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Abstract

From the holographic perspective in quantum gravity, topological field
theories like Chern-Simons are more than toy models for computation. An
algebraic construction of the CFT associated to Witten’s j-invariant for
2 + 1 dimensional gravity aims to compute coefficients of modular forms
from the combinatorics of quantum logic, dictated by axioms in higher
dimensional categories, with heavy use of the golden ratio. This paper
is self contained, including introductory material on lattices, and aims
to show how the Monster group and its infinite module arise when the
automorphisms of the Leech lattice are extended by special point sets in
higher dimensions, notably the 72 dimensional lattice of Nebe.
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”I missed the opportunity of discovering a deeper connection between modular
forms and Lie algebras, just because the number theorist Dyson and the physicist
Dyson were not speaking to each other.” Freeman Dyson (1972)

1 Introduction

The j-invariant is a function on the moduli space of tori specified by a fun-
damental domain for the modular group in the upper half plane. Each torus
comes with a marked point, given by the product structure on the space. A
boundary of this puncture might draw out a trefoil knot on a (traced) three
stranded ribbon diagram with half twists, so that the knot is the boundary of
the ribbons. For us, ribbon diagrams represent particle states in categories for
quantum computation and condensed matter physics.

Suitable categories, like that of the Fibonacci anyon, label diagram elements
with algebraic data. A braiding brings a deformation parameter into the al-
gebra, and we begin with this rather than a loop parameter z from an affine
algebra. In this view, infinite dimensional modules are built from the ground
up. Even C itself is not fundamental, as we are permitted to replace it with
dense subsets based on special number fields, including Q(φ), for φ the golden
ratio. Homotopically, C/0 is just as good as the unit circle. Now a vertex oper-
ator algebra (VOA) [1][2] should be seen as an operadic creature, governed by
the axioms of quantum computation rather than complicated arguments from
string theory.

String theory emerged from the dual resonance models of the 1970s, but
these ideas also led eventually to the operad formalism for scattering amplitudes,
where the duality between s and t channels, with one leg on the diagram fixed,
is like the associator map between 3-leaved trees. What we would like, then, is a
new set of axioms for VOAs, which streamline the number theoretic information
and clarify the physical content of moonshine theorems. This paper does not go
so far, but hopefully clarifies the Monster group and j-invariant from this point
of view, which we call motivic quantum gravity.

There is no doubt that the j-invariant j(q) carries interesting number the-
oretic properties, as well as its module structure for the Monster group. Mon-
strous moonshine [3][4] employs a vertex operator algebra for bosonic strings,
but here the string dimensions denote the number of strands on a ribbon di-
agram, prior to the emergence of spacetime, which is not in itself particularly
interesting. In particular, the 27 dimensions of bosonic M theory give the di-
mension of a state space for three qutrits, which we will describe. The axiomatic
framework promises to shed light on the basic structure of modular forms, along
with the operads underlying VOAs.

Borcherd’s formula states that

j(q)− j(p)
1
q −

1
p

=

∞∏
n,m≥1

(1− qnpm)c(nm) =
∏
N≥1

∏
d|N

(1− qdpN/d)c(N) (1)
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for d a divisor of N , where c(i) is an integer coefficient of j. Recently in [5], it was
used to study a duality between the inverse temperature in the usual argument q
of j and a chemical potential associated to the number of copies k of j defining
the CFT at c = 24k. This construction begins with Witten’s j-invariant [6]
for k = 1, giving the Bekenstein-Hawking entropy for BTZ black holes. When
c = 24, we think immediately of the Leech lattice and its associated modular
form. Their partition function is

∑
k≥0 p

k+1Zk(q), where Zk(q) = Trq∆−k. Here
the coefficient c(n) is the number of states with ∆ = n+ 1 in Witten’s CFT.

The thermal AdS regime in [5] is characterised by Bose-Einstein condensate
ground states, and a BEC screening of central charge. The q and p variables are
interchanged by a Z2 symmetry, implying a correspondence between tempera-
ture and minimal AdS3 masses. We expect such behaviour in quantum gravity,
which has a Fourier supersymmetry [7] between massive neutrinos and CMB
photons, under which the present day CMB temperature corresponds precisely
to a neutrino mass.

Borcherd’s formula is closely related [8] to partition functions of the form∑
n≥0 jn(q)pn, where p is our second variable and jn(q) is derived from j(q)

by action of the Hecke operator nTn,0 of weight zero, with j1(q) our usual j
function. For f(q) =

∑
a(n)qn, this is the operator

Tn,0f(q) ≡
∑
i≥0

(a(ni) + a(i/n)/n)qn, (2)

assuming that a(i/n) is only non zero for integral arguments.
Dualities and trialities are always information theoretic [9][10], and Bose-

Einstein condensation is fundamental to the localisation of mass in the cosmo-
logical neutrino vacuum, for which the neutrino IR scale and its dual Planck
scale underpin the Higgs mechanism [11]. The Fourier supersymmetry between
Standard Model fermions and bosons introduces the 24 dimensions of the Leech
lattice as hidden structure for the Z boson, roughly speaking. This is related
to the non local states of the neutrino. As is well known, square roots of rest
masses come in eigenvalue triplets with simple parameters, and we hope soon to
complete the rest mass derivations with the scale ratios, starting with the large√
Z/νR ratio, coming from lattice combinatorics in high dimensions.
There are no classical string manifolds and no supersymmetric partners. In

fact, the quantum topos perspective aims to reformulate R and C completely,
matching the combinatorics of categorical polytopes to generalised discrete root
systems using the canonical rings that define our CFTs.

We leave further discussion of the Monster CFTs to the last two sections,
starting with the combinatorial structure of lattices and the j-invariant, moti-
vated by motivic quantum gravity. The next few sections are quite elementary,
for readers unfamiliar with modular mathematics, but we begin with some per-
tinent remarks on set theory and cohomology, which are crucial to the category
theoretic philosophy and its implications for the underlying motivic axioms.
The section on braids includes definitions of important finite group elements.
In section 9 we introduce a 72-dimensional lattice, taking the discussion beyond
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the Leech lattice. As a result, the Golay code has higher dimensional analogs,
related to spinor spaces in the generalised algebra approach.

2 Sets and icosians

In order to build a CFT for a holographic theory, we want to throw a great
deal of higher dimensional information into two dimensions. For instance, the
roots of any Lie algebra are projected onto the so called magic star [12], which
extends in exceptional periodicity [13] beyond the exceptional Lie algebras using
a broken Jacobi rule for T -algebras. Broken rules for algebras make perfect sense
in operads, which come with an infinite tower of rules for operad composition.
The L∞ operad [14] replaces Lie algebras when we are focused on homotopy,
which secretly we are.

We are also interested in quasilattices, sometimes generated by projections
to lower dimensions, particularly the two dimensional Penrose quasilattice [15].
This employs the golden ratio φ = (1 +

√
5)/2 and ρ =

√
φ+ 2 to map Z8/2

densely into C under the real maps

a+ bφ+ cρ+ dφρ, (3)

for integral a, b, c, d.
The category theory is also essential for another reason: physical measure-

ments are statements in quantum logic, where a dimension of a Hilbert space
replaces the classical cardinality of a set. Thus quantum mechanics forces us
immediately into an infinite dimensional setting. To make a measurement, we
must also account for the classical data, whose logic is governed by the cate-
gory of sets. It is therefore perfectly natural to map the subset lattice for an
n point set in the category of sets onto a cube in n dimensions. Such cubes
are fundamental as targets of the power set functor on the category of sets,
dictating Boolean logic in the topos [16]. They are viewed here as diagrams for
cohomology [17], along with other canonical polytopes like the associahedra.

The spinor dimensions in the e8 chain of exceptional periodicity [13] go up
by factors of 16 (as in 8, 128, 2048, 32768). Each 24n−1 counts the number of
vertices on a cube in dimension 4n−1. In particular, 23 will give the (negative)
charges of leptons and quarks, just as it defines a basis for O, and 27 traditionally
carries magnetic data. If the arrows from the source vertex represent a basis for
the space, the cube also contains all other subsets of the basis set. For example,
label the 8 vertices of the three dimensional cube

1, e1, e2, e3, e1e2, e2e3, e3e1, e1e2e3. (4)

Here 1 denotes the empty set or zero point. The XOR product on subsets
(either A or B but not both) is addition in the Boolean ring with intersection
as product [18]. This recovers the structure of the Fano plane in F2

3, and hence
the units in O [19][20]. Intersection is defined using the arrows and faces of the
cube. Our subsets are also denoted by the F2 sign strings, so that e1 is +−−.
These are anyon charges for the leptons and quarks.
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The square, which labels two qubit states, is a module diagram for the Klein
4-group [17]. These diagrams are used to compute the cohomology H∗(G, k)
over a field of characteristic p, where p = 2 in this case. The square labels are
the e1 and e2 given above, where we work with k[e1, e2]/(e2

1, e
2
2). Cohomology

for group algebras is natural for us, since we have Hopf algebras with suitable
categorical axioms.

Given this algebraic richness, the recovery of a dense set in C using only
the ring Q(

√
φ+ 2) [15] permits us to dispose of the usual continua in favour

of more topos friendly constructions. The reals are equal in cardinality to the
power set of N, which is just a second application of the power set monad to
our initial category, picking out dimensions n = 2k. In exceptional periodicity
[13] this includes the spatial dimensions 8 and 32, where four copies of Z8/2 are
needed for SL2(C), the cover of the Lorentz group.

The infinite dimensional cube defines reals, within the surreals, that are
not finite dyadic: an infinite string of minus signs is the infinitesimal, and the
infinite plus string is the surreal infinity. Thus the surreals, or something like
them, assign a natural normalisation of 2−n to n qubits.

When each ei coordinate of (4) is extended to a discrete line ei, e
2
i , · · · ,

as if the line is a path space, then coordinates represent the prime factors of
N =

∏r
i=1 p

ki
i for N ∈ N, in a general rectangular array of points. All divisors d

of N sit on the points below N , which is the target of the rectangular block. For
example, N = 30 = 2·3·5 is modeled on the basic 3-cube, and each square free N
gives a parity cube in dimension r. In this picture, Z is an infinite dimensional
cubic cone, with a discrete axis for each prime. This is natural, because the
Cartesian product N ×M has either NM points or N + M dimensions as a
vector space. Taking all subsets of a basis enumerates all possible sets of linearly
independent vectors within the basis.

Sign strings of length n arise as signature classes for permutations in Sn+1.
For example, (2314) in S4 belongs to the class +−+, with a plus denoting an
increase in numerals as we read the permutation left to right. Eight vertices on
the 3-cube are therefore derived from the 24 vertices of the S4 permutohedron,
a polytope in dimension 3. The group algebra kSn+1 descends to the Solomon
Hopf algebra on the vertices of the cube, starting with the elements

∑
i πi for

πi ∈ Sn+1 ranging over the signature class. The vertices of the permutohedron,
which also tiles three dimensional Euclidean space, are denoted by the divisors
of the number N = p1

np2
n−1p3

n−2 · · · pn. For S4, we get the 24 points

1, p1, p2, p3, p1
2, p2

2, p1
3, (5)

p2p3, p1p3, p1p2, p3p2
2, p3p1

2, p2p1
2, p1p2

2, p2p3
2,

p2p3
3, p2

2p3
3, p2

2p3
2, p1p2p3,

p1p2
2p3, p1p2

2p3
2, p1p2

2p3
3, p1p2p3

2, p1p2p3
3,

viewed as permutations of (−3,−1, 1, 3)/2 in Z4/2, or more often, (1, 2, 3, 4).
This permutohedron is mapped to the (1, 0, 0, 1) coordinates of the 24-cell as

follows. A (1, 2, 3, 4) vector sends the 3 and 4 to 1, and the 1 and 2 to 0. Since
each parity square face on the S4 polytope has 3 and 4 in the same positions, the
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square adds the signs to the resulting vector. Extending the 24-cell coordinates
into 8 dimensions using four extra zeroes, we get as usual the 112 bosonic roots
of e8. Opposite pairs of squares on S4 give three separate copies of the 3-cube
basis for O, so that 9 copies of S4 provide sets of 24 roots on the 7 internal
points of the magic star in the plane. One further copy of S4 catalogs (i) 6
points for the a2 hexagon and (ii) three J3(O) diagonal elements on each tip of
the star.

Replacing sets and permutations by vector spaces and endomorphisms, for
quantum logic, we naturally consider the vector space analog of transpositions,
namely reflections. This is why generalised root lattices appear naturally in
quantum gravity.

The Leech lattice [21] is easily defined in terms of the 120 norm 1 icosians
of (45). As with the O3 Leech lattice, the icosian lattice is a subset of vectors
(x, y, z) ∈ H3 with x, y and z all icosians. First consider the 24 icosians

±1,±i,±j,±k, 1

2
(±1± i± j ± k). (6)

Since the basis +{1, i, j, k} forms a parity square in the plane, as just described
for e1 = i and e2 = j, we would like to group these 24 icosians into three
pairs of squares, such that the numbers with three minus signs belong to one
square. These sets are not orthogonal (in sets of three) in H, but they are in
H3 if we spread the squares out into different copies of H. Then we project
from 12 dimensions down to 3, obtaining three pairs of square faces on the
permutohedron S4. For example, the square

−1 + i+ j + k, 1 + i− j + k, 1− i+ j + k, 1 + i+ j − k (7)

starts with ++ for the signs on i and j, and then flips i or j on its diagonal.
Let A be the set of 24 icosians in (6) rescaled by 1/2, which we now use to

define the 240 roots of e8, following [22]. Let B be the set (1 + i)A. The 240
roots are the ten sets of vectors in 8 dimensions, given as pairs of quaternions
(q1, q2),

(B, 0), (0, B), (A,A), (A,−A), (A, iA), (8)

(A, jA), (A,−jA), (A, kA), (A,−kA), (A,−iA).

The nine non zero types of entry in these vectors define nine copies of the
permutohedron above. Alternatively, each of the ten vector types defines an
8-dimensional analog of S4.

There is a natural way to take 5 copies of a permutohedron in dimension 3 to
build a 120 vertex polytope known as the permutoassociahedron [23], obtained
by replacing each vertex on S4 with a pentagon. This polytope is crucial to the
axioms for ribbon categories. A braiding and fusion rule in a ribbon category is
directly analagous to the breaking of commutativity and associativity in a loop.
A 4-valent double permutoassociahedron is a 240 vertex polytope in dimension
4.

These ten sets define the S3 fibres of a discrete Hopf fibration [22] for S7,
where the discrete base S4 is given by the 10 quaternions q1/q2, including∞ for
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(B, 0). These points map to a cubic basis of type (±1, 0, 0, 0, 0) in 5 dimensions,
indicating that we can split the ten permutohedra into two sets of five, as desired.

The other 96 icosians are of the form

1

2
(±0± i± φj ± φ−1k) (9)

up to signs and even permutations on {1, i, j, k}. That is, 8 copies of A4 in ±
pairs.

3 The Fibonacci reflection and braids

The simplest expression for the j-invariant in (22) is invariant under the S3

permutations of three roots for a cubic, where group multiplication is function
substitution under the correspondence

z = (1), 1− 1

z
= (312),

1

1− z
= (231), (10)

1

z
= (31),

z

z − 1
= (32), 1− z = (21).

This is almost, but not quite, represented by matrices in the modular group
Γ = PSL2(Z). Let

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
(11)

be the two generators of Γ and let

Z =

(
1 0
0 −1

)
(12)

be a reflection across the axis in the plane. Then the correct representation is

(1) = I, (312) = TS, (231) = ST−1, (13)

(31) = −SZ, (32) = −ST−1SZ, (21) = −TZ.
We have to multiply by Z on the right to obtain the usual PSL2(F2), for which
T 2 = I. Now observe that the powers (TSZ)n generate the Fibonacci numbers
Fk. At mod m, the set of Fk is a cycle of length L(m), depending on primes
associated to k. In particular, we have F4 mod 3 ≡ 0, so that T 8 = I and
(TSZ)4 = I, giving a representation of S4. For PSL2(F7) we need Fk mod 13.
Up to mod 12, all cycles fit into a cycle of length 240.

Recall that the limit of Fk+1/Fk is the golden ratio φ = (1 +
√

5)/2 [24]. In
order to understand the relationships between different structures on the Leech
lattice, we need to look at the rotation between normed division algebra braids
and Fibonacci anyon representations [25]. The cyclic braid group Bc3 on three
strands [25][26] is given by quaternion units i, j, k in

σ1 =
1√
2

(1 + i), σ2 =
1√
2

(1 + j), σ3 =
1√
2

(1 + k), (14)
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such that σ8
i = 1. This representation corresponds to a phase π/4 in a circle of

representations. The complex B2 generator σ1 is used to describe ribbon twists
in an extension of Bc3 to ribbon diagrams for particle states. Similarly, Bc7 has
a representation [26]

σ1 =
1√
2

(1 + e2e1), σ2 =
1√
2

(1 + e3e2), σ3 =
1√
2

(1 + e4e3), (15)

σ4 =
1√
2

(1 + e5e4), σ5 =
1√
2

(1 + e6e5), σ6 =
1√
2

(1 + e7e6),

σ7 =
1√
2

(1 + e1e7),

where the ei Clifford algebra elements all satisfy e2
i = −1 and eiej = −ejei.

This Bc7 will appear in associative algebras based on O.
The B3 representation based on j and k, viewing H as 2 × 2 matrices, is

rotated to a matrix Fibonacci representation in SU(2) [25] using golden phases,

M = e7πj/10, P = jφ−1 + k
√
φ
−1
, N = PMP−1, (16)

satisfying the braid relation MNM = NMN . This rotation is 9◦, where
(φ
√
φ+ 2)−1 = tan 18◦ and φ = 2 cos(2π/10). Another special angle of 38.17◦

defines the Great Pyramid triangle, whose Pythagorean triple is (φ,
√
φ, 1). Its

Fibonacci approximations give (
√
a2 + b2, a, b) for a2 = Fn+1 and b2 = Fn, but

there are only three Fn that are squares, namely F1 = F2 = 1 and F12 = 144.
The Fibonacci analog of Pythagorean triples is the rule F 2

n+1−F 2
n = Fn+2Fn−1.

The braid relation of (16) is rewritten in the form MX = XM for X =
PMP−1MP .

We define Fibonacci matrix triples. Note that the numbers Fn/Fn+1 belong
to Farey sets. When n is even, Fn/Fn+1 < Fn−1/Fn, and vice versa for odd n.
The Farey triple of modular group matrices for even n is then(

Fn+1 Fn
Fn Fn−1

)
,

(
Fn+1 Fn+2

Fn Fn+1

)
,

(
Fn+2 Fn
Fn+1 Fn−1

)
, (17)

with the first matrix equal to (TSZ)n. The columns of this first matrix define
the initial left and right Farey fractions, while the other matrices insert the
mediant either on the left or right. Allowing F−1 = −1 puts both T and S into
the middle matrix, and Z in the first. Check that the second and third matrix
sum under Farey sums, giving yet another determinant 1 matrix.

Extraspecial 2-groups are important to the Monster, and there is an en-
tanglement representation [25] related to braids. To be specific, consider a 2n

dimensional state space V ⊗n for n qubits. Let i be the complex unit. The
quaternions i, j and k are represented by the matrices

i = i

(
0 1
1 0

)
, j =

(
0 1
−1 0

)
, k = i

(
1 0
0 −1

)
. (18)
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Let E = j ⊗ j, which satisfies E2 = −I. In V ⊗n we position E in two adjacent
positions and put the identity I in the other places. So for V ⊗3 we define

E1 = E ⊗ I, E2 = I ⊗ E. (19)

In general, the Ei satisfy EiEi+1 = −Ei+1Ei and for |i − j| > 1 we have
EiEj = EjEi. The 2-group relations follow from E1E2E1E2 = −I. Using
quaternions, (iE1)(jE2) = (jE2)(iE1).

For the dihedral group, define a generator

R =
1√
2
eπi/4

(
1 i
i 1

)
(20)

such that R4 = I. Then ii = R2 and −I represents a flip. The columns of R are
the eigenvectors of the Pauli matrix ij. This qubit basis is mutually unbiased
[27][28][29] with respect to the eigenvectors for the other Pauli matrices, which
give I along with the Hadamard matrix (56). Let ω = exp(2πi/3). For p a
prime, in dimension p there are 2p matrices given by p + 1 mutually unbiased
bases and their Fourier transforms. When p = 3 these are the five matrices

F3 =
1√
3

1 1 1
1 ω ω
1 ω ω

 , R3 =
1√
3

1 ω 1
1 1 ω
ω 1 1

 , R3 =
1√
3

1 1 ω
ω 1 1
1 ω 1

 ,

(21)

F (R3) = −i

ω 0 0
0 ω 0
0 0 −1

 , F (R3) = i

ω 0 0
0 ω 0
0 0 −1

 ,

along with the identity I3. The circulant R3 generates the cyclic group C12.
In section 7 we see how F3 and the underlying C3 form a basis for the 27
dimensional exceptional Jordan algebra.

4 The j-invariant and golden ratio

Before discussing the Leech lattice, we introduce the j-invariant for the modular
group Γ. A divisor function of k-th powers is denoted σk(n). Let z = a+ ib and

J(z) = 1728 · 4

27
· (z2 − z + 1)3

z2(z − 1)2
, (22)

so that J(i) = 1728. It’s famous Fourier expansion is

j(q) = J(q)− 744 = q−1 + 196884q + 21493760q2 + · · · (23)

Let’s imagine we are interested in real values of the j-invariant. Using the
numerator and denominator of (22), we define a 2×2 matrix using the coeffients
of

J(z) =
A+ iB

C + iD
. (24)
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Such a splitting of terms covers two cases of interest: (i) A, B, C, D all real, and
(ii) A, C rational and B, D pure imaginary irrational. The reality condition is

det

(
A B
C D

)
= 0, (25)

giving a degree 9 or 10 polynomial P in a and b. At a = 1 we obtain

P (b) = b3(b2 − 1)(b2 − ib+ 1)(b2 + ib+ 1), (26)

which defines the critical values

0,±1,±φ,±φ−1. (27)

For small values of b, we pick up the standard critical values

0,±1,∞, 1

2
, 2, eπi/3, e−πi/3 (28)

of the ribbon graph, as roots of

P (a) = a(a− 1)(a+ 1)(a− 2)(2a− 1)(a2 − a+ 1)2. (29)

Note the invariance under a 7→ 1− a, and

J(±φ) = J(±φ−1) = 2048 = 211. (30)

This golden ratio value appears in the combinatorics of the first shell of the
Leech lattice Λ, where σ11(2) = 2049 appears in the second term of the lattice
form

fΛ =

∞∑
i=0

65520

691
(σ11(i)− τ(i)) = 1 + 196560q2 + 16773120q3 + · · · (31)

which includes Ramanujan’s τ coefficients for the modular discriminant

∆(q) =

∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 − · · · (32)

The nicest Leech lattice integers appear with the Hecke operator T2, which acts
on the dimension 2 space of weight 12 forms for Γ, giving

T2(fΛ) = 2049 + 196560q + · · · , T2(∆) = 0− 24q + · · · (33)

For quadratic fields over Q, the only good integral values of j(z) are the
twelve critical values listed in (27) and (28), as follows. Let z = a

√
n + b for

a, b ∈ Q. When the numerator and denominator of j are rational, we look for a
numerator that is a multiple of the denominator, in the form

(64x2 − 32x+ 4)(x+ s) (34)
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with x = a2n. The constant term forces s = 27/4 and we find the solution
x = 5/4. Defining y = 4a2n and seeing that j is proportional to

(y + 3)3

(y − 1)2
, (35)

it must be that the prime factors of y − 1 are obtained in the factors of the
numerator, restricting us to p = 2. This forces the solution a = ±1/2, n = 5,
giving z = φ or φ−1. Consider now

f(a
√
n+ b) ≡ a2n+ b2 + (2ab− a)

√
n− b (36)

in the numerator. There must exist c ∈ Q such that f3 + 3cf + c = 0, but then
f2 is also rational, which is only the case for n a square. Siegel’s theorem [30]
states that, besides Q, the only (totally real) algebraic number field for which
every ordinal is a sum of at most three squares is Q(

√
5), which contains the

golden ratio integers.
Let C(n) be the Fourier coefficients of j(q) + 24, using (23). A recursion

formula [31] for C(n) is

C(n) = −
n−1∑
i=−1

C(i)τ(n+ 1− i) +
65520

691
(σ11(n+ 1)− τ(n+ 1)). (37)

In particular,
C(1) = 196884 = 242 − 252 + 196560 (38)

reminds us of the Monster. The C(n) coefficients exhibit Ramanujan type con-
gruences [32] such as

C(5ik) ≡ 0 mod 5i+1, C(7ik) ≡ 0 mod 7i, C(11k) ≡ 0 mod 11, (39)

where i is any positive ordinal. Here 5, 7, 11 are equal to n + 3 for n = 2, 4, 8,
the dimensions of the division algebras. We will see that these three primes
correspond to 6 · 8 · 12 = 242. When talking about j(q), we will denote the
coefficients by little c(n).

5 Cubes and the Leech lattice

We look at the Leech lattice Λ for the octonions O, for the icosians in H, and
for C. Later we will also look at a Z[α] structure where, once and for all, we
fix α = (1 +

√
−7)/2. Table 1 gives the octonion multiplication table following

[33], which is close to subset notation.
The Leech lattice is described in terms of integral octonions in O3 by Wilson

[34][35]. Start with the 8 dimensional root lattice L8 of e8, generated by a set
of 240 unit octonions. These are the 112 octonions of the form ±ei± ej for any
distinct units ei and ej of O, and the 128 octonions of the form (±1 ± i ± j ±
· · ·± l)/2 with an odd number of minus signs. We write L = L8. We could start
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Table 1: multiplication of units in O
i j k il jl kl l

i −1 k −j −l kl −jl il
j −1 i −kl −l il jl
k −1 jl −il −l kl
il −1 k −j −i
jl −1 i −j
kl −1 −k
l −1

instead with a right lattice R, or the lattice 2B = LR, and this will be discussed
in section 8. The Eisenstein form E4 is the norm function for L8, counting the
vectors of length 2n. Let s = (−1 + i + j + · · · + kl + l)/2. Then the Leech
lattice Λ [34] is the set of all triplets (u, v, w) ∈ O3 such that

1. u, v, w ∈ L

2. u+ v, v + w, w + u ∈ Ls

3. u+ v + w ∈ Ls.

Note that Ls ∩ Ls = 2L. For future reference, given a root X in L, Λ includes
the norm 4 vectors

(Xs,Xs, 0), (2X, 0, 0), (Xs,X,X). (40)

Consider the Leech vector

(1 + i)(i+ jl)s = −1− i− j − k − il − jl + kl − l (41)

of the form 2X, where X ∈ L. If we multiply X on the right by any of the 8
units we obtain other spinors in L, and hence 24 vectors of shape (2X, 0, 0) in
Λ. The number of short vectors in Λ is 196560 = 24 · 8190, where 819 = 3 · 273.
The number

273 = 1 + 16 + 162 (42)

accounts [34] for the sign choices for the charts of a projective plane OP2.
When Λ is embedded in the exceptional Jordan algebra J3(O) [36], triality

acts on the off diagonal elements of a X Y
X b Z
Y Z c

 , (43)

for a, b, c real. Triality is given by a triple of maps: left, right and two sided
multiplication (L,R,B) by elements of O. We look further at triality in section
8.
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Inside the 16 dimensional O2 lies an S15, which can be associated to a discrete
Hopf fibration S15 → S8 [22][37]. The number of short vectors also satisfies

196560 = 196608− 48, (44)

where 196608/2 = 3 · 215 = 24 · 212. That is, identifying opposite points in the
sphere of short vectors in Λ takes us to the projective OP2, which has three
charts based on O2. Each O2 contains a cube with 215 vertices, and we subtract
8 basis points for each copy of O so that the 2-forms are minimal [37].

Compare this to the standard 24 vectors in the real Λ, which are of the form
(3, 1, 1, · · · , 1), considered to be in C12, so that there are only 212 sign choices.
To remove 24 vectors, fix one positive sign on a 3 and make all remaining signs
negative.

Instead of the usual OP2 decomposition O2 + O + 1, we may wish to add
a regulator triangle of three points near infinity on the affine plane. This is
analogous to adding two points on a line in a triangle model for RP1, turning
the triangle into the famous pentagon [38][39]. Adding three points to a discrete
cohomological RP2 gets us the 14 vertex associahedron.

In the complex Λ [40] over Z[ω], for ω the primitive cubed root, it is useful to
use the vector (θ, θ, θ, θ, θ, θ, 0, 0, 0, 0, 0, 0), where θ = ω−ω. Its integral norm is
18, which is adjusted down to 4 by a factor of 2/9, a parameter that will often
crop up, most notably in the J3(C) Koide mass matrices for leptons.

As noted above, the quaternion Leech lattice [35][41] uses the 120 norm 1
icosians of the form

1

2
(±1± i± j ± k),

1

2
(±i± φ−1j ± φk), ±1, ±i, ±j, ±k, (45)

representing SL2(5). In analogy to the O3 construction, consider vectors (x, y, z)
in H3, such that x, y, z are icosians. Let h = (−

√
5 + i + j + k)/2 and h its

quaternion conjugate. The number h defines a left ideal in the icosians, as do
the four other numbers given by an odd number of minus signs on (i, j, k) in h,
which includes h. These five ideals define the 600 norm 2 icosians. Let Lh and
Lh denote the two ideals, given by left multiplication in the full icosian ring.
Then Λ is the lattice defined by

1. x ≡ y ≡ z mod Lh

2. x+ y + z ≡ 0 mod Lh.

Conway [42] looks at Lorentzian lattices in Rd,1 for d ≡ 1 mod 8. In par-
ticular, at d = 25 there exists an infinite group of automorphisms for the Leech
lattice, including the translations, generated by the reflections of fundamental
roots, where a root u ∈ Λ satisfies u · u = 2 and u · w = −1 for the norm zero
26-vector

w = (0, 1, 2, · · · , 23, 24, 70). (46)

In today’s Atlas notation, the finite group Aut(Λ) is called 2 · Co1, where the
simple Conway group Co1 has order 25 · 27 · 196560 · 28 · |M24|, for M24 the
Mathieu group.
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Recall the braid group rotation (16). We want to use it to understand how
the O3 structure on Λ relates to the H3(φ) icosian structure. Similarly, in 12
dimensions, we will relate the Z[ω] structure to the Z[α] one, but this requires
a peek at the 72 dimensional lattice.

With the golden ratio and octonions appearing everywhere, we realise that 5
point bases are just as important as 3 point ones. After all, SU(3) for color uses
a 3-space and a 5-space. The permutohedron S6 has 720 points in dimension 5.
Taking the Cartesian product of a 5-space with C, H and O, we get the triplet
of dimensions

5 + 2 = 7, 5 + 4 = 9, 5 + 8 = 13, (47)

so that a tensor product of quantum components has dimension 7 · 9 · 13 =
819 = 3 · 273. This 819 counts the so called integral Jordan roots [43] in J3(O),
which define a simplex for OP2 [44] distinct from the optimal simplices based on
mutually unbiased bases. The idea is to think of the crux pitch in the Monster
in terms of such canonical discrete spheres, leaving most of the group elements
to the simple MUBs.

6 Constructing a Jordan algebra

For RPn the important polytopes are the associahedra [38][45], which are nat-
urally embedded in an n-dit cube of dimension n inside an (n + 1)-dit space
[46] as follows. Look at the diagonal simplex defined by paths of length n on
a cubic lattice. Parking function words, which are noncommutative paths such
that the order of the i-th letter is greater than or equal to i, fit onto a subset
of vertices in the triangular simplex, which defines commutative monomials in
path letters.

In particular, the pentagon sits inside the 10 point tetractys simplex for 27
paths on a 64 point 3-cube, while the associator edge carries 3 paths on the
diagonal of a 9 point square. The target vertex on an associahedron carries a
copy of Sn, with S4 appearing on the 14 vertex polytope.

Consider the 27 length 3 paths in the letters X, Y and Z. Our trit letters
might represent powers of the three matrices

U =

1 0 0
0 ω 0
0 0 ω

 , V =

0 1 0
0 0 1
1 0 0

 , W = ω

1 0 0
0 1 0
0 0 1

 , (48)

in a product UXV YWZ , where ω is the primitive cubed root of unity. The
spatial matrix V generates C3, while the momentum operator is obtained as its
quantum Fourier transform. These 27 matrices define a discrete phase space,
and are used to define the exceptional Jordan algebra J3(O) using F3 × F3

3, as
shown in [47].

These four trits arise in the following simplex. To properly separate the
27 components of the Jordan algebra, the tetractys needs to be replaced by a
simplex carrying 81 paths of length 4. These paths live in a cube with 53 = 125
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vertices (which counts parking functions). A parity 3-cube for a basis of O
appears when one selects one out of four letters. For instance, choosing ZXXX
out of four possible permutations marks the first letter for deletion, leaving the
word XXX, so that a parity cube is now labelled

ZXXX, {XXXZ,XXZX,XZXX}, {ZXZZ,ZZXZ,ZZZX}, XZZZ. (49)

On this 81 path simplex, the unused corners XXXX, Y Y Y Y and ZZZZ are
free to define the diagonal of a 3×3 matrix, so that the boundary of the simplex
(without edge centre points) gives the 27 dimensions of J3(O).

Observe that the central 54 paths, which are not included in our 27, reduce
under the letter deletion operation either to existing paths on the parity cubes
or to the six XY Z paths of S3. In this way the spinor splitting 27 = 16 + 11,
which ignores the shadow 54, reduces on the tetractys tile to 12 + 9, so that
the tetractys centre S3 is sourced from the shadow paths. Selecting 6 out of 27
tetractys paths is one way to obtain that factor of 2/9, which occurs as a lepton
Koide phase for rest mass triplets [11][7] in CS3. Below we will look at a 72
dimensional lattice, which uses three copies of the Leech lattice. If the leptons
only see one copy, then this shadow 2/9 is related to the 2/9 that appears in
the normalisation of the complex lattice, as noted in section 6.

An example of a 3-cube inside S4 on the paths ZZZY and Y Y Y Z is

Y Y Y : 1324 Y Y Z : 2314, 3142, 1423 (50)

ZZY : 2413, 4132, 3241 ZZZ : 4231.

Thus 9 copies of S4 fill 216 roots on the magic star for e8, leaving 18 diagonal
entries plus 6 points for a2. On this tenth S4, permutations are spread around
the triangles of the star. For example, relative to an outer a2 hexagon that fixes
a 1 in the first coordinate, one vertex on the star carries a 432 subcycle, for the
other three possible positions of 1, giving the J3(O) diagonal (4132, 4312, 4321).
A triple of Jordan algebras is then the 1-circulant set {432, 243, 324}, which is
the usual basis for Koide mass matrices.

In the magic a2 plane [12][13], a 27 dimensional J3(O) is assigned to each
point on the star, as a piece of the 240 roots of e8. This plane is tiled by
tetractys simplices, each carrying three pentagons, and a discrete blowup in
the plane replaces a point on the star with a simplex. In the 64 vertex cube,
which has a total of 1680 paths from source to target, there are actually two
diagonals that hold a tetractys, their triangle boundaries pointing in opposite
directions, so that the projection of these two simplices along the diagonal gives
the magic star. Combining associahedra and permutohedra, we obtain the 120
vertex permutoassociahedron [23] in dimension 3, counting half the roots in e8.
In 4 dimensions, a permutoassociahedron has 1680 = 5! · 14 vertices.

7 Triality and integral forms

”Really it is an instance of a much more general construction which can be used
for almost all simple groups; if, as usually happens, there is an involution with
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three conjugates whose product is the identity, then in most instances, there is
a triality automorphism ...” R. A. Wilson (2009)

In section 6 we defined the Leech lattice Λ using one of the lattices L, R
and B. To understand the distinction between these lattices, we require the so
called integral octonions I = I(O) [48]. Let

q = a0 + a1i+ a2j + a3k + a4il + a5jl + a6kl + a7l (51)

be in O, with norm N(a) = aa. A set closed under addition and multiplication,
with a 1, is integral if (i) 2a0 and N(a) are in Z, (ii) it is not contained in a
larger such set. Thus the Gaussian Z[i] are integral in C, and for H it is the 24
units of (6). In O, an element e = q1 +q2l is defined in terms of two quaternions
q1 and q2 using the unit l of Table 1. Now let t = (i+ j+ k+ l)/2. Coxeter [48]
then defines I in terms of the 8 elements

1, i, j, k, t, it, jt, kt, (52)

which close under multiplication. The 240 units include the 16 basis units,
with a sign, 112 numbers of the form (±1 ± j ± l ± jl)/2 and 112 of the form
(±j ± k ± jl ± kl)/2 or (±i± j ± k ± l)/2.

Given I, the lattices L, R and 2B are defined by [35]

L = (1 + l)I, R = I(1 + l), 2B = (1 + l)I(1 + l). (53)

Here we see clearly the actions on each lattice, which may be embedded in the
X, Y and Z components of J3(O). These are related to Peirce decompositions
[49] for a noncommutative ring, splitting idempotents. The choice of one special
octonion (in this case l) is used [11][50][51] to separate leptons from quarks in
the C⊗O ideal algebra for Standard Model particles.

In section 6 we saw the number 819 as a factor of 196560. It appears now
in the integral form of J3(O). Observe that the primes 7 = 4 + 2 + 1 and
13 = 9+3+1 count the points in projective planes for F2 and F3. The so called
monomial subgroup G [35] of order 3 · 212 is generated by the mapsx A B

A y C
B C z

 7→
 x eA Be
eA y eCe
Be eCe z

 , (54)

and the permutations (x, y, z;A,B,C) 7→ (y, z, x;B,C,A) and (x, z, y;A,C,B),
for any unit e. Now let s = (1 + i + j + · · · + l)/2 be the vector above. The
group G acts on the elements1 0 0

0 0 0
0 0 0

 ,
1

2

0 1 0
1 1 0
0 0 1

 ,
1

4

2 1 s
1 1 s
s s 1

 , (55)

to give 819 = 768 + 48 + 3 elements. The twisted finite simple group 3D4(2) is
generated by Jordan reflections in these 819 roots, and has order 819 · 63 · 212.
The full automorphism group is the semidirect product 3D4(2) : C3 [35].
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In constructing F4(2) and other finite groups, we often encounter the two
dimensional discrete Fourier transform

F2 ≡
1√
2

(
1 1
1 −1

)
. (56)

The matrix F2⊗I2 maps short roots to long roots. TheD4 triality automorphism
T is essentially given by F2 ⊗ F2 in the form

T ≡ −1

2


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (57)

We see that T 3 = 1, as in the lattice triality L → R → B. The columns of
T are the eigenvectors of the γ5 matrix in the Dirac representation, making T
one of the five mutually unbiased bases in dimension 4. Two copies of T are
used in conjunction with φ to project the L8 lattice down to a four dimensional
quasi-lattice [52][53], in the e8 approaches to gravity that were pioneered by
Tony Smith [54].

There are 7 choices of domain for the integral octonions, and another 7 if
we include a coassociative set. With 14 copies of e8, there are 10080 = 14 · 720
roots in a triple O3 basis for the Leech lattice. In the next few sections we will
see that 10080 is also interesting as the number whose divisors characterise the
primes dividing |M|.

Codes and simplices associated to OP2 are studied in [44], including a design
of 819 points. For FPn, over any division algebra, many of these codes come from
mutually unbiased bases [27][28][29]. The 819 points form a distinct structure,

with 819 =
∑13
i=1 i

2 suggesting a Lorentzian vector (0, 1, 2, · · · , 13, 9, 30) in 15+1
dimensions.

Since its inception, the Monster has been studied in terms of the Parker loop
[55]. We must discuss its axioms in the context of codes [62][63], because beyond
the Golay code is a code on 40 elements, which we will need in the construction
of the 72-dimensional lattice.

8 A 72 dimensional lattice

Monster moonshine begins with a vertex operator algebra based on Λ, and its
trivalent vertices suggest looking at three copies of Λ in higher dimensional
lattices. In the magic star [12][13], one copy of the Leech lattice in J3(O)
extends to three copies around a triangle in the star. Now there exists an even
unimodular lattice Φ in dimension 72 [56] whose minimal vectors have norm 8,
making it an extremal lattice. It is constructed using three copies of Λ, along
with a 6 dimensional lattice Θ known as the Barnes lattice.

Let α = (1+
√
−7)/2. Θ is a subset of vectors v = (x, y, z) with components
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in Z[α]. Define a Hermitian form on Θ by

f : Θ×Θ→ Z[α], (v, w) 7→ 1

2

3∑
i=1

viwi. (58)

Θ is usually the span of the vectors (1, 1, α), (0, α, α) and (0, 0, 2). Its automor-
phism group is C2 ·PSL2(7), of order 336 = 24 · 14. We find a matrix A and its
conjugate B = I −A, so that (α, α) maps to (A,B), defining the three rows of

Q =

I I A
0 B B
0 0 2I

 . (59)

The matrix A is 24-dimensional over Z and should satisfy

AGAt = 2G, GAtG−1 = B, (60)

where G is a Gram matrix for Λ. There are 9 solutions for A modulo the
automorphisms of Λ [56], but one natural choice for an extremal Φ. Now Φ is
the sublattice of (Λ,Λ,Λ) defined by Q, so that over Z[α] it is the lattice Θ⊗Λ.
Letting Tr denote the trace on Z[α]/Z, a Z[α] structure for Λ is 1

7Tr ·f . Then Λ
contributes an SL2(25) of order 15600 to the automorphisms in 36 dimensions.
The number of norm 8 vectors in Φ equals

31635 · 196560 = 2025 · 9139 · |C2 · PSL2(7)|. (61)

Note that there is a prime factor of 37 here, which does not divide the order of M,
but the mod 37 Fibonacci numbers have a length 19 cycle. The automorphisms
of Φ include the semidirect product PSL2(7) ·SL2(25) : C2, of order 6400 · 819,
which is four times 1209600 + 100800, where 1209600 is the order of 2 · J2, the
symmetry of the icosian Leech lattice.

Observe that |SL2(25)|/(9 ·240) equals 7+2/9, where we take 9 copies of the
e8 roots in Φ. Recall that 1080 = 9 · 120 is the order of the triple cover 3 · A6.
Now 240 = 1080 · (2/9) reminds us of the nine copies of 24 on octonion points
in the magic star. The remaining 1080 · 7 will appear in section 10, suggesting
a strong link between Φ and the Monster.

The matrix (59) suggests the 72× 72 circulant Koide matrix

K =

 I A B
B I A
A B I

 , (62)

where (A, I,B) is a projective splitting of idempotents with BA = 2I, suggesting
a natural rescaling of Θ by 1/

√
2. Now consider a map Z→ Z mod 3 taking

α2 − α+ 2 = 0 → φ2 − φ− 1 = 0, (63)

where φ is the golden ratio. This says that mod 3 arithmetic is closely related
to the appearance of φ in lattice coordinates and mass phenomenology.
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The Barne’s matrix (59) also gives three out of four orbits for minimal vectors
in the icosian Λ. Recall that h = (−

√
5 + i+ j + k)/2 generates one of the five

ideals of the 600-cell. Three orbits are characterised by the vectors (2, 0, 0),
(0, h, h) and (h, 1, 1), which looks exactly like the map α 7→ h, but we need to
look at something different first. These vectors generate Λ when thought of as
a (left) module over the icosians [35].

The fourth orbit comes from (1, φu,−φ−1u), where u = (−1 + i+ j + k)/2,
so that the map u 7→ ω is analagous to s 7→ α. Indeed, we have u2 = u and
u2 + u + 1 = 0. Then h = u − φ−1, so the natural reduction is h 7→ ω − φ−1,
which satisfies a quadratic. Note that ω, φ and their conjugates solve all four
quadratics x2 ± x± 1 = 0. This summarises the Z[α], Z[ω] and Z[φ] structures
on Λ in dimension 12.

Now under α 7→ h for mod 3 arithmetic, we would require ω 7→ 0, which is
conveniently done with J(ω) = 0 for J(z) = j(z) + 744.

Let us recall the automorphisms for Λ. Ignoring the S3 permutations, Wil-
son’s O3 version of the automorphism group 2 · Co1 for Λ is generated by the
3× 3 matrices [36]

−1

2

0 α α
α 1 −1
α −1 1

 ,

1 0 0
0 i 0
0 0 i

 ,
1√
2

(1− i)I3,
1√
2

(1 + e)I3, (64)

where I3 is the identity, e is one of the six units other than 1 and i, and α
appears above in the structure of Φ. Recall A and B in (59). The vector
(0, B,B) maps to (0, α, α) in the first row of the first matrix. But (A, 1, 1) is
replaced by (A, 1,−1), which is possible in Θ with (A, 1, 1)− (0, 0, 2). Thus the
first matrix defines Θ for Φ.

Most of the Monster is obtained by adjoining the Conway group to the
extraspecial group 21+24

+ , defined using quantum information in the next section.
Our musings about modular arithmetic are motivated by the prime powers pr

of quantum Hilbert spaces, with pr acting as a coarse graining on a cubic lattice
with a discrete dimension labelled by sets of p points. Going from the (root)
lattices to the exponentiated group, whatever analog of a group we might use,
is a process of quantization, because a root is an element of a set while the same
root later contributes a dimension. We saw how the 8 points of a 3-cube denote
the 8 dimensions of O. With one, two or three qutrits we are in dimensions
3, 9, 27, which combine with three qubits to give dimensions 24, 72, 216.

How many qudits do we need for the fundamental degrees of freedom of
gravity? In dimension 72, we can put 9 copies of Z8/2 into a 3 × 3 matrix to
recover complex number entries using the symplectic map. The mod 27 cycle
of Fibonacci numbers has length 72, which includes the length 24 cycles that
start at mod 6. These lengths are expected to govern dimensions of modules in
quantum gravity.

Beyond 72 is its triple 216 = 8 · 81, which is where we would construct
J3(O ⊗ O). This is just sufficient to account for all copies of O in the magic

19



plane. Then we have the beautiful fact that

1

24
− 1

27
=

1

216
(65)

so that 216 = 9 · 24 = 8 · 27, and 1728 = 72 · 24 = 64 · 27, where the 64 covers
three Dirac spinors and the 27 adds three qutrits. Note that 1728 covers 27
copies of O⊗O on Leech lattice points in the magic plane.

Finally we ask: does three copies of Φ get us close to the group e8, whose
roots define 240 = 216 + 24 dimensions. The idea is that the third tripling
should somehow take us back to where we started. Recall that 24 roots are
selected in the magic plane outside of the O components. Thus ten copies of Λ
reduce to a vector (Φ,Φ,Φ,Λ) in dimension 240, and the Λ directions give the
special 24 roots. The usual coordinates for the a2 hexagon in three dimensions
are the permutations of XY Z, which were included as ribbon charges in the
24 qutrit words for the Z boson [11], along with the remaining 18 diagonal
elements. Now we see that the 27 dimensions of bosonic M theory have little to
do with classical spaces.

9 Prime triples and code loops

Qubit state spaces label vertices on a parity cube, while qutrits require cubes
with midpoints on each edge, using up the coordinates {0,±1}. Coarse graining
a three qubit cube requires only 3 = 22−1 points along an edge, to create eight
little 3-cubes. Thus primes of the form 2n−1 are the only coarse graining primes.
3 is the only prime squeezed between two prime powers. Each point on a prime
power edge stands for a digit {0, 1, · · · , p − 1} in Fp. Digits are quantised by
circulant mutually unbiased bases [27][28][29], leaving out the quantum Fourier
transform. Putting a power r on every divisor n in a finite cubic lattice defines
a divisor function σr(n) on the target of the cubic block, so that an Eisenstein
series is naturally a discrete analog of a monomial function xr.

Three dimensions are physical. It makes sense for us to choose primes as
labels for each direction in discrete space, so that three dimensions denote a
prime triple (p1, p2, p3). When we look at the orders of finite simple groups, we
immediately think of triplets of their primes. Consider the primes dividing the
order of M, the Monster. A triple (p1, p2, p3) is mapped to its polygon triple
(p1 + 1, p2 + 2, p3 + 3), because factorization for N ∈ N occurs in chordings
of a polygon with N + 1 sides, and there are p + 1 mutually unbiased bases
in dimension p, including the p × p Fourier transform. Starting from the big
numbers in

|M| = 246 · 320 · 59 · 76 · 112 · 132 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71, (66)

we observe that
72 · 60 · 48 = 196560 + 10800, (67)

42 · 32 · 30 = 4 · 10080,
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24 · 20 · 18 = 8 · 1080,

60 · 48 · 42 = 120960 = 196560− 7 · 10800,

48 · 42 · 32 = 64512 = 216 − 210,

60 · 30 · 24 = 4 · 10800,

where 10080 + 720 = 10800 occurs in the squares of the modular discriminant
and related Eisenstein series. Observe that

72 · 60 · 48 = (273 + 15) · 720 = 196560 + 8 · 720 + 7!, (68)

where 7! is the number of vertices on S7, and 8 + 7 is the splitting 128 + 112 for
L8. In the last section we saw that 7 · 1080 appears in the structure of the 72
dimensional lattice, and 8 · 10800 = 5 · 17280, where 17280 counts holes in the
L8 lattice. We have

72 · 60 · 48 = 3 · 216 + 3 · 14 · 28, (69)

where the second term is 10477 + 275 and 10477 is prime. Thinking of OP2,
196883 also equals 3 · 216 + 275, where 275 is the dimension of the 256 spinor
T -algebra at level 2, of shape 1 16 128

16 1 128
128 128 1

 . (70)

Higher level algebras should be studied for the lattice Φ, and we are also in-
terested in an algebra of dimension 75, with dimension 24 in all off-diagonal
spots.

The prime product 71 · 59 · 47 = 196883 is the dimension of the Griess
module [57][35], and 196884 = 300+98280+98304 the dimension of the algebra,
traditionally described as follows. Given two symmetric 24×24 matrices X and
Y , the Griess product is X ∗ Y = 2(XY + Y X), in a 300 dimensional space of
matrices. In Λ, there are 98280 = 196560/2 positive vectors v which we can
use as basis vectors in dimension 98280. The remaining 98304 dimensions have
basis vectors f ⊗ b for f a fermion spinor in dimension 4096 and b a boson in
dimension 24, as occurs in the level 3 T -algebra [13] of shape 1 24 2048

24 1 2048
2048 2048 1

 . (71)

The action of X on b is

X ∗ (f ⊗ b) = f ⊗ bX +
1

8
(TrX)(f ⊗ b). (72)

The Mathieu group M24 in M acts on 2048 elements of the Golay code, and
on

4096 = 1 + 24 + 276 + 2024 + 1771, (73)
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where 1771 = 7 · 11 · 23 has polytope prime dimension 482. The dimension 276
carries one of the rank 3 permutation representations for M24, and 276 = 4·3·23,
with polytope dimension 480. The 2024 is required for particle mixing matrices
[58], which have to be magic, requiring a space of dimension 2024 = 2048− 24.
And 2024 = 8 · 11 · 23. The Golay octads give 759 = 3 · 11 · 23. Observe that
these Golay prime power triples only use primes of the form d− 1 for d|24, and
24 is the largest integer for which all the d − 1 are prime. These divisors label
Niemeier lattices in umbral moonshine [59]. In the cocode, the number of zeroes
in a word belongs to the set {1 · 23, 2 · 11, 3 · 7, 4 · 5}.

The primes 3, 7, 11 and 23 all satisfy −p ≡ 1 mod 4, so that (1 +
√
−p)/2

gives an integral ring. The norm [60] of a+bφ in Q(
√

5) is a2−b2+ab, indicating
that the trace of φ equals 1 and the norm is −1, and we have 5 ≡ 1 mod 4. In the
integers for Q(

√
−p), the trace is 1 whenever −p ≡ 1 mod 4, allowing the 1/2.

This extends to the usual trace and norm definitions for noncommutative and
nonassociative algebras, where a trace of 1 is a projector condition for quantum
states. In other words, quantum measurements naturally select integers from a
quadratic field, which is real or imaginary depending on p mod 4, starting with
Q(
√
−3) and Q(

√
5), drawing hexagons and pentagons for our axioms. Since

such primes often denote the diagonal length on a cube, we include
√
−71 for Φ.

There is no unit trace for the Gaussian integers, and for negative discriminants
Q(
√
−p) is contained in Q(ωp, i) for ωp the p-th root. In our ribbon diagrams,

this distinguishes a B2 twist from ribbon braids in Bn.
Adding up the number of words in the code and cocode, omitting the zero

vectors, we obtain
2 · 4095 = 8190, (74)

where 8190 · 24 = 196560 in Λ. Congruence classes of norm 8 vectors in Λ come
in sets of 48, called crosses, such that the stabiliser of a cross in 2 ·Co1 = Aut(Λ)
is the semidirect product 212 : M24. There are 48 · 453 · 7 · 13 norm 8 vectors.

We are interested in n dimensional codes in F2n, known as [2n, n] codes. The
Golay code over F2 is a [24, 12] code and easily defined using the hexacode over
F4, which has a standard generator matrix given by the 3× 3 Fourier transform
F3 so that F4 is given by {0, 1, ω, ω}.

Observe the interesting ring homomorphisms that enter here. Let R = Z/3Z.
If we start with Z[α], taking mod 3 introduces R[φ], the 9 element ring using
the values (27). In R[φ] with φ indeterminate, we recover formal Lucas numbers
Ln = φn + (−1/φ)n, but the Fibonacci numbers satisfy

5Fn = 2Ln+1 − Ln, (75)

requiring a fractional ideal in Z[φ]. A projective representation of A5 over R[φ]
is given by the Hecke group generators [61]

S =

(
0 −1
1 0

)
, H =

(
0 −1
1 φ

)
, (76)

with H5 = I and (SH)3 = I mod 3. In the full algebra, a principal ideal is
generated by 5− 2φ and its quotient gives PSL2(11).
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Recall that a binary codeword is a subset of a given set, and intersection of
sets is a product in the Boolean ring. Griess suggested [62] defining Moufang
loops in terms of doubly even codes, thinking of the Parker loop for M, which
doubles the Golay code using signs. The operations on a code loop are [63] (i)
power P (u) = 1

4 |u| mod 2, (ii) commutator C(u, v) = 1
2 |u ∩ v| mod 2 and (iii)

associator A(u, v, w) = |u ∩ v ∩ w| mod 2, for u, v, w in a code C. In the Parker
loop, this gives [u, v] = (−1)|u∩v|/2 and so on. The Parker loop carries a form
of triality. For u, v, w in the loop (rather than the code) and a any even subset
of the 24 element set, define the three flip maps [55]

xa(u, v, w) = ((−1)|u∩a|u−1, (−1)|w∩a|w−1, (−1)v∩av−1), (77)

ya(u, v, w) = ((−1)|w∩a|w−1, (−1)|v∩a|v−1, (−1)|u∩a|u−1),

za(u, v, w) = ((−1)|v∩a|v−1, (−1)|u∩a|u−1, (−1)|w∩a|w−1).

These satisfy xaya = yaza = zaxa, which send (u, v, w) to (v, w, u). The triality
maps are

Xa(u, v, w) = (aua, av, wa), Ya(u, v, w) = (ua, ava, aw), (78)

Za(u, v, w) = (au, va, awa).

Conway used these maps, along with M24, to generate the Griess maximal
subgroup of M.

The Monster requires the extraspecial 2-group 21+24
+ , a cover of which is gen-

erated by the Xa and xa. The quantum extraspecial groups use the generators
of (19). Here we have E1, E2, · · ·E11 on V ⊗12 and also the dihedral generator
(20). Let

R2 = −I ⊗R⊗R2 = I ⊗R⊗
(

0 1
1 0

)
(79)

and R1 = −R2 ⊗R⊗ I. These satisy the tetrahedron equation

D ≡ R1R2R1R2 = R2R1R2R1 (80)

and D4 = I, which is fitting for the symmetry of a square. This shows that
moonshine goes beyond ordinary braids to the composition of higher dimensional
arrows and knotted surfaces.

In the next section we see that we should go beyond the Golay code to a
subspace of 240, in order to construct Φ. Encouraged by the relation between
the numbers d−1 for d|24 in the primes of M24 moonshine, we observe that the
primes in |M| are exactly of the form d− 1 for d ≤ 72 and d|10080.

10 Spinors for a Monster

It seems clear that an information theoretic approach to gravity brings clarity
to the physical meaning of CFSG and moonshine coincidences. In quantum
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gravity, the observer measures, and the observer’s frame of mind depends on
cosmological parameters. BTZ black holes are directly relevant to gravity in a
holographic approach, where we restrict our attention to true two dimensional
CFTs. The j-invariant appears in Witten’s Monster CFT [6] at c = 24.

Combining a Dirac 4-dit and qutrit in three dimensions gives a 1728 vertex
cube, and the normalisation for the j-invariant. The number 1728 also counts
the 27 copies of O⊗O that might be assigned to the 27 off-diagonal entries on
3× 3 matrices on the magic star [13].

Let us write the first few terms of (31) as

196560 = 240 · 819 (81)

16773120 = 5 · 819 · 212

398034000 = 25 · 81 · 240 · 819

4629381120 = 5 · 276 · 819 · 212

34417656000 = 25 · 7004 · 240 · 819

187489935360 = 5 · 11178 · 819 · 212

814879774800 = 5 · 829141 · 240 · 819

2975551488000 = 5 · 177400 · 819 · 212,

where 276, 7004, 11178, 829141 and 177400 all have three factors. The first
coefficient of the j-invariant (23) is

c(1) = 196884 = 196560 + 324 = 3 · 216 + 276, (82)

recalling the 15-spheres for OP2. Frenkel’s study of the Kac-Moody algebra
associated to the Lorentzian Leech lattice [64] gives a bound of 324 on multi-
plicities of roots of norm −2, where 324 is p24(2), the number of partitions in
24 colors of 2. It includes 276 =

(
24
2

)
when the colors are distinct.

The second coefficient of j is

c(2) = 21493760 = 5 · 819 · 211 + 25 · 219, (83)

noting the appearance of the norm 6 number 16773120/2 from fΛ, along with
the 219 spinor in the T -algebra of shape 1 40 219

40 1 219

219 219 1

 (84)

at level 5, which is two levels beyond the Leech lattice. The dimension of this
algebra is 11 · 13 · 7333, introducing new primes. The 219 will be associated to
a code on a 40 element set, just as the Golay code uses 24 elements.

At level 6 the spinor dimension becomes 232 = 655362, and for the 72 di-
mensional lattice Φ we go up to level 9, with 272 = (224)3. The number 224

counts the elements in the power set on a 24 element set. Now observe that

224 − 16773120 = 212 = 4096, (85)
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recovering the spinor dimension at level 3. Then

(224)2 = (224 + 213) · 40952 + 4096 · (3 · 4095 + 1), (86)

making heavy use of the 4095 = 196560/48 = 5 · 819, which counted words in
the Golay code. Taking three copies of Λ for Φ, we see that

3 · 196560 = 314 − 32 − 222 + 210 (87)

maintains a power difference of 12 on threes and twos. Differences in powers of
2 of the form

Dn(δ) = 2n+δ − 2n (88)

obviously have a fixed set of prime factors. For example, at δ = 20 we have the
primes 2, 3, 5, 11, 31, 41. All primes for δ ∈ {4, 12, 20} (associated to levels 1, 3
and 5) divide |M|. The T -algebra bosonic components at these levels sum to

72 = 8 + 24 + 40, (89)

justifying (83). The 24 element Golay set generalises to self-dual codes on sets
of size 8(2n + 1) [1]. Dimension 8 has the Hamming code, dimension 24 the
Golay code, and dimension 40 a new code. Each such code defines an even,
unimodular lattice.

We are also interested in ternary codes, such as those used for e8. Under
the symplectic Penrose map (3) into C, nine copies of L8 make SL3(C). Four
copies make SL2(C). The primes 2 and 3 underlie a great deal indeed, just as
Francis Brown discovered with multiple zeta values, which extend the integral
arguments of the Riemann zeta function to noncommutative partitions. Taking
binary and ternary rooted trees restricts the valency of nodes to 4, as in φ4

quantum field theory.
In the next section we show that the arguments 2 and 3 correspond to

segments of a Fibonacci chain. In the full quantum theory, we focus on matrix
algebras in dimensions 2 and 3, or higher. The dimensions Fn give Fibonacci
braid group representations for Bn, and the group SU(Fn − 1) [65], with F4 =
3 giving SU(3). Quark structure uses this B4, while electric charge is fully
accounted for by B3.

11 A vertex operator algebra

Binary rooted planar trees label the vertices of the associahedron [38][39], and
trees with an ordering on nodes label permutations in Sn, where n + 1 is the
number of leaves on the binary tree. In a VOA [1], trees become string diagrams,
or Riemann spheres with punctures. The real points of the moduli space of Rie-
mann spheres are tiled by the associahedra. What about the complex structure?
An affine algebra has basis elements like zn ⊗ Ei, for zn in the Laurent series
on the loop and Ei a typical Lie algebra generator. But like in everything else,
we want to work with higher dimensional categories and their polytopes, rather
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than circles per se. We cannot begin with the Virasoro algebra unless we work
with the full division algebras.

At the simplest level a VOA combines a kind of universal algebra with a
Laurent series in a circle parameter, but for us the natural complex parameter
is a deformation parameter for the braiding. Just as there were two angles for
Fibonacci braids and quaternions, we see two nice angles in dimension 8 [22].
Given a dual Coxeter number h∨, an appropriate deformation parameter for the
representation category is exp(πi/(h∨ + 1)).

But we want to focus on 5-th roots of unity. The ribbon category of the
Fibonacci anyon [66][67] is universal [68] for quantum computation [65], and
the fusion map for two anyons gives an associator arrow on the pentagon.

Let F (abcd)yx be a fusion coefficient for an internal edge y on the input tree
and internal edge x in the set of allowed trees, with d labelling the root of a
three leaved tree. Our anyon objects are 1 and τ , such that τ ◦ τ = 1 + τ .
Following [66], the interesting coefficients satisfy the pentagon relation

F (ττcτ)daF (aτττ)cb = F (τττd)c1F (τ1ττ)dbF (τττb)1
a (90)

+F (ττττ)cτF (ττττ)dbF (τττb)τa.

When (abcd) contains a 1, the coefficients are 0 or 1. At (abcd) = (τ11τ),
we obtain F (ττττ)1

1 = (F (ττττ)1
τ )2. From (abcd) = (1τ1τ) it follows that

F (ττττ)1
1 = −F (ττττ)1

1. Let F (ττττ)1
1 = −A and F (ττττ)1

τ = i
√
A. Then

(abcd) = (ττττ) gives A2 − A − 1 = 0 with solution A = −1/φ. In summary,
the all-τ coefficients are (

F 1
1 F τ1
F 1
τ F ττ

)
=

(
1
φ

i√
φ

i√
φ

−1
φ

)
. (91)

These appear in the B3 representation

σ1 =

(
e−4πi/5 0

0 e3πi/5

)
, σ2 =

(
e4πi/5

φ
e−3πi/5
√
φ

e−3πi/5
√
φ

−1
φ

)
, (92)

with phases from the hexagon rule.
Consider the number of fusion diagrams on d leaves when all inputs are set to

τ and the bracketing is nested to the left. That is, separate out the associator
trees from lists of possible labels on internal edges. This effectively labels a
corolla with d leaves with the word in 1 and τ attached to the tree. Or, instead
of the corolla, we could draw a path of d edges to match the number of letters
in a word, making the word into a kind of Fibonacci sequence.

We write words in 1 and τ by following the internal edges from a leaf down
to the root. Since all words start with τ , we often omit this letter, leaving words
of length d − 1. For three leaves the words are τ1, 1τ and ττ , counted by the
Fibonacci number Fd+1. Such words mark the vertices of a parity cube whose
dimension equals the number of τ letters, so that a + marks the placement of a
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1 in the word. The number Fd+1 is graded across cubes of different dimension,

Fd+1 =

f(d/2)∑
n=0

(
d− n
n

)
, (93)

where f(i) is the integer part.
Let us now recall the connection [69][70] between knots and multiple zeta

values [71]. From our perspective, the appearance of the golden ratio limit in
a fusion map is reminiscent of the Drinfeld associator, with its infinite series of
multiple zeta values. In the iterated integral form, a zeta argument is a word in
two letters such that one letter only occurs as a singlet, much like the 1 in our
fusion words. A multiple zeta value (MZV) is the unsigned case of the signed
Euler sum

ζ(n1, n2, n3, · · · , nl;σ1, · · · , σl) =
∑

ki>ki+1>0

σk11 σk22 · · ·σ
kl
l

kn1
1 kn2

2 · · · k
nl
l

(94)

of depth l and weight n =
∑
i ni, with σi ∈ ±1. Recall that the Mobius function

µ(n) on N is zero on non square free n and (−1)r for r prime factors. The
square free n ∈ N are the targets of parity cubes. An MZV is irreducible if not
expressed as a Q linear combination of other MZVs of the same weight. The
number En of irreducible signed Euler sums of weight n is [69][70]

En =
1

n

∑
D|n

µ(n/D)LD =
1

n

∑
D|n

µ(n/D)(FD−1 + FD−3), (95)

where LD is the Lucas number. The number Mn of irreducible MZVs of weight
n is the number of knots with n positive crossings (and no negative crossings).
It’s value replaces LD by PD, the Perrin number, satisfying the recursion

PD = PD−2 + PD−3 (96)

for P1 = 0, P1 = 2 and P3 = 3.
An argument (n1, · · · , nl) of an MZV, such that only nl may equal 1, is

expressed as a word in two letters A and B, such that all words start with
A and end with B, and B only occurs as a singleton. First reduce the argu-
ment to the ordinals (n1 − 1, n2 − 1, · · · , nl − 1). The corresponding word is
An1−1BAn2−1B · · ·Anl−1B. Each copy of A is assigned the form dz/z and each
B the form dz/(1 − z) in the iterated integral expression for the MZV. For
example

ζ(3, 1) =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0,z4>···>z1

dz1

z1

dz2

z2

dz3

1− z3

dz4

1− z4
. (97)

A Fibonacci word belongs to the sequence B, A, AB, ABA, · · · , where
each word is the concatenation of the previous two. A general Fibonacci chain
takes the form ABAABA · · · , where only A or AA occurs in between the single
instances of B. These are then the MZVs with arguments taking the values only
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2 and 3, here representing the breeding of Adult and Baby rabbits [24]. Recall
that Brown’s theorem shows that all MZVs are expressed as combinations of
those with arguments 2 and 3.

More general arguments correspond to fusion words with arbitrary strings
of τ , such that 1 still occurs as a singleton. Consider putting the τ at the start
of every fusion word. Then add a formal 1 at the end of every allowed word, to
obtain precisely the set of MZV words. This extra 1 adds a bigon piece to the
root edge of the polygon that is being chorded by a dual tree. The length of
the internal word is essentially the weight,∑

ni − 2 = n− 2 = d− 1, (98)

where d is the number of leaves on the fusion tree. Thus the weight d + 1 is
associated to braids in the category on d strands, but fewer than d strands may
be used to draw a knot.

An example of a positive knot with n crossings and n−1 strands is the trefoil
knot σ3

1 in B2. It corresponds to ζ(3), from the internal word τ on two leaves.
The word 1 on two leaves gives ζ(2, 1). Other torus knots of type (2k + 1, 2)
define the zeta values ζ(2k + 1) [69].

Since we have separated out the associators, fusion words label a corolla tree
with d leaves, which is a building block for symmetric trees in renormalization
Hopf algebras. By restricting to the Fd words that end in τ , we ensure that
the grafting of little corollas onto other trees is always possible. This gives the
FD−1 term in (95). FD−3 counts the number of internal words ending in τ1 and
starting with τ . Thus LD only excludes words that begin and end with 1, the so
called vacuum words. Values of Mn correspond to full words with even clusters
of τ letters, corresponding to odd arguments for MZVs, as proved in [72].

Recall the shuffle algebra for MZVs. The shuffle unit is the empty letter.
The recursion law on A and B words is

l1l2 · · · lu ∪ k1k2 · · · kv = l1(l2 · · · lu ∪ k1 · · · kv) (99)

+k1(l1 · · · lu ∪ k2 · · · kv),

so that the minimum zeta shuffle is

ζ(2) ∪ ζ(2) = AB ∪AB = 2ABAB + 4AABB = 2ζ(2, 2) + 4ζ(3, 1). (100)

Since this is a weight 4 rule, the trivalent vertex for ζ(3) comes from non MZV
words. In particular, τ ∪ τ1 gives 2ττ1 + τ1τ , which is 2ζ(3) plus the word τ1τ .
The fusion vertex τ ◦ τ corresponds to ττ1 + τ11, giving also 2ζ(3). Thus a
trivalent fusion graph resembles the dual of the Tutte graph [73] for the trefoil
knot. For our fusion letter 1 we have 1 ∪ 1 = 2 · 11 and 1∪n = 2n · 1 · · · 1. Note
that only 1/4 of the vertices on a parity cube are in the MZV algebra.

A Fibonacci chain in one dimension may be obtained from a cubic lattice in
two dimensions by the projection of a slice taken at an angle with tangent 1/φ.
A finite such sequence that repeats corresponds to a rational approximation
Fn+1/Fn to φ. In any dimension D, a nice quasilattice comes from a 2D cubic
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lattice and a projection of a slice based on angles related to φ. In other words,
the Fibonacci chain is the one dimensional template for quasiperiodic orders
in higher dimensions. In two dimensions, we have Penrose tilings. In four
dimensions, one can obtain the Elser-Sloane quasicrystal from the e8 lattice
using triality, as noted above. In three dimensions, an icosahedral cell comes
from the 6-cube. Halving dimensions is familiar from the Langlands program.
Our Chern-Simons theories bound four dimensional theories, just as their knot
strands bound surfaces.

It is well known how to define CFTs using categorical ribbons. With trees
and braids, including categories beyond the Fibonacci anyon, we have the ingre-
dients for alternative VOAs. The central axiom should be, as usual [1], a broken
Jacobi rule. Recall that for a Lie algebra, the commutators in the Jacobi rule
come from the boundary of an r operator in the classical Yang-Baxter equation
[74]

[r12, r13] + [r12, r23] + [r13, r23] = 0, (101)

which quantises to the Yang-Baxter equation

R12R13R23 = R23R13R12, (102)

where R ∈ A ⊗A is the R-matrix for the quasitriangular Hopf algebra [75]. A
braid group representation for Bn assigns R to Vi ⊗ Vi+1 in a string of n copies
of V . This is generalised to an R acting on V ⊗3 by Kitaev and Wang [76], using
special objects in fusion categories. Our Fibonacci object τ almost satisfies this
criterion, except that V has a quantum dimension of φ, which solves the familiar
quadratic

d2
τ = dτ + d1 (103)

following from the fusion rule. In other words, we can think of the Fibonacci
representations for Bn as giving an R-matrix on some fractal representation
space, with a classical limit defining a Jacobi rule for the ambient Lie algebra.
The dimension φ permits a neat estimate of the fine structure constant as a
Hopf link invariant. From this perspective, broken Jacobi rules for T -algebras
[13] are to be expected.

12 Mass and E6(p
r)

In conclusion, as a taste for what follows, given the importance of the Lie group
E6 in the traditional Higgs mechanism, we note that 259200 = (8 + 7) · 17280.
Here 259200 is the order of a simple group whose automorphisms are the Weyl
group for E6. It equals 360 · 6!, which is traditionally the number of seconds in
three days, or years in ten Earth precession cycles. Time is dimensionless when
measured as a ratio.
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