases}$$

Proposition 1.8 Suppose the additive absorptive property of $\pm \infty$ is taken away when it appears as $\pm \widehat{\infty}$. Further suppose that $\|\widehat{\infty}\| = \|\infty\|$, and that the ordering of $\widehat{\infty}$ is such that

$$n < \widehat{\infty} - b < \widehat{\infty} - a < \infty$$
$$-\infty < -\widehat{\infty} + a < -\widehat{\infty} + b < -n$$

for any positive $a, b \in \mathbb{R}$, a < b < n, and any natural number $n \in \mathbb{N}$.

Remark 1.9 Because $\|\widehat{\infty}\| = \|\infty\|$, it is possible to express $\overline{\mathbb{R}}$ in interval notation as

$$\overline{\mathbb{R}} = [-\widehat{\infty}, \widehat{\infty}]$$

Theorem 1.10 If $x = \pm (\widehat{\infty} - b)$ and 0 < b < n for some $n \in \mathbb{N}$, then $x \in \mathbb{R}$.

<u>*Proof.*</u> By the ordering given in Proposition 1.8, we have

$$[\infty,\infty] = [-\infty,x) \cup [x,\infty]$$

It follows from Definition 1.5 that $x \in \mathbb{R}$. Since $\widehat{\infty}$ does not have additive absorption and the theorem states that b > 0, it follows from the ordering that

$$x \neq \pm \widehat{\infty}$$
, and $x \neq \pm \infty$

It follows from Theorem 1.6 that $x \in \mathbb{R}$.

Theorem 1.11 If 0 < b < n for some natural number $n \in \mathbb{N}$, then the quotient $n/(\widehat{\infty} - b)$ is identically zero.

<u>*Proof.*</u> For proof by contradiction, let z be any positive real number such that

$$\frac{n}{\widehat{\infty} - b} = z$$

Proposition 1.8 requires $||n|| < ||(\widehat{\infty} - b)||$ so we have ||z|| < 1. All non-zero real numbers have a multiplicative inverse. We find, therefore, that

$$\frac{n}{z(\widehat{\infty} - b)} = 1 \qquad \Longleftrightarrow \qquad n = z(\widehat{\infty} - b) \quad .$$

Ø

The hat on $\widehat{\infty}$ only suppresses additive absorption so

$$n = (\widehat{\infty} - zb)$$

This delivers a contradiction because Proposition 1.8 requires that n be less that $(\widehat{\infty} - b)$ while z < 1 requires $(\widehat{\infty} - b) < (\widehat{\infty} - zb)$.

Definition 1.12 A number is a complex number $z \in \mathbb{C}$ if and only if

$$z = x + iy$$
, and $x, y \in \mathbb{R}$

§2 Disproof of the Riemann Hypothesis

Theorem 2.1 If 0 < b < n for some $n \in \mathbb{N}$, $z_0 = \widehat{\infty} - b$, and $\zeta(z)$ is the Riemann ζ function, then $\zeta(z_0) = 1$.

<u>**Proof.**</u> Observe that the Dirichlet sum form of ζ [1]

$$\zeta(z) = \sum_{n} \frac{1}{n^z} \quad ,$$

takes z_0 as

$$\zeta(\widehat{\infty} - b) = \sum_{n=1}^{\infty} \frac{1}{n^{\widehat{\infty} - b}} = \sum_{n=1}^{\infty} \frac{n^b}{n^{\widehat{\infty}}} = 1 + \sum_{n=2}^{\infty} \frac{n^b}{\widehat{\infty}} = 1 \quad .$$

Theorem 2.2 The Riemann ζ function has non-trivial zeros at certain $z \in \mathbb{C}$ outside of the critical strip.

<u>**Proof.**</u> Riemann's functional form of ζ [1] is

$$\zeta(z) = 2(2\pi)^{z-1} \sin\left(\frac{\pi z}{2}\right) \Gamma(1-z)\zeta(1-z) \quad .$$

We have solved for $\zeta(\widehat{\infty} - b)$ in Theorem 2.1 so we will use Riemann's equation to prove this theorem by solving for $z = -(\widehat{\infty} - b) + 1$. To do so, we will use the Euler definition of the Γ function [2]

$$\Gamma(z) = \frac{1}{z} \prod_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^z}{\left(1 + \frac{z}{n}\right)} \quad .$$

By Theorem 2.1, we have $\zeta(\widehat{\infty} - b) = 1$ so we may use the functional form of ζ to compute $\zeta(-\widehat{\infty} + b + 1)$. Using Theorem 1.11, we have

$$\begin{split} \Gamma(\widehat{\infty} - b) &= \frac{1}{\widehat{\infty} - b} \prod_{n=1}^{\widehat{\infty}} \left(1 + \widehat{\infty} + \frac{b}{n} \right)^{-1} \left(1 + \frac{1}{n} \right)^{\widehat{\infty} - b} \\ &= (0) \prod_{n=1}^{\widehat{\infty}} (0) \left(1 + \frac{1}{n} \right)^{\widehat{\infty} - b} \\ &= \prod_{n=1}^{\widehat{\infty}} \left(\frac{0}{n} \right)^{\widehat{\infty} - b} = 0 \quad . \end{split}$$

It follows that

$$\begin{aligned} \zeta(-\widehat{\infty} + b + 1) &= 2(2\pi)^{-\widehat{\infty} + b} \sin\left[\frac{\pi(-\widehat{\infty} + b + 1)}{2}\right] \Gamma(\widehat{\infty} - b)\zeta(\widehat{\infty} - b) \\ &= \frac{2(2\pi)^b}{(2\pi)^{\widehat{\infty}}} \sin\left[\frac{\pi(-\widehat{\infty} + b + 1)}{2}\right] (0)(1) = 0 \quad . \end{aligned}$$

Remark 2.3 Since we have shown that $\zeta(-\widehat{\infty} + b + 1)$ is equal to zero for any positive $b \in \mathbb{R}$ less than some natural number, most of the zeros shown in Theorem 2.2 cannot be what are called trivial zeros. Theorem 1.10 proves $z_0 \in \mathbb{R}$, and it follows from Definition 1.12 that $z_0 \in \mathbb{C}$. Since these zeros do not lie inside the critical strip, Theorem 2.2 is the negation of the Riemann hypothesis.

Remark 2.4 To demonstrate that Riemann's functional form of ζ is robust, and that Proposition 1.8 is sound, we should switch the $\pm \widehat{\infty}$ that appear on the left and right sides of the functional form of ζ

$$\zeta(\widehat{\infty} - b) = 2(2\pi)^{\widehat{\infty} - b - 1} \sin\left[\frac{\pi(\widehat{\infty} - b)}{2}\right] \Gamma(-\widehat{\infty} + b + 1)\zeta(-\widehat{\infty} + b + 1) \quad .$$

The Γ function evaluates to

$$\Gamma(-\widehat{\infty}+b+1) = \frac{1}{-\widehat{\infty}+b+1} \prod_{n=1}^{\widehat{\infty}} \left(1-\widehat{\infty}+\frac{b+1}{n}\right)^{-1} \left(1+\frac{1}{n}\right)^{-\widehat{\infty}+1} = 0 \quad ,$$

 \mathbf{SO}

$$\zeta(\widehat{\infty} - b) = 1 = 2(2\pi)^{\widehat{\infty} - b - 1} \sin\left[\frac{\pi(\widehat{\infty} - b)}{2}\right](0)(0) = (\widehat{\infty})(0)$$

The right hand side of this equation is undefined so we do not obtain a contradiction. **Theorem 2.5** The Euler product from of ζ has zeros at certain $z \in \mathbb{C}$ with negative real parts.

<u>**Proof.**</u> Consider a number $z_0 \in \mathbb{C}$ such that

$$z_0 = -(\widehat{\infty} - b) + iy_0$$
, where $b, y_0 \in \mathbb{R}_0$

Observe that the Euler product form of ζ [3] takes z_0 as

$$\begin{split} \zeta(z_0) &= \prod_p \frac{1}{1 - p^{(\widehat{\infty} - b) - iy_0}} \\ &= \left(\frac{1}{1 - P^{(\widehat{\infty} - b) - iy_0}}\right) \prod_{p \neq P} \frac{1}{1 - p^{(\widehat{\infty} - b) - iy_0}} \\ &= \left(\frac{1}{1 - \frac{1}{P^b} P^{\widehat{\infty}} \left[\cos(y_0 \ln P) - i\sin(y_0 \ln P)\right]}\right) \prod_{p \neq P} \frac{1}{1 - p^{(\widehat{\infty} - b) - iy_0}} \end{split}$$

Let $y_0 \ln P = 2n\pi$ for some prime P and $n \in \mathbb{N}$ or n = 0. Theorem 1.11 gives

$$\zeta(z_0) = \left(\frac{1}{1-\widehat{\infty}}\right) \prod_{p \neq P} \frac{1}{1-p^{(\widehat{\infty}-b)-iy_0}} = 0 \quad .$$

Remark 2.6 Although ζ does not absolutely converge to the Euler product in the left complex half-plane, the case of n = 0 in Theorem 2.5 shows that the product form of ζ is exactly equal to the sum form for some z with $\operatorname{Re}(z) < 0$. Therefore, we have good reason to assume that the complex zeros defined by $n \neq 0$ in Theorem 2.5 are non-trivial zeros of the Riemann ζ function.

References

- [1] Bernhard Riemann. On the Number of Primes Less than a Given Quantity. Monatsberichte der Berliner Akademie, (1859).
- [2] Leonhard Euler. Letter to Christian Goldbach. (1729).
- [3] Leonhard Euler. Various Observations about Infinite Series. St. Petersburg Academy, (1737).