
  

Using Special Relativity (SR) as a starting point, then noting a few empirical
4-Vector facts, one can derive the Principles that are normally considered to be

Axioms of Quantum Mechanics (QM).

Since many of the QM Axioms are rather obscure, this seems a more logical and 
understandable paradigm than QM as a separate theory from SR, and sheds light on the 

origin and meaning of the QM Principles.  For instance, the properties of SR <Events> can 
be “quantized by the Metric”, while SpaceTime & the Metric are not themselves “quantized”,

in agreement with all known experiments and observations to-date.

The SRQM or [SR→QM] Interpretation of Quantum Mechanics
A Tensor Study of Physical 4-Vectors

or: Why General Relativity (GR) is *NOT* wrong
or: Don’t bet against Einstein  ;)
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4-Vectors are a fantastic language/tool for describing the physics of both relativistic and quantum phenomena.
They easily show many interesting properties and relations of our Universe, and do so in a simple and concise mathematical way. 

Due to their tensorial nature, these SR 4-Vectors are automatically coordinate-frame invariant, and can be used
to generate *ALL* of the physical SR Lorentz Scalar tensors and higher-index-count SR tensors.

Let me repeat: You can mathematically build *ALL* the Lorentz Scalars and larger SR tensors from SR 4-Vectors.

4-Vectors are likewise easily shown to be related to the standard 3-vectors that are used in
Newtonian classical mechanics, Maxwellian classical electromagnetism, and standard quantum theory.

Each 4-Vector also connects a special relativistically-related scalar to a 3-vector:
ex. energy (E) & 3-momentum (p) as 4-Momentum P=(E/c,p)

Why 4-Vectors as opposed to some of the more abstract mathematical approaches to QM?
Because the components of 4-Vectors are physical properties that can actually be empirically measured.

Experiment is the ultimate arbiter of which theories actually correspond to reality. If your quantum logics and
string theories give no testable/measurable predictions, then they are basically useless for real physics.

In this treatise, I will first extensively demonstrate how 4-Vectors are used in the context of Special Relativity,
and then show that their use in Relativistic Quantum Mechanics is really not fundamentally different.

Quantum Principles, without need of QM Axioms, then emerge in a natural and elegant way.

I also introduce the SRQM Diagramming Method: an instructive, graphical charting-method, which visually shows how
the SRQM 4-Vectors, Lorentz 4-Scalars, and 4-Tensors are all related to each other.

This symbolic representation clarifies a lot of physics and is a great tool for teaching and understanding.
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SRQM
Some Physics Abbreviations

& Notation
β = Relativistic Beta = v/c = {0..1}n̂ ; v = 3-velocity = {0..c}n̂
γ = Relativistic Gamma = 1/√[1-β2] = 1/√[1-β∙β] = 1/√[1-|β|2] = {1..∞}
D = Relativistic Doppler = 1/[γ(1-|β|cos[θ])]
Λμ’

ν = Lorentz (SpaceTime) Transform: prime (‘) specifies alternate reference frame

I(3) = 3D Identity Matrix = Diag[1,1,1] ; I(4) = 4D Identity Matrix = Diag[1,1,1,1]
δij = δi

j = δij = I(3) = {1 if i=j, else 0}   3D Kronecker delta
δμν= δμ

ν= δμν= I(4) = {1 if μ=ν, else 0} 4D Kronecker Delta
ημν→ημν→Diag[1,-I(3)]rect    Minkowski “Flat SpaceTime” Metric
ημ

ν= δμ
ν = Diag[1, I(3)] = I(4) = gμ

ν {also true in GR} (1,1)-Tensor Identity Mixed Metric
εij

k   = 3D Levi-Civita anti-symmetric permutation symbol(even:+1, odd:-1, else:0)

εμν
ρσ = 4D Levi-Civita Anti-symmetric Permutation Symbol(even:+1, odd:-1, else:0)

{other upper:lower index combinations possible for Levi-Civita symbol, but always anti-symmetric}

Tensor-Index  &  4-Vector Notation:
Aj =  a = (aj)  =     (a1,a2,a3) =     (a): 3-vector [Latin index   {1..3}, space-only]
Aμ = A = (aμ) = (a0,a1,a2,a3) = (a0,a): 4-Vector [Greek index {0..3}, TimeSpace]
AμBμ = AνBν = A∙B:  Einstein Sum : Dot Product : Inner Product
AμBν = A⊗B:  Tensor Product : Outer Product
AμBν - AνBμ = A[μBν] = A^B:  Wedge : Exterior : Anti-Symmetric Product
AμBν - AμBν = 0μν:  (2,0)-Zero Tensor
AμBν - BνAμ = [Aμ,Bν] = [A,B]:  Commutation
AμBν - BμAν = ???

GR = General Relativity
SR = Special Relativity
CM = Classical Mechanics
EM = ElectroMagnetism/ElectroMagnetic
QM = Quantum Mechanics
RQM = Relativistic Quantum Mechanics
NRQM = Non-Relativistic Quantum Mechanics
QFT = Quantum Field Theory
QED = Quantum ElectroDynamics
RWE = Relativistic Wave Equation
KG = Klein-Gordon (Relativistic Quantum) Equation
PDE = Partial Differential Equation
MCRF = Momentarily Co-Moving Reference:Rest Frame
H = The Hamiltonian = γ(PT∙U)  ;  PT = (H/c,pT)
L = The Lagrangian = -(PT∙U)/γ
∇ = 3-gradient →{rectangular basis} (∂x

,∂
y
,∂

z
) = (∂/∂x,∂/∂y,∂/∂z)

∂ = 4-Gradient = ∂R = ∂μ = (∂
t
/c,-∇)  ;  ∂μ = (∂

t
/c,∇)

S = The Action ( 4-TotalMomentum PT = -∂[S] )
Φ = The Phase ( 4-TotalWaveVector KT = -∂[Φ] )
τ = Proper Time (Invariant Rest Time) = to
Σ = Sum of Range ; Π = Product of Range
Δ = Difference ; d = Differential ; ∂ = Partial

SRQM = The [SR→QM] Interpretation of Quantum Mechanics, by John B. Wilson
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Special Relativity → Quantum Mechanics
The SRQM Interpretation: Links

See also:
http://scirealm.org/SRQM.html (alt discussion)

http://scirealm.org/SRQM-RoadMap.html (main SRQM website)

http://scirealm.org/4Vectors.html (4-Vector study)

http://scirealm.org/SRQM-Tensors.html (Tensor & 4-Vector Calculator)

http://scirealm.org/SciCalculator.html (Complex-capable RPN Calculator)

or Google “SRQM”

http://scirealm.org/SRQM.pdf (this document: most current ver. at SciRealm.org)

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

http://scirealm.org/SRQM.html
http://scirealm.org/SRQM-RoadMap.html
http://scirealm.org/4Vectors.html
http://scirealm.org/SRQM-Tensors.html
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SR 4-Scalar S

SR 4-Vector Vμ

SR 4-Tensor  Tμν = Trow:col

Temporal region: blue
Spatial region: red
Mixed TimeSpace region: purple
The mnemonic being red and blue mixed make purple

SRQM Study: Physical/Mathematical Tensors 
Tensor Types: 4-Scalar, 4-Vector, 4-Tensor

 Component Types: Temporal, Spatial, Mixed 

V0 V1 V2 V3

T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

S

SRQM Diagram Ellipse:
4-Scalars, 0 index
4*0 = 0 corners
40 = (1) = 1 component

SRQM Diagram Rectangle: 
4-Vectors, 1 index
4*1 = 4 corners 
41 = (1+3) = 4 components

SRQM Diagram Octagon:
4-Tensors, 2 index
4*2 = 8 corners 
42 = (1+6+9) = 16 components

for 2-index tensors:
    6 Anti-Symmetric (Skew)
+10 Symmetric
====================
  16 General components

SR 4-Vector
(1,0)-Tensor V

Vμ = (vμ) = (v0,v) = (v0,vi)
→ (vt,vx,vy,vz)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor T

Tμν =
[ T00, T0k ]
[ Tj0  , Tjk ]

→
[Ttt, Ttx, Tty,Ttz]
[Txt,Txx,Txy,Txz]
[Tyt,Tyx,Tyy,Tyz]
[Tzt,Tzx,Tzy,Tzz]

Matrix Format    SRQM Diagram Format

SR 4-CoVector = “Dual” 4-Vector
(0,1)-Tensor aka. One-Form

Cμ = ημσCσ = (cμ) = (c0,ci) → (ct,cx,cy,cz)
        = (c0,-c) = (c0,-ci) → (ct,-cx,-cy,-cz)

Each 4D index = {0,1..3} = Tensor Rank 4

 1  Temporal +  3  Spatial
=  4  SpaceTime Dimensions

(m,n)-Tensor has:
 (m) # upper-indices

 (n)  # lower-indices

SR
Lowered 4-Tensor

(0,2)-Tensor
Tμν = ημρηνσTρσ

=
[ T00 ,T0k ]
[ Tj0 ,Tjk ]

=
[ +T00, -T0k ]
[ -Tj0 , +Tjk ]

SR
Mixed 4-Tensor

(1,1)-Tensor
Tμ

ν = ημρTρν

=
[ T0

0,T0
k ]

[ Tj
0 ,Tj

k ]
=

[ +T00, +T0k ]
[  -Tj0 , -Tjk  ]

SR
Mixed 4-Tensor

(1,1)-Tensor
Tμ

ν = ηρνTμρ

=
[ T0

0,T0
k ]

[ Tj
0 ,Tj

k ]
=

[ +T00, -T0k ]
[ +Tj0 , -Tjk ]

SpaceTime
∂∙R = ∂μRμ = 4

Dimension

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
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4-Vector SRQM Interpretation
of QM
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Technically, all these objects are “SR 4-Tensors”, but we usually reserve
the name “4-Tensor” for objects with 2 or more indices, and use

the “(m,n)-Tensor” notation to specify all the objects more precisely.

SR:Minkowski Metric
∂[R] = ∂μRν = ημν = Vμν + Hμν →

Diag[1,-1,-1,-1] = Diag[1,-I(3)] = Diag[1,-δjk]
{in Cartesian form}  ”Particle Physics” Convention

{ημμ} = 1/{ημμ} : ημ
ν = δμ

ν              Tr[ημν]=4

4-Gradient ∂μ

∂=(∂
t
/c,-∇)

4-Position Rμ

R=(ct,r)=<Event>

  4



  

Special Relativity → Quantum Mechanics
SRQM Diagramming Method

4-Gradient
∂=(∂

t
/c,-∇)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position

R=(ct,r)=<Event>

∂[R]=∂μ[Rν]=ημν

→Diag[1,-1,-1,-1]=Diag[1,-δjk]
Minkowski Metric

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Scalar

4-Tensor

4-Vector

4-Velocity
U=γ(c,u)
=dR/dτ

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Momentum
P=(mc,p)=(E/c,p)=moU

SRQM Diagramming Method

 

U∙U=c2

Tr[ημν]=4

ProperTime
   Derivative

Lorentz
∂ν[Rμ’]=∂Rμ’/∂Rν=Λμ’

ν

Transform

SpaceTime
∂∙R=∂μRμ=4
Dimension

ΛμνΛμν=4

SR → QM

A Tensor Study
of Physical 4-Vectors
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of QM
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The SRQM Diagramming Method shows the properties and relationships of various
physical objects in a graphical way. This “flowchart” method aids understanding.

d3p/E

Einstein’s
E=mc2=γmoc2=γEo

Rest 4-Scalar

mo

 Eo/c2

Det[Λμ’
ν]=±1

  4

Representation: 4-Scalars by ellipses, 4-Vectors by rectangles, 4-Tensors by octagons.
Physical/mathematical equations and descriptions inside each shape/object.
Sometimes there will be additional clarifying descriptions around a shape/object.

Relationships: Lorentz Scalar Products or tensor compositions of different 4-Vectors are on 
simple lines between the related 4-Vectors. Lorentz Scalar Products of a single 4-Vector, 
or Invariants of Tensors, are next to that object and highlighted in a different color.

Flow: Objects that are some function of a Lorentz 4-Scalar with another 4-Vector or
4-Tensor are on lines with arrows indicating the direction of flow. (ex. multiplication)

Properties: Some objects will also have a symbol representing its properties nearby, and 
sometimes there will be color highlighting within the object to emphasize temporal-spatial 
properties. I typically use blue=Temporal, red=Spatial, purple=mixed TimeSpace.

Alternate ways of writing 4-Vector expressions in physics:
(A B⋅ ) is a 4-Vector style, which uses vector-notation (ex. inner product "dot=⋅" or exterior 
product "wedge=^"), and is typically more compact, always using bold UPPERCASE to 
represent the 4-Vector, ex. (A B⋅ ) = (AμημνBν), and bold lowercase to represent 3-vectors, 
ex. (a b⋅ ) = (ajδjkbk). Most 3-vector rules have analogues in 4-Vector mathematics.

(AμημνBν) is a Ricci Calculus style, which uses tensor-index-notation and is useful for more 
complicated expressions, especially to clarify those expressions involving tensors with 
more than one index, such as the Faraday EM Tensor Fμν =  (∂μAν - ∂νAμ) = (∂ ^ A) 

Relativistic Gamma γ = 1/√[ 1 - β∙β ], β = u/c



  

Special Relativity → Quantum Mechanics
SRQM Tensor Invariants

4-Gradient
∂=(∂

t
/c,-∇)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position

R=(ct,r)=<Event>

∂[R]=∂μ[Rν]=ημν

→Diag[1,-1,-1,-1]=Diag[1,-δjk]
Minkowski Metric

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Scalar

4-Tensor

4-Vector

4-Velocity
U=γ(c,u)
=dR/dτ

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Momentum
P=(mc,p)=(E/c,p)=moU

SRQM Diagramming Method

 

U∙U=c2

Tr[ημν]=4

Lorentz Scalar Tensor Invariant
Speed of Light (c) from
LSP[..] of 4-Velocity

Trace Tensor Invariant
SpaceTime Dimension
from Tr[..] of Minkowski

ProperTime
   Derivative

Lorentz
∂ν[Rμ’]=∂Rμ’/∂Rν=Λμ’

ν

Transform
ΛμνΛμν=4

Determinant Inner Product
Tensor Invariant Tensor Invariant
Affine Transform SpaceTime
(Anti-)Unitary from Dimemsion from 
Det[..] of Lorentz IP[..] of Lorentz

4-Divergence
Tensor Invariant
SpaceTime Dimension
from 4-Divergence of 
4-Position

Det[Λμ’
ν]=±1

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
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d3p/E Phase Space Tensor Invariant
4-Momentum Phase Space
Weighting Factor
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One of the extremely important properties of Tensor Mathematics is the fact that there are 
numerous ways to generate Tensor Invariants. These Invariants lead to Physical Properties that 
are fundamental in our Universe.  They are totally independent of the coordinate systems used to 
measure them.  Thus, they represent symmetries that are inherent in the fabric of SpaceTime.
See the Cayley-Hamilton Theorem, esp. for the Anti-Symmetric Tensor Products.

Trace Tensor Invariant: Tr[Tμν] = ημνTμν = Tμ
μ = Tν

ν = Σ[ EigenValues λn ] for Tμ
ν

Determinant Tensor Invariant: Det[Tμν] = Π[ EigenValues λn ] for Tμ
ν

Inner Product Tensor Invariant: IP[Tμν] = TμνTμν 

4-Divergence Tensor Invariant: 4-Div[Tμ] = ∂μTμ = ∂∙T = ∂Tμ/∂Xμ  :  4-Div[Tμν] = ∂μTμν = Sν

Lorentz Scalar Product Tensor Invariant: LSP[Tμ,Sν] = TμημνSν = TμSμ = TνSν = T∙S

Phase Space Tensor Invariant: PS[Tμ] = ( d3t / t0 ) = ( dt1dt2dt3 / t0 ) for (T∙T) = constant

The Ratio of 4-Vector Magnitudes (Ratio of Rest Value 4-Scalars): T∙T / S∙S = (t0
o / s0

o)2

Tensor EigenValues λn = { λ1, λ2, λ3, λ4 }: could also be indexed 0..3

The various Anti-Symmetric Tensor Products, etc.
Tα

α = Trace = Σ[ EigenValues λn ] for (1,1)-Tensors
Tα

[αTβ
β] = Asymm Bi-Product → Inner Product 

Tα
[αTβ

βTγ
γ] = Asymm Tri-Product → ?Name? 

Tα
[αTβ

βTγ
γTδ

δ] = Asymm Quad-Product → 4D Determinant = Π[ EigenValues λn ] for (1,1)-Tensors

These are not all always independent, some invariants are functions of other invariants.

SpaceTime
∂∙R=∂μRμ=4
Dimension

Relativistic Gamma γ = 1/√[ 1 - β∙β ], β = u/c

Einstein’s
E=mc2=γmoc2=γEo

Rest 4-Scalar

mo

 Eo/c2



  

Physical 4-Tensors: Objects which have Invariant 4D SpaceTime properties

1 index-count Tensors:

0 index-count Tensors:

2 index-count Tensors:

SRQM Study: Physical/Mathematical Tensors 
Tensor Types: 4-Scalar, 4-Vector, 4-Tensor

 Examples – Venn Diagram 

SR 4-Vector
(1,0)-Tensors
 

Vμ = V = (vμ)
= (v0,v) = (v0,vi) → (vt,vx,vy,vz)

SR 4-Scalar
(0,0)-Tensors
Lorentz Scalar S

SR 4-Tensor
(2,0)-Tensors
Tμν =
[ T00, T0k ]
[ Tj0  , Tjk ]

SR 4-CoVector = “Dual” 4-Vector
(0,1)-Tensors aka. One-Forms
Cμ = ημσCσ = (cμ) = (c0,ci) → (ct,cx,cy,cz)
        = (c0,-c) = (c0,-ci) → (ct,-cx,-cy,-cz)

SR Lowered 4-Tensor
(0,2)-Tensors
Tμν = ημρηνσTρσ

=
[ T00 ,T0k ]
[ Tj0  ,Tjk ]

SR Mixed 4-Tensor
(1,1)-Tensors
Tμ

ν = ηρνTμρ

=
[ T0

0,T0
k ]

[ Tj
0 ,Tj

k ]

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Speed-of-Light (c=√[U∙U])

4-Position
R=Rμ=(ct,r)=<Event>

→(ct,x,y,z)

4-Momentum
P=Pμ=(mc,p)=moU
=(E/c,p)=(Eo/c2)U

Gradient One-Form
∂μ=(∂

t
/c,∇)

→(∂
t
/c,∂

x
,∂

y
,∂

z
)

=(∂/c∂t,∂/∂x,∂/∂y,∂/∂z)

SpaceTime
∂∙R=∂μRμ=4
Dimension

Minkowski
ημν=∂μ[Rν]=∂[R]=Vμν+Hμν

Metric

Higher index-count Tensors:
SR & GR 4-Tensors T···

···

Lowered Minkowski
∂μ[Rν] = ημν = ( · )

Metric

Riemann Curvature Tensor
Rρ

σμν = ∂μΓρ
νσ - ∂νΓρ

μσ + Γρ
μλΓλ

νσ – Γρ
νλΓλ

μσ → 0ρ
σμν for SR “Flat” Minkowski SpaceTime

Faraday EM 4-Tensor
Fαβ = ∂αAβ - ∂βAα = ∂ ^ A

    Projection (Mixed) Tensors Pμ
ν

Temporal Projection Pμ
ν → Vμ

ν

Spatial Projection Pμ
ν → Hμ

ν

ProperTime
U∙∂=d/dτ=γd/dt

Derivative
Tr[ημν]=4

ΛμνΛμν=4

Planck’s Const (h)

Lorentz 
∂ν[Rμ’] = Λμ’

ν 
Transforms

Lorentz Boost
Λμ’

ν → Bμ’
ν

Lorentz ParityInverse
Λμ’

ν → Pμ’
ν

RestMass (mo)
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Weyl (Conformal) Curvature Tensor
Cρ

σμν = Traceless part of Riemann [Rρ
σμν]

Ricci Decomposition of Riemann Tensor
Rρ

σμν = Sρ
σμν (scalar part)+ Eρ

σμν (semi-traceless part)+ Cρ
σμν (traceless part)

EM Charge (Q=∫ρd3x)

d3p/E

Det[Λμ’
ν]=±1

δ4[X-Xo] d4X=cdt·dx·dy·dz

Vo=∫γd3x

#dimensionless

4-Velocity
U=Uμ=γ(c,u)

=dR/dτ

Perfect Fluid 4-Tensor
Tμν = (ρeo)Vμν + (-po)Hμν

    Projection Tensors Pμν

Temporal Proj. Pμν → Vμν

Spatial Proj. Pμν → Hμν

  4



  

SRQM 4-Vectors = (1,0)-Tensors
4-Tensors = (2+ index)-Tensors

4-Tensors can be constructed from the Tensor Products of 4-Vectors. Technically, 4-Tensors 
refer to all SR objects (4-Scalars, 4-Vectors, etc), but typically reserve the name 4-Tensor for 
SR Tensors of 2 or more indices. Use (m,n)-Tensor notation to specify more precisely.

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Vector = Type (1,0)-Tensor
4-Position R = Rμ = (ct,r)
4-Velocity U = Uμ = γ(c,u) = (γc,γu)
4-UnitTemporal T = Tμ = γ(1,β) = (γ,γβ)
4-Momentum P = Pμ = (E/c,p)
4-TotalMomentum PT = PT

μ = (ET/c=H/c,pT) = Σn[Pn]
4-Acceleration A = Aμ = γ(cγ’,γ’u+γa)
4-Force F = Fμ = γ(Ė/c,f) = (γĖ/c,γf)
4-WaveVector K = Kμ = (ω/c,k)
4-TotalWaveVector KT = KT

μ = (ωT/c,kT) = Σn[Kn]
4-CurrentDensity J = Jμ = (ρc,j)
4-VectorPotential A = Aμ = (φ/c,a) → AEM

4-PotentialMomentum Q = Qμ = qA = (V/c=φq/c,qa)
4-Gradient ∂R = ∂X = ∂ = ∂μ = ∂/∂Rμ = (∂t/c,-∇)
4-NumberFlux N = Nμ = n(c,u) = (nc,nu)
4-Spin S = Sμ = (s0,s) = (s·β,s) = (s·u/c,s)
 
4-Tensor = Type (2,0)-Tensor
Faraday EM Tensor Fμν   =  [   0   , -ej/c ]

    [+ei/c, -εij
k
bk ]

 
4-Angular Momentum Mμν   =  [   0   , -cnj ]

Tensor         [+cni, -εij
k
lk ]

 
Minkowski Metric ημν = Vμν+Hμν → Diag[1,-δjk]
Temporal Projection Tensor Vμν → Diag[1,0]
Spatial Projection Tensor     Hμν → Diag[0,-δjk]
 
Perfect-Fluid Stress-Energy Tμν → Diag[ρe,p,p,p]

Tensor

SI Dimensional Units
[m]
[m/s]
[dimensionless]
[kg·m/s]
[kg·m/s] 
[m/s2]
[N = kg·m/s2]
[rad/m]
[rad/m] 
[C/m2·s]
[T·m = kg·m/C·s]
[kg·m/s]
[1/m]
[#/m2·s]
[J·s = N·m·s = kg·m2/s]

[T = kg/C·s]

[J·s = N·m·s = kg·m2/s]

 
[dimensionless]
[dimensionless]
[dimensionless]

[J/m3 = N/m2 = kg·m/s2]

[ Temporal : Spatial ] components
[Time (t) : Space (r)]
[Temporal “velocity” factor (γ) : Spatial “velocity” factor (γu), Spatial 3-velocity (u)]
[Temporal “velocity” factor (γ) : Spatial normalized “velocity” factor (γβ), Spatial 3-beta (β)]
[energy (E) : 3-momentum (p)]
[total-energy (ET) = Hamiltonian (H) : 3-total-momentum (pT)]
[relativistic Temporal acceleration (γ’̇) : relativistic 3-acceleration (γ’u+γa), 3-acceleration (a)]
[relativistic power (γĖ), power (Ė) : relativistic 3-force (γf), 3-force (f)]
[angular-frequency (ω) : 3-angular-wave-number (k)]
[total-angular-frequency (ωT) : 3-total-angular-wave-number (kT)] 
[charge-density (ρ) : 3-current-density = 3-charge-flux (j)]
[scalar-potential (φ) : 3-vector-potential (a)], typically the EM versions (φEM) : (aEM)
[potential-energy (V=φq) : 3-potential-momentum (q=qa)]
[Temporal differential (∂t 

) : Spatial 3-gradient(∇ = ∂x̄)] 
[number-density (n) : Spatial 3-number-flux (n=nu)] 
[Temporal spin (s0=s·β) : Spatial 3-spin (s)] 
 
[ Temporal-Temporal : Temporal-Spatial : Spatial-Spatial ] components 
[ 0 : 3-electric-field (e = ei) : 3-magnetic-field (b = bk) ] Fμν  = ∂^A = ∂μAν - ∂νAμ 
 
 
[ 0 : 3-mass-moment (n = ni) : 3-angular-momentum (l = lk) ] Mμν  = X^P = XμPν - XνPμ 
 

[ 1 : 0 : -I(3) ] = [ 1 : 0 : -δjk ] ημν = ∂μ[Rν] = Vμν + Hμν 
[ 1 : 0 : 0 ] Vμν = TμTν 
[ 0 : 0 : -I(3) ] = [ 0 : 0 : -δjk ] Hμν = ημν - TμTν 

Tμν = (ρeo+po)TμTν - (po)∂μ[Rν]
[ ρe : 0 : pI(3) ] = [ ρe : 0 : pδjk ] Tμν = (ρeo)Vμν + (-po)Hμν



  

SRQM 4-Scalars = (0,0)-Tensors =
Lorentz Scalars → Physical Constants

Lorentz Scalars can be constructed from the Lorentz Scalar Product of 4-Vectors

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Scalar = Type (0,0)-Tensor 

RestTime:ProperTime (to = τ)
RestTime:ProperTime Differential (dto = dτ)
Speed-of-Light (c)
RestMass (mo)
RestEnergy (Eo = moc2)
RestAngFrequency (ωo)
RestChargeDensity (ρo)
RestScalarPotential (φo)
ProperTimeDerivative (d/dτ)
RestNumberDensity (no)
SR Phase (Φ

phase
)

SR Action (S
action

)

Planck Constant (h)
Planck-Reduced:Dirac Constant (ћ = h/2π)
SpaceTime Dimension (4)
Electric Constant (εo)
Magnetic Constant (μo)
EM Charge (q)
EM Charge (Q)  *alt method*
Particle # (N)
Rest Volume (Vo)
Rest(MCRF) EnergyDensity (ρeo = noEo)
Rest(MCRF) Pressure (po)

Faraday InnerProduct Invariant 2(b∙b-e∙e/c2)
Faraday Determinant  Invariant (e∙b/c)2

4-Scalar = Type (0,0)-Tensor (generally composed of 4-Vector combinations)

(τ) = [R∙U]/[U∙U] = [R∙R]/[R∙U]  **Time as measured in the at-rest frame**
(dτ) = [dR∙U]/[U∙U]  **Differential Time as measured in the at-rest frame**
(c) = Sqrt[U∙U] = [T∙U] with 4-UnitTemporal T = γ(1,β) & [T∙T] = 1 = “Unit”
(mo) = [P∙U]/[U∙U] = [P∙R]/[U∙R] (mo→me) as Electron RestMass
(Eo) = [P∙U]
(ωo) = [K∙U]
(ρo) = [J∙U]/[U∙U] = (q)[N∙U]/[U∙U] = (q)(no)
(φo) = [A∙U],    (φo→φ

EMo) as the EM version RestScalarPotential
(d/dτ) = [U∙∂] = γ(d/dt)  **Note that the 4-Gradient operator is to the right of 4-Velocity**
(no) = [N∙U]/[U∙U]
(Φ

phase,free
) = -[K∙R] = (k∙r - ωt)  :  (Φ

phase
) = -[KT∙R] = (kT∙r - ωTt) **Units [Angle] = [WaveVec.]·[Length] = [Freq.]·[Time]**

(S
action,free

) = -[P∙R] = (p∙r - Et)  :  (S
action

) = -[PT∙R] = (pT∙r - ETt)  **Units [Action] = [Momentum]·[Length] = [Energy]·[Time]**

(h) = (ћ*2π)
(ћ) = [P∙U]/[K∙U] = [P∙R]/[K∙R]
(4) = [∂∙R] = Tr[ηαβ] **SR Dimension = 4-Divergence[4-Position] = Trace[MinkowskiMetric]**
∂·Fαβ  = (μo)J = (1/εoc2)J Maxwell EM Eqn. μoεo = 1/c2

∂·Fαβ  = (μo)J = (1/εoc2)J Maxwell EM Eqn. μoεo = 1/c2

U·Fαβ = (1/q)F Lorentz Force Eqn. (q→ -e) as Electron Charge
(Q) = ∫ρ(dxdydz) = ∫ρd3x = ∫ρoγd3x = ∫(ρo)(dA)(γdr) Integration of volume charge density
(N) = ∫n(dxdydz) = ∫nd3x = ∫noγd3x = ∫(no)(dA)(γdr) Integration of volume number density
(Vo) = ∫γ(dxdydz) = ∫γd3x = ∫(dA)(γdr) Integration of volume elements (Riemannian Volume Form)
(ρeo) = VαβTαβ         = Temporal “(V)ertical” Projection of PerfectFluid Stress-Energy Tensor
(po) = (-1/3)HαβTαβ = Spatial “(H)orizontal” Projection of PerfectFluid Stress-Energy Tensor

2(b∙b-e∙e/c2) = FαβFαβ

(e∙b/c)2 = Det[Fαβ]

SI Dimensional Units:

[s]
[s]
[m/s]
[kg]
[J = kg·m2/s2]
[rad/s]
[C/m3]
[V = J/C = kg·m2/C·s2]
[1/s]
[#/m3]
[rad]

angle

[J·s]
action

[J·s = N·m·s = kg·m2/s]
[J·s = N·m·s = kg·m2/s]
[dimensionless]
[F/m = C2·s2/kg·m3]
[H/m = kg·m/C2]
[C=A·s]
[C=A·s]
[#]
[m3]
[J/m3 = N/m2 = kg/m·s2]
[J/m3 = N/m2 = kg/m·s2]

[T2 = kg2/C2·s2]
[T4 = kg4/C4·s4]



  

Gradient 4-Vector [operator]
∂μ =(∂

t
/c,-∇)

∂μ = (∂
t
/c,∇)

Gradient One-Form [operator]

Lorentz Invariant,
but not
Poincaré Invariant

SRQM Study: Physical 4-Vectors
Some SR 4-Vectors and Symbols

4-Velocity
U=Uμ=γ(c,u)
=dR/dτ=cT

4-Momentum
P=Pμ=(mc,p)=(mc,mu)=moU

=(E/c,p)=(Eo/c2)U

4-WaveVector
K=Kμ=(ω/c,k)=(ωo/c2)U

=(ω/c,ωn̂/vphase)=(1/cT,n̂/λ)

4-ChargeFlux : 4-CurrentDensity
J=Jμ=(ρc,j)=ρ(c,u)=ρoU

=qnoU=qN

4-(Dust)NumberFlux
N=Nμ=(nc,n)=n(c,u)=noU

4-(EM)VectorPotential
A=Aμ=(φ/c,a)=(φo/c2)U
AEM=AEM

μ=(φEM/c,aEM)

4-Acceleration
A=Aμ=γ(cγ’,γ’u+γa)

=dU/dτ=d2R/dτ2 : {γ’=dγ/dt}

4-Force
F=Fμ=γ(Ė/c,f)

=dP/dτ=γdP/dt

4-Displacement
ΔR=ΔRμ=(cΔt,Δr)=R2-R1 {finite}

dR=dRμ=(cdt,dr)       {infintesimal}

4-Position
R=Rμ=(ct,r)=<Event>

→(ct,x,y,z)
alt. notation X=Xμ

4-ThermalVector
4-InverseTemperatureMomentum 
Θ=Θμ=(θ0,θ)=(c/kBT,u/kBT)=(θo/c)U
=(1/kBT)(c,u)=(1/kBγT)U=(1/kBTo)U

Minkowski
∂[R]=∂μ[Rν]=ημν

Metric

4-MassFlux
4-MomentumDensity

G=Gμ=(ρ
m
c,g)=ρ

m
(c,u)

=moN=nomoU

4-PureEntropyFlux
Sent_pure=Sent_pure

μ

=(sent_pure
0,sent_pure)

=S
ent

N=noSent
U

4-HeatEnergyFlux
Q=Qμ=(ρ

E
c,q)=ρ

E
(c,u)

=EoN=noEoU=c2G

4-HeatEntropyFlux
Sent_heat=(sent_heat

0,sent_heat)
=S

ent
N+Q/To=S

ent
N+EoN/To

=no(S
ent

+Eo/To)U

SpaceTime
∂∙R=∂μRμ=4
Dimension

4-Gradient
∂=∂R=∂X=∂μ=(∂

t
/c,-∇)

→(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Vector V = Vμ = (vμ) = (v0,vi) = (v0,v)
SR 4-Vector V = Vμ = (scalar * c±1,3-vector)

Lorentz
∂ν[Rμ’]=Λμ’

ν

Transform

4-(Vector)PotentialMomentum
Q=Qμ=(qφ/c,qa)=(V/c,q)
=qA=(qφo/c2)U=(Vo/c2)U

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-UnitTemporal
T=Tμ=γ(1,β)

=γ(1,u/c)=U/c

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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SRQM Study: Physical 4-Tensors
Some SR 4-Tensors and Symbols

Lorentz General Time-Space Boost
x-Boost
Transform  = ←
Λμ’

ν→Bμ'
ν =

Symmetric Mixed 4-Tensor

     t      x     y     z 
t  [ γ    -βγ    0    0 ]
x [ -βγ    γ    0    0 ]
y [  0     0     1    0 ]
z [  0     0     0    1 ]

γ  -γβj    
 -γβi  (γ-1)βjβj /(β∙β)+δi

j  

        t             x         y   z 
t  [ cosh[θ]   -sinh[θ]   0   0 ]
x [ -sinh[θ]   cosh[θ]   0   0 ]
y [      0         0           1    0 ]
z [      0         0           0    1 ]

Lorentz
Space-Parity
Transform        =
Λμ’

ν→Pμ'
ν =

     t      x     y     z 
t  [ 1     0      0     0 ]
x [  0     -1    0     0 ]
y [  0     0     -1    0 ]
z [  0     0     0    -1 ]

  1   0j  
 0i  -δi

j 

Lorentz
Time-Reverse
Transform        =
Λμ’

ν→Tμ'
ν =

     t      x     y     z 
t  [ -1    0     0     0 ]
x [  0     1    0     0 ]
y [  0     0     1    0 ]
z [  0     0     0    1 ]

  -1  0j  
 0i  δi

j 

Lorentz
Identity
Transform        =
Λμ’

ν→ημ'
ν =δμ'

ν =
=  I(4)

     t      x     y     z 
t  [ 1     0     0     0 ]
x [  0     1    0     0 ]
y [  0     0     1    0 ]
z [  0     0     0    1 ]

  1  0j  
 0i  δi

j 

Lorentz General Space-Space Rotation
z-Rotation
Transform         ←
Λμ’

ν→Rμ'
ν =

Non-symmetric Mixed 4-Tensor

   t       x         y         z 
t  [ 1     0         0         0 ]
x [ 0  cos[θ]  -sin[θ]    0 ]
y [ 0  sin[θ]   cos[θ]    0 ]
z [ 0      0         0        1 ]

1  0j     
 0i  ( δi

j-ninj )cos(θ)-( εi
jknk )sin(θ)+ninj

4-AngularMomentum
Mαβ = XαPβ - XβPα = X ^ P

 
 

4-Tensor
Anti-symmetric

     t        x       y       z 
t [  0    -cnx   -cny   -cnz ]
x [+cnx    0      +lz      -ly ]
y [+cny   -lz      0       +lx ]
z [+cnz   +ly     -lx       0  ]

  0    -cnj  
+cni  εij

k
lk 

  0    -cn  
+cnT  x^p

Faraday EM
Fαβ = ∂αAβ - ∂βAα = ∂ ^ A

4-Tensor
Anti-symmetric

    t        x       y       z 
t  [  0     -ex/c  -ey/c  -ez/c ]
x [+ex/c    0      -bz      +by ]
y [+ey/c   +bz     0        -bx ]
z [+ez/c   -by    +bx        0  ]

  0    -ej/c  
+ei/c  -εij

k
bk 

  0    -e/c  
+eT/c  - ^a∇

Lorentz Transform ∂ν[Rμ’]=Λμ’
ν 

[ Λ0’
0,Λ0’

j ] temporal-spatial-mixed
[ Λi’

0 ,Λi’
j ] components

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

Lorentz
ComboPT
Transform        =
Λμ’

ν→(PT)μ'
ν =

= - I(4)

     t      x     y     z 
t  [ -1    0      0     0 ]
x [  0     -1    0     0 ]
y [  0     0     -1    0 ]
z [  0     0     0    -1 ]

  -1   0j  
 0i  -δi

j 

←Discrete  Continuous→
SR:Lorentz
Transforms

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
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Note that all the Lorentz Transforms and
the Minkowski Metric are dimensionless

SR:Minkowski Metric
∂[R] = ∂μRν = ημν = Vμν + Hμν

→Diag[1,-I(3)]=Diag[1,-δij]
{Cartesian/rectangular basis}

=

Particle Physics” Convention

4-Tensor
Symmetric

     t      x     y     z 
t  [ 1     0      0     0 ]
x [  0     -1    0     0 ]
y [  0     0     -1    0 ]
z [  0     0     0    -1 ]

  1   0j  
 0i  -δij 

SpaceTime
∂∙R=∂μRμ=Tr[ημν]=4

Dimension

Perfect Fluid
Tμν = (ρeo)Vμν + (-po)Hμν

→Diag[ρe,pδij]{rectangular basis}{MCRF}

4-Tensor
Symmetric

     t      x     y     z 
t  [ ρe     0    0     0 ]
x [  0     p    0     0 ]
y [  0     0     p    0 ]
z [  0     0     0    p ]

  ρe=ρmc2  0j  
    0i     pδij 

θ = rapidity = Ln[ γ(1+β) ]
γ = cosh(θ) = 1/√[ 1-β2 ]
β = tanh(θ) = (v/c)
γβ = sinh(θ)



  

SRQM Study: Physical 4-Tensors
Some SR 4-Tensors and Symbols

SR:Minkowski Metric
∂[R] = ∂μRν = ημν = Vμν + Hμν

→Diag[1,-I(3)]=Diag[1,-δij]
{Cartesian/rectangular basis}

=

Particle Physics” Convention

4-Tensor
Symmetric

     t      x     y     z 
t  [ 1     0      0     0 ]
x [  0     -1    0     0 ]
y [  0     0     -1    0 ]
z [  0     0     0    -1 ]

  1   0j  
 0i  -δij 

Faraday EM Tensor
Fαβ = ∂αAβ - ∂βAα = ∂ ^ A

4-Tensor
Anti-symmetric

    t        x       y       z 
t  [  0     -ex/c  -ey/c  -ez/c ]
x [+ex/c    0      -bz      +by ]
y [+ey/c   +bz     0        -bx ]
z [+ez/c   -by    +bx        0  ]

  0    -ej/c  
+ei/c  -εij

k
bk 

  0    -e/c  
+eT/c  - ^a∇

     Perfect Fluid Stress-Energy
    Tμν → (ρeo)Vμν + (-po)Hμν →{MCRF}

                      (EoS) w=(p
o
/ρ

eo
)

4-Tensor
Symmetric

     t      x     y     z 
t  [ ρe     0    0     0 ]
x [  0     p    0     0 ]
y [  0     0     p    0 ]
z [  0     0     0    p ]

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
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EM (Maxwell) Stress-Energy Tensor
Tμν → (1/μo)[FμαFν

α-(1/4)ημνFαβFαβ]→{No RestFrame, Light-Like}

4-Tensor
Symmetric

          t             x       y       z 
t  [ ½(εoe2+b2/μo)   sx/c   sy/c   sz/c ]
x [        sx/c          -σxx   -σxy   -σxz  ]
y [        sy/c          -σyx   -σyy   -σyz  ]
z [        sz/c          -σzx   -σzy   -σzz  ]

  ½(εoe2+b2/μo)  sj/c  
     si/c         -σij 

(Cold) Matter-Dust
Tμν → PμNν=(ρeo)Vμν →{MCRF}

         (EoS) w=0

4-Tensor
Symmetric

     t      x     y     z 
t  [ ρe     0    0     0 ]
x [  0     0     0    0 ]
y [  0     0     0    0 ]
z [  0     0     0    0 ]

  ρe=ρmc2 0j  
 0i        0ij 

Temporal “(V)ertical”
Projection (2,0)-Tensor

Pμν → Vμν = TμTν

→Diag[1,0ij]{MCRF}

 

4-Tensor
Symmetric

     t      x     y     z 
t  [  1     0     0    0 ]
x [  0     0     0    0 ]
y [  0     0     0    0 ]
z [  0     0     0    0 ]

  1  0j  
 0i  0ij 

Spatial “(H)orizontal”
Projection (2,0)-Tensor

Pμν → Hμν = ημν - TμTν

→Diag[0,-I(3)]=Diag[0,-δij]{MCRF}

 
4-Tensor
Symmetric

     t      x     y     z 
t  [  0     0      0    0 ]
x [  0     -1     0    0 ]
y [  0     0     -1    0 ]
z [  0     0      0   -1 ]

  0   0j  
 0i  -δij 

Lambda Vacuum
Tμν → (ρeo)ημν = (Λ)ημν →{MCRF}

(EoS) w= -1

4-Tensor
Symmetric

     t      x     y     z 
t  [ ρe     0      0     0 ]
x [  0     -ρe    0     0 ]
y [  0      0    -ρe    0 ]
z [  0      0     0   -ρe ]

  ρe=ρmc2   0j  
 0i    -ρeδij 

Null-Dust=Photon Gas
Tμν → (ρeo)Vμν + (-ρeo/3)Hμν →{MCRF?}

(EoS) w=1/3

4-Tensor
Symmetric

     t      x     y     z 
t  [ ρe      0       0      0 ]
x [  0     ρe/3    0       0 ]
y [  0       0     ρe/3    0 ]
z [  0       0     0    ρe/3 ]

  ρe=ρmc2 0j    
 0i (ρe/3)δij 

Zero:Nothing Vacuum
Tμν → 0μν →{MCRF}

(EoS) w=   
undefined

4-Tensor
Symmetric

     t      x     y     z 
t  [ 0     0    0     0 ]
x [  0     0    0     0 ]
y [  0     0    0     0 ]
z [  0     0    0     0 ]

  0  0j  
 0i 0ij 

(p
o ) = ρ

eo /3

(po) = 0

(p
o) = -ρ

eo

(p
o ) = (ρ

eo ) = 0

Tr[ημν]=4

Tr[Vμν]=1

Tr[Hμν]=3

Tr[Tμν]=ρeo-3po Tr[Tμν]=ρeo

Tr[Tμν]=4ρeoTr[Tμν]=0

Tr[Tμν]=0Tr[Tμν]=0 Tr[Fμν]=0

Equation of State (EoS)
w = (po/ρeo)

Note that the Projection Tensors &
the Minkowski Metric are dimensionless.

Energy Density (temporal) & Pressure (spatial)
have the same dimensional measurement units

-po

ρeo

4-ForceDensity
Fden = -∂∙Tμν

{=0ν if conserved}

+

+

energy density MCRF

        neg pressure MCRF

  ρe=ρmc2  0j  
    0i     pδij 



  

Pμ
ν = Pμαηαν

Pμν = Pαβηαμηβν

The projection tensors can work on 4-Vectors to give a new 4-Vector, or 
on 4-Tensors to give either a 4-Scalar component or a new 4-Tensor.

4-UnitTemporal Tμ = γ(1,β)
4-Generic Aν = (a0,a) = (a0,a1,a2,a3)

Vμ
νAν= (1·a0,+0·a1+0·a2+0·a3,

0·a0,+0·a1+0·a2+0·a3,
0·a0,+0·a1+0·a2+0·a3,
0·a0,+0·a1+0·a2+0·a3) = (a0,0,0,0) = (a0,0): Temporal Projection

Hμ
νAν= (0·a0,+0·a1+0·a2+0·a3,

0·a0,+1·a1+0·a2+0·a3, 
0·a0,+0·a1+1·a2+0·a3, 
0·a0,+0·a1+0·a2+1·a3) = (0,a1,a2,a3) = (0,a): Spatial Projection

VμνTμν= Vμν[(ρeo)Vμν + (-po)Hμν] = (ρeo)VμνVμν = (ρeo)    :  (ρeo) = VμνTμν

HμνTμν= Hμν[(ρeo)Vμν + (-po)Hμν] = (-po)HμνHμν = (-3po)  :  (po) = (-1/3)HμνTμν

Vμ
αTαν= Vμ

α[(ρeo)Vαν + (-po)Hαν] = (ρeo)Vμ
αVαν+(0) = (ρeo)Vμν →Diag[ρe,0,0,0]

Hμ
αTαν= Hμ

α[(ρeo)Vαν + (-po)Hαν] = (0)+(-po)Hμ
αHαν = (-po)Hμν →Diag[0,p,p,p]

SRQM Study: Physical 4-Tensors
Projection 4-Tensors

SR Perfect Fluid 4-Tensor
Tperfectfluid

μν = (ρeo)Vμν + (-po)Hμν →{MCRF}

Units of             Symmetric                     
[EnergyDensity=Pressure]                    

       t          x     y     z 
t  [ ρe=ρmc2  0    0     0 ]
x [    0         p     0     0 ]
y [    0         0     p     0 ]
z [    0         0     0     p ]

  ρe=ρmc2  0j  
    0i     pδij 

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

Temporal “(V)ertical”
Projection (2,0)-Tensor

Pμν → Vμν = TμTν

→Diag[1,0ij]{MCRF}

 

4-Tensor
Symmetric

     t      x     y     z 
t  [  1     0     0    0 ]
x [  0     0     0    0 ]
y [  0     0     0    0 ]
z [  0     0     0    0 ]

  1  0j  
 0i  0ij 

Spatial “(H)orizontal”
Projection (2,0)-Tensor

Pμν → Hμν = ημν - TμTν

→Diag[0,-I(3)]=Diag[0,-δij]{MCRF}

 
4-Tensor
Symmetric

     t      x     y     z 
t  [  0     0      0    0 ]
x [  0     -1     0    0 ]
y [  0     0     -1    0 ]
z [  0     0      0   -1 ]

  0   0j  
 0i  -δij 

Tr[Vμν]=1

Tr[Hμν]=3

Tr[Tμν]=ρeo-3po 

Note that the Projection Tensors are dimensionless:
the object projected retains its dimensional measurement units

Also note that the (2,0)- & (0,2)- Spatial Projectors have opposite signs
from the (1,1)- Spatial due to the (+,-,-,-) Metric Signature convention

Temporal “(V)ertical”
Projection (1,1)-Tensor

Pμ
ν → Vμ

ν = TμTν

→Diag[1,0i
j]{MCRF}

 

4-Tensor
Symmetric

     t      x     y     z 
t  [  1     0     0    0 ]
x [  0     0     0    0 ]
y [  0     0     0    0 ]
z [  0     0     0    0 ]

  1  0j  
 0i  0i

j 

Spatial “(H)orizontal”
Projection (1,1)-Tensor

Pμ
ν → Hμ

ν = ημ
ν - TμTν

→Diag[0,I(3)]=Diag[0,δi
j]{MCRF}

 
4-Tensor
Symmetric

     t      x     y     z 
t  [  0     0     0     0 ]
x [  0     1     0     0 ]
y [  0     0     1     0 ]
z [  0     0     0     1 ]

  0   0j  
 0i  δi

j 

Tr[Vμ
ν]=1

Tr[Hμ
ν]=3

Temporal “(V)ertical”
Projection (0,2)-Tensor

Pμν → Vμν = TμTν

→Diag[1,0ij]{MCRF}

 

4-Tensor
Symmetric

     t      x     y     z 
t  [  1     0     0    0 ]
x [  0     0     0    0 ]
y [  0     0     0    0 ]
z [  0     0     0    0 ]

  1  0j  
 0i  0ij 

Spatial “(H)orizontal”
Projection (0,2)-Tensor

Pμν → Hμν = ημν - TμTν

→Diag[0,-I(3)]=Diag[0,-δij]{MCRF}

 
4-Tensor
Symmetric

     t      x     y     z 
t  [  0     0      0    0 ]
x [  0     -1     0    0 ]
y [  0     0     -1    0 ]
z [  0     0      0   -1 ]

  0   0j  
 0i  -δij 

Tr[Vμν]=1

Tr[Hμν]=3

“(V)ertical” 
Vμν Temporal 

 
 

Hμν Spatial 
“(H)orizontal”

4-UnitTemporal
T=Tμ=γ(1,β)

=γ(1,u/c)=U/c
→(1,0){RestFrame}

 

T∙T=+1



  

Matter Wave
Velocity 
v

group
*v

phase
= c2

Rest Angular
Frequency

Einstein, de Broglie
P = ћK

Planck:Dirac Constant

SRQM Diagram:
Special Relativity → Quantum Mechanics

RoadMap of SR→QM

4-Velocity Uμ

U=γ(c,u)=dR/dτ

4-Momentum Pμ

P=(mc,p)=(E/c,p)=moU

mo

 Eo/c2

4-WaveVector Kμ

K=(ω/c,k)=(ω/c,ωn̂/vphase)
=(1/cT,n̂/λ)=(ωo/c2)U=P/ћ

4-Gradient ∂μ

∂=(∂
t
/c,-∇)=-iK

( -i )

4-Position Rμ

R=(ct,r)=<Event>

ωo/Eo

( 1/ћ )

4-Velocity=Motion
of SR <Events>
in SpaceTime as
both particles & waves

4-Momentum=Substantiation
of SR Particle <Events>
mass:energy & 3-momentum

4-WaveVector=Substantiation
of SR Wave <Events>
oscillations proportional to
mass:energy & 3-momentum

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4
SR SpaceTime 4D Metric
SR Lorentz Transforms
SR Action → 4-Momentum
SR Phase → 4-WaveVector
SR Proper Time
SR & QM Waves

ProperTime
U∙∂=d/dτ=γd/dt

Derivative

SR d’Alembertian &
Klein-Gordon Relativistic
Quantum Wave Relation
Schrödinger QWE is
{|v|<<c} limit of KG QWE
**[ SR → QM ]**

∂μ[Rν]=ημν 
Minkowski

Metric

-∂[S
action,free

]=P

-∂[Φ
phase,free

]=K
 -K∙R=Φ

phase,free

SR Phase

 -P∙R=S
action,free

SR Action
ωo/c2 Einstein

E = mc2 = γmoc2= γEo

Rest Energy:Mass

ProperTime
Derivative

Complex
Plane-Waves

KT = -∂[Φ]
K = i∂

Hamilton-Jacobi
PT = -∂[S]

Tr[ημν]=4

 U∙∂[..]
γd/dt[..]
d/dτ[..]

*START HERE*: 4-Position=Location of SR <Events> in SpaceTime

U∙U=γ2(c2-u∙u)
= (c)2

R∙R=(ct)2-r∙r 
= (cτ)2

P∙P=(E/c)2-p∙p
= (moc)2 = (Eo/c)2

K∙K=(ω/c)2-k∙k 
= (moc/ћ)2 = (ωo/c)2 = (1/cTo)2

 

 

∂∙∂=(∂
t
/c)2-∇∙∇

= -(moc/ћ)2 = -(ωo/c)2

= (∂
τ
/c)2

SpaceTime
∂∙R=∂μRμ=4
Dimension

∂ν[Rμ’]=Λμ’
ν 

Lorentz
Transform

ΛμνΛμν=4

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Existing SR Rules
 Quantum Principles 

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SciRealm@aol.com
http://scirealm.org/SRQM.pdf
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SRQM: The [SR→QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Physical Constant lead to SR,
although technically SR is itself the Minkowski-SpaceTime low-curvature:”flat” limiting-case of GR.
{c,τ,mo,ћ,i} = {c:SpeedOfLight, τ:ProperTime, mo:RestMass, ћ:DiracConstant, i:ImaginaryNumber√[-1]}:
are all Empirically Measured SR Lorentz Invariants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants 
4-Position R = (ct,r) = <Event>   (R∙R) = (cτ)2

4-Velocity U = γ(c,u) = (U∙∂)R=(d/dτ)R=dR/dτ   (U∙U) = (c)2

4-Momentum P = (E/c,p) = moU (P∙P) = (moc)2

4-WaveVector K = (ω/c,k) = P/ħ (K∙K) = (moc/ħ)2  |v|<<c

4-Gradient ∂ = (∂
t
/c,-∇) = -iK   (∂∙∂) = -(moc/ħ)2 = KG Eqn:Relation→RQM→QM

SR + Empirically Measured Physical Constants lead to RQM via the Klein-Gordon Quantum Eqn, and thence to QM
via the low-velocity limit { |v| << c }, giving the Schrödinger Eqn. This fundamental KG relation also leads to the other
Quantum Wave Equations: RQM RQM QM

{ |v| = c : mo = 0 } { 0 <= |v| < c : mo > 0 } { 0 <= |v| << c : mo > 0 }
spin=0 field=4-Scalar: Free Scalar Wave Klein-Gordon Schrödinger (regular QM)
spin=1/2 field=4-Spinor: Weyl Dirac (w/ EM) Pauli (w/ EM)
spin=1 field=4-Vector: Maxwell (EM) Proca

SRQM Chart:
SR→QM Interpretation Simplified

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

mailto:SciRealm@aol.com
mailto:SciRealm@aol.com


  

SRQM 4-Vector Topic Index
SR & QM via 4-Vector Diagrams

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

Mostly SR Stuff 
4-Vector Basics, SR 4-Vectors 
Paradigm Assumptions, Where is Quantum Gravity? 
Minkowski SpaceTime, <Events>, WorldLines, Minkowski Metric 
SR 4-Scalars, 4-Vectors, 4-Tensors & Tensor Invariants, Cayley-Hamilton Theorem 
SR Lorentz Transforms, CPT Symmetry, Trace Identification, Antimatter, Feynman-Stueckelberg 
Fundamental Physical Constants = Lorentz Scalar Invariants = SR 4-Scalars 
Projection Tensors: Temporal “(V)ertical” & Spatial “(H)orizontal” 
Stress-Energy Tensors, Perfect Fluids, Special Cases (Dust,Radiation,DarkEnergy, etc) 
Invariant Intervals, Measurement, Causality, Relativity 
SpaceTime Kinematics & Dynamics, ProperTime Derivative 
Einstein’s E = mc2 = γmoc2= γEo, Rest Mass:Rest Energy, Invariants 
SpaceTime Orthogonality: Time-like 4-Velocity, Space-like 4-Acceleration
Relativity of Simultaneity:Stationarity, Invariant Causality:Topology
Relativity: Time Dilation (←clock moving→), Length Contraction (→ruler moving←)
Invariants: Proper Time  ( | clock at rest | )  , Proper Length          ( | ruler at rest | )
Temporal Ordering: Causality (Time-like) is Absolute; Simultaneity (Space-like) is Relative
Spatial Ordering: Stationarity (Time-like)  is Relative ; Topology (Space-like)     is Absolute
SR Motion * Lorentz Scalar = Interesting Physical 4-Vector 
SR Conservation Laws & Local Continuity Equations, Symmetries 
Relativistic Doppler Effect, Relativistic Aberration Effect 
SR Wave-Particle Relation, Invariant d’Alembertian Wave Eqn, SR Waves, 4-WaveVector 
SpaceTime is 4D = (1+3)D: ∂∙R=∂μRμ=4, ΛμνΛμν=4, Tr[ημν]=4, A = Aμ = (aμ) = (a0,a1,a2,a3) 
Minimal Coupling = Interaction with a (Vector)Potential 
Conservation of 4-TotalMomentum (Energy & 3-momentum)
SR Hamiltonian:Lagrangian Connection 
Lagrangian, Lagrangian Density 
Hamilton-Jacobi Equation (differential), Relativistic Action (integral) 
Euler-Lagrange Equations
Noether’s Theorem, Continuous Symmetries, Conservation Laws
Relativistic Equations of Motion, Lorentz Force Equation 
c2 Invariant Relations, The Speed-of-Light (c) 
Thermodynamic 4-Vectors, Unruh-Hawking Radiation, Particle Distributions

 
SRQM  = The [SR→QM] Interpretation of Quantum Mechanics 

= Special Relativity → Quantum Mechanics

Mostly QM & SRQM Stuff 
 
Relativistic Quantum Wave Equations 
Klein-Gordon Equation/ Fundamental Quantum Relation 
RoadMap from SR to QM: SR→QM, SRQM 4-Vector Connections 
QM Schrödinger Relation 
QM Axioms? - No, (QM Principles derived from SR) = SRQM 
Relativistic Wave Equations: based on mass & spin & relative velocity:energy
Klein-Gordon, Dirac, Proca, Maxwell, Weyl, Pauli, Schrödinger, etc. 
Classical Limits: SR’s { |v|<<c } ; QM’s { ħ|∇∙p| << (p∙p) }
Photon Polarization 
Linear PDE’s→{Principle of Superposition, Hilbert Space, <Bra|,|Ket> Notation} 
Canonical QM Commutation Relations ← derived from SR 
Heisenberg Uncertainty Principle (due to non-zero commutation) 
Pauli Exclusion Principle (Fermion), Bose Aggregation Principle (Boson) 
Complex 4-Vectors, Quantum Probability, Imaginary values 
CPT Theorem, Lorentz Invariance, Poincaré Invariance, Isometry 
Hermetian Generators, Unitarity:Anti-Unitarity 
QM → Classical Correspondence Principle, similar to SR → Classical Low Vel.
The Compton Effect = Photon:Electron Interaction (neglecting Spin Effects) 
Photon Diffraction, Crystal-Electron Diffraction, The Kapitza-Dirac Effect 
The ħ Relation, Einstein-de Broglie, Planck:Dirac 
The Aharonov-Bohm Effect, The Josephson Junction Effect 
 Dimensionless Quantities 

Quantum Relativity: GR is *NOT* wrong, *Never bet against Einstein*  :) 
Quantum Mechanics is Derivable from Special Relativity, SR→QM: SRQM

mailto:SciRealm@aol.com


  

Special Relativity → Quantum Mechanics
Paradigm Background Assumptions (part 1)

There are some paradigm assumptions that need to be cleared up:
 

Relativistic Physics **IS NOT** the generalization of Classical Physics.
Classical Physics **IS** the low-velocity { |v| << c } limiting-case approximation of Relativistic Physics.

This includes (Newtonian) Classical Mechanics and Classical QM, (meaning the non-relativistic Schrödinger QM Equation).
Classical EM is for the most part already compatible with Special Relativity.

However, Classical EM doesn't include intrinsic spin, even though spin is a result of SR Poincaré Invariance, not QM.

So far, in all of my research, if there was a way to get a result classically,
then there was usually a much simpler way to get the result using 4-Vectors and SRQM relativistic thinking.

Likewise, a lot of QM results make much more sense when approached from SRQM (ex: Temporal vs. Spatial relations).

4-Vector formulations are all extremely easy to derive in SRQM and are all relativistically covariant.

Einstein Energy:Mass Eqn: P = moU → { E = mc2 = γmoc2 = γEo : p = mu = γmou }
Hamiltonian: H = γ(PT·U) { Relativistic } → (T + V) = (Ekinetic + Epotential) { Classical-limit only, |u| << c }

Lagrangian: L = -(PT·U)/γ { Relativistic } → (T - V) = (Ekinetic - Epotential) { Classical-limit only, |u| << c }

SR Wave Eqn(differential format):         KT = -∂[Φphase] = PT/ћ → { ωT = -∂t[Φ] : kT =∇[Φ] }
Hamilton-Jacobi Eqn(differential format): PT = -∂[Saction] = ћKT → { ET = -∂t[S] : pT =∇[S] }
Action Equation(integral format):             ΔSaction = -∫pathPT ·dX = -∫path(PT ·U)dτ = ∫pathL dt
SR/QM Wave Equation(integral format): ΔΦphase = -∫pathKT ·dX = -∫path(KT ·U)dτ = ΔSaction/ћ
Euler-Lagrange Equation: (U = (d/dτ)R) → (∂R = (d/dτ)∂U)
Hamilton’s Equations: (d/dτ)[X] = (∂/∂PT)[Ho] & (d/dτ)[PT] = (∂/∂X)[Ho]
d’Alembertian Wave Equation: ∂∙∂ = (∂t/c)2 - ∇∙∇, with solutions ~ Σn e ± (Kn ·X)

Einstein-de Broglie Relation: P = ћK → { E = ћω : p = ћk }
Complex Plane-Wave Relation: K = i∂ → { ω = i∂t : k = -i  ∇ }
Schrödinger Relations: P = iћ∂ → { E = iћ∂t : p = -iћ  ∇ }
Canonical QM Commutation Relations inc. QM Time-Energy:

[Pμ,Xν] = iћημν → { [x0,p0] = [t,E] = -iћ : [xj,pk] = iћδjk }
Minimal Coupling: P = PT - qA →  { E = ET - qφ : p = pT - qa }
Josephson Junction Relation(differential format): A = -(ћ/q)∂[ΔΦpot]
Aharonov-Bohm Relation(integral format): ΔΦpot = -(q/ћ)∫pathA·dX
Compton Scattering: Δλ = (λ' - λ) = (ћ/moc)(1 - cos[ø])
Klein-Gordon Relativistic Quantum Wave Eqn: ∂∙∂ = -(moc/ћ)2

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

mailto:SciRealm@aol.com


  

Special Relativity → Quantum Mechanics
Paradigm Background Assumptions (part 2)

There are some paradigm assumptions that need to be cleared up:

SR 4D Physical 4-Vectors *ARE NOT* generalizations of Classical/Quantum 3D Physical 3-vectors.
While a “mathematical” Euclidean (n+1)D-vector is the generalization of a Euclidean (n)D-vector,

the “Physical/Physics” analogy ends there.

Minkowskian SR 4-Vectors *ARE* the primitive elements of 4D Minkowski SR SpaceTime.
Classical/Quantum Physical 3-vectors are just the spatial components of SR Physical 4-Vectors.

There is also a fundamentally-related Classical/Quantum Physical scalar related to each 3-vector,
which is just the temporal component scalar of a given SR Physical 4-Vector.

ex. 4-Position R = (rμ) = (r0,r) = (ct,r) → (ct,x,y,z) : 4-Momentum P = (pμ) = (p0,p) = (E/c,p) → (E/c,px,py,pz)

These Classical/Quantum {scalar}+{3-vector} are the dual {temporal}+{spatial} components
of a single SR 4-Vector = (temporal scalar * c±1, spatial 3-vector)

with SR lightspeed factor (c±1) to give correct overall dimensional measurement units.

While different observers may see different "values" of the
Classical/Quantum components (v0,v1,v2,v3) from their point-of-view in SpaceTime,

each will see the same actual SR 4-Vector V and its “magnitude” √[V·V] at a given <Event> in SpaceTime.

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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Special Relativity → Quantum Mechanics
Paradigm Background Assumptions (part 3)

There are some paradigm assumptions that need to be cleared up:

We will **NOT** be employing the commonly-(mis)used Newtonian classical limits {c→∞} and {ћ→0}.
Neither of these is a valid physical assumption, for the following reasons:

[1]
Both (c) and (ћ) are unchanging Physical Constants and Lorentz Scalar Invariants.

Taking a limit where these change is non-physical. They are CONSTANT. 
Many, many experiments verify that these constants have not changed over the lifetime of the universe.

This is one reason for the 2019 Redefinition of SI Base Units on Fundamental Constants {c,ћ,e,kB,NA,KCD,ΔνCs}.
[2]

Let E = pc. If c→∞, then E→∞. Then Classical EM light rays/waves have infinite energy.
Let E = ћω. If ћ→0, then E→0. Then Classical EM light rays/waves have zero energy.

Obviously neither of these is true in the Newtonian limit.
In Classical EM and Classical Mechanics, LightSpeed (c) remains a large but finite constant.
Likewise, Dirac’s (Planck-reduced) Constant (ћ) remains very small but never becomes zero.

The correct way to take the limits is via:
The low-velocity non-relativistic limit { |v| << c }, which is a physically-occurring situation.

The Hamilton-Jacobi non-quantum limit { ћ| ·p∇ | << (p·p) }, which is a physically-occurring situation.

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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There are some paradigm assumptions that need to be cleared up:
 

We will *NOT* be implementing the common {→lazy and extremely misguided} convention of setting physical constants
to the value of (dimensionless) unity, often called “Natural Units”, to hide them from equations; nor using mass (m) instead of (mo) as the RestMass.

Likewise for other components vs Lorentz Scalars with naughts, like energy (E) vs (Eo) as the RestEnergy.

One sees this very often in the literature.  The usual excuse cited is “For the sake of brevity”.
Well, the “sake of brevity” forsakes “clarity”

The *ONLY* situation in which setting constants to unity is practical or advisable is in numerical simulation.
When teaching physics, or trying to understand physics: it helps when equations are dimensionally correct.

In other words, the technique of dimensional analysis is a powerful tool that should not be disdained.
i.e. Brevity only aids speed of computation, Clarity aids understanding.

The situation of using “naught = o” for rest-values, such as (mo) for RestMass and (Eo) for RestEnergy:
Is intrinsic to SR, is a very good idea, absolutely adds clarity, identifies Lorentz Scalar Invariants, and will be explained in more detail later.

Essentially, the relativistic gamma (γ) pairs with a (Lorentz scalar:rest value o) to make a relativistic component: m = γmo ; E = γEo

Note the multiple equivalent ways that one can write 4-Vectors using these rules:

4-Momentum P = Pμ = (pμ) = (p0,pi) = (mc,p) = moU = moγ(c,u) = γmo(c,u) = m(c,u) = (mc,mu) = (mc,p) = mc(1,β)
= (E/c,p) = (Eo/c2)U = (Eo/c2)γ(c,u) = γ(Eo/c2)(c,u) = (E/c2)(c,u) = (E/c,Eu/c2) = (E/c,p) = (E/c)(1,β)

This notation makes clear what is { relativistic (varying) vs. invariant } , { temporal vs. spatial }
BTW, I prefer the “Particle Physics” Metric-Signature-Convention (+,-,-,-). {Makes rest values positive, fewer minus signs to deal with}

Show the physical constants and naughts in the work. They deserve the respect and you will benefit.
You can always set constants to unity later, when you are doing your numerical simulations.

Special Relativity → Quantum Mechanics
Paradigm Background Assumptions (part 4)

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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John B. Wilson
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There are some paradigm assumptions that need to be cleared up:

Special Relativity → Quantum Mechanics
Paradigm Background Assumptions (part 5)

4-(EM)VectorPotential
A=Aμ=(φ/c,a)

AEM=AEM
μ=(φEM/c,aEM)

Faraday EM
Tensor

Fαβ = ∂αAβ - ∂βAα

= ∂ ^ A
→

[Ftt   Ftx  Fty Ftz ]
[Fxt Fxx Fxy Fxz]
[Fyt Fyx Fyy Fyz]
[Fzt Fzx Fzy Fzz]

=
[   0     -ex/c  -ey/c  -ez/c]
[+ex/c   0      -bz      +by ]
[+ey/c  +bz     0        -bx ]
[+ez/c   -by    +bx       0  ]

= 
[   0   , -ej/c ]
[+ei/c, -εij

k
bk ]

= 
[   0   ,  -e/c  ]
[+eT/c, - ^a∇  ]

Many physics books say that the Electric field E and the Magnetic field B
are the “real” physical objects, and that the EM scalar-potential φ and
the EM 3-vector-potential A are just “calculational/mathematical” artifacts. 
 
Neither of these statements is relativistically correct.

All of these physical EM properties: {E,B,φ,A} are actually just the components of SR tensors,
and as such, their values will vary in different observers’ reference-frames.
The truly SR invariant physical objects are:
The 4-Gradient ∂, the 4-VectorPotential A, and their combination via exterior (wedge=^) product
into the Faraday EM Tensor Fαβ = ∂αAβ - ∂βAα = ∂ ^ A

Given this SR knowledge, to match 4-Vector notation, we demote the physical property symbols, 
(the tensor components) to their lower-case equivalents {e,b,φ,a}.  : see Wolfgang Rindler

Temporal-spatial components of 4-Tensor Fαβ: electric 3-vector field e.
Spatial-spatial components of 4-Tensor Fαβ: magnetic 3-vector field b.
Temporal component of 4-Vector A: EM scalar-potential φ.
Spatial components of 4-Vector A: EM 3-vector-potential a.

Note that the Speed-of-Light (c) plays a prominent role in the component definitions.
Also, QM requires the 4-VectorPotential A as explanation of the Aharonov-Bohm Effect.
Again, all the higher-index-count SR tensors can be built from fundamental 4-Vectors.

4-Gradient
∂=∂μ=(∂

t
/c,-∇)

→(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)
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Special Relativity → Quantum Mechanics
Paradigm Background Assumptions (part 6)

There are some paradigm assumptions that need to be cleared up:
A number of QM philosophies make the assertion that particle “properties” do not “exist” until measured.

The assertion is based on the QM Heisenberg Uncertainty Principle, and more specifically on quantum non-zero commutation,
in which a measurement on one property of a particle alters a different non-commuting property of the same particle.

That is an incorrect analysis. Properties define particles: what they do, how they interact with other particles. Particles and their properties “exist” 
independently of human intervention or observation. The correct way to analyze this is to understand what a measurement is: the arrangement of 
some number of fundamental particles in a particular manner as to allow an observer to get information about one or more of the subject particle’s 

properties.  Typically this involves “counting” spacetime events and using SR invariant intervals as a basis-of-measurement.

Some properties are indeed non-commuting. This simply means that it is not possible to arrange a set of particles in such a way as to measure
(ie. obtain “complete” information about) both of the “subject particle’s” non-commuting properties at the same spacetime event. The measurement 

arrangement events can be done at best sequentially, and the temporal order of these events makes a difference in observed results. EPR-Bell, 
however, allows one to “infer” properties on a subject particle by making a measurement on a different {space-like separated but entangled} particle.

This does *not* imply FTL signaling. It just updates local partial-information one has about particles that interacted/entangled then separated.

So, a better way to think about it is this: The “measurement” of a property does not “exist” until a physical setup event is arranged. Non-commuting 
properties require different physical arrangements in order for the properties to be measured, and the temporally-first measurement alters the 

particle’s properties in a minimum sort of way, which affects the latter measurement.  All observers agree on the time order of temporally-separated 
spacetime events. However, individual observers may have different sets of partial information about the same particle(s).

This makes way more sense than the subjective belief that a particle’s property doesn’t exist until it is observed,
which is about as unscientific and laughable a statement as I can imagine.

*Relativity is the system of measurement that QM has been looking for*

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

SR → QM
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Special Relativity → Quantum Mechanics
Paradigm Background Assumptions (part 7)

There are some paradigm assumptions that need to be cleared up:

Correct Notation is critical for understanding physics

Unfortunately, there are a number of “sloppy” notations in relativistic and quantum physics.

Incorrect: Using Tii as a Trace of tensor Tij, or Tμμ as a Trace of tensor Tμν

Tii is actually just the diagonal part of 3-tensor Tij, the components: Tii = Diag[T11,T22,T33]
Ti

i is the Trace of 3-tensor Tij: Ti
i = T1

1+T2
2+T3

3 = 3-trace[Tij] = δijTij = +T11+T22+T33 in the Euclidean Metric Eij = δij 

Tμμ is actually just the diagonal part of 4-Tensor Tμν, the components: Tμμ = Diag[T00,T11,T22,T33]
Tμ

μ is the Trace of 4-Tensor Tμν: Tμ
μ = T0

0+T1
1+T2

2+T3
3 = 4-Trace[Tμν] = ημνTμν = +T00-T11-T22-T33 in the Minkowskian Metric ημν

Incorrect: Hiding factors of LightSpeed (c) in relativistic equations, ex. E = m
The use of “natural units” leads to a lot of ambiguity, and one loses the ability to do dimensional analysis.

Wrong: E=m: Energy is *not* identical to mass.
Correct: E=mc2: Energy is related to mass via the Speed-of-Light, ie. mass is a type of concentrated energy.

Incorrect: Using m instead of mo for rest mass, Using E instead of Eo for rest energy
Correct: E = mc2 = γmoc2 = γEo

E & m are relativistic internal components of 4-Momentum P=(mc,p)=(E/c,p) which vary in different reference-frames.
Eo & mo are Lorentz Scalar Invariants, the rest values, which are the same, even in different reference-frames: P=moU=(Eo/c2)U

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)
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There are some paradigm assumptions that need to be cleared up:

Incorrect: Using the same symbol for a tensor-index and a component 
The biggest offender in many books for this one is quantum commutation. 

Unclear because ( i ) means two different things in the same equation.
Better: ( i = √[-1] ) is the imaginary unit ; { j,k } are tensor-indicies

In general, any equation which uses complex-number math should reserve (i) for the imaginary, not as a tensor-index.

Incorrect: Using the 4-Gradient notation incorrectly
The 4-Gradient is a 4-Vector, a (1,0)-Tensor, which uses an upper index, and has a negative spatial component (-∇) in SR.

The Gradient One-Form, its natural tensor form, a (0,1)-Tensor, uses a lower index in SR.
4-Gradient: ∂=∂μ=(∂

t
/c,-∇) Gradient One-Form: ∂μ=(∂

t
/c,∇)

Incorrect: Mixing styles in 4-Vector naming conventions
There is pretty much universal agreement on the 4-Momentum P=Pμ=(E/c,p)=(mc,p)=(E/c,p)=(mc,p)

Do not in the same document use 4-Potential A=(φ,A): This is wrong on many levels.
The correct form is 4-VectorPotential A=Aμ=(φ/c,a)=(φ/c,a), with (φ) as the scalar-potential & (a) as the 3-vector-potential

For all 4-Vectors, one should use a consistent notation:
The Upper-Case SpaceTime 4-Vector Names match the lower-case spatial 3-vector names

There is a LightSpeed (c) factor in the temporal component to give overall matching dimensional units for the entire 4-Vector
4-Vector components are typically lower-case with a few historical exceptions, mainly energy (E) vs. energy-density (e) or (ρe)

Wrong: [xi,pj] = iћδij 
  Right: [xj,pk] = iћδjk

Better: [Pμ,Xν] = iћημν

Special Relativity → Quantum Mechanics
Paradigm Background Assumptions (part 8)

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)
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Old Paradigm: QM (as I was taught) 
 SR and QM as separate theories

Simple GR Axioms:
Principle of Equivalence
Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric gμν

c,G = physical constants

GR

GR limiting-case: gμν → ημν 
Minkowski “Flat” SpaceTime 
Metric = (Curvature ~ 0)

SR RQM

QFT

CM

Quantum 
Gravity ???

Multiple
Particles

Obscure QM Axioms:
Wave-Particle Duality
Unitary Evolution
Operator Formalism
Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle
Pauli Exclusion Principle
Hermitian Generators
Correspondence Principle to CM
Born Probability Interpretation
h,ħ = physical constants

QM
QM limiting-case:
# particles N >> 1

This was the QM paradigm that I was taught while in Grad School; everyone trying for Quantum Gravity

SR limiting-case:
   |v| << c

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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Old Paradigm: QM (years later...) 
SR and QM still as separate theories

QM limiting-case better defined, still no QG

GR

SR RQM

QFT

CM

Quantum 
Gravity ???

Multiple
Particles

Obscure QM Axioms:
Wave-Particle Duality
Unitary Evolution
Operator Formalism
Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle
Pauli Exclusion Principle
Hermitian Generators
Correspondence Principle to CM
Born Probability Interpretation
h,ħ = physical constants

QM
QM-limiting case:
ħ|∇∙p| << (p∙p)
or ψ→Re[ψ]

It is known that QM + SR “join nicely” together to form RQM, but problems with RQM + GR...

A fortuitous 
merging?

Yet another 
“would be” 
fortuitous 
merging???

50+ years 
searching for 
QG with
no success...

Another fortuitous 
merging??

SR limiting-case:
   |v| << c

Simple GR Axioms:
Principle of Equivalence
Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric gμν

c,G = physical constants

GR limiting-case: gμν → ημν 
Minkowski “Flat” SpaceTime 
Metric = (Curvature ~ 0)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

Physical Theories as Venn Diagram
Which regions are real?

Many QM physicists believe that the regions outside of QM don’t exist…
SRQM Interpretation would say that the regions outside of GR probably don’t exist...

GR:
General Relativity

QM:
Quantum Mechanics

SR:
Special Relativity  

GR limiting-case: gμν → ημν Minkowski “Flat” SpaceTime = (Curvature ~ 0)

CM:
Classical Mechanics

SR limiting-case: |v| << c
QM limiting-case: ħ|∇∙p| << (p∙p) 

 

  QM physicists think these areas,
 anything outside of QM, doesn’t exist…

Hence the attempt to Quantize Gravity:
  Unsuccessful for 50+ years…

       A new approach is needed:
             Try SRQM

Many-Worlds Interpretations
  Non-local interactions
    Instantaneous QM entangled connections
      Instantaneous Physical Wavefunction Collapse
       Spacetime Dimensions >4
        Hidden:Alternate Dimensions
        Super-Symmetry
        String Theory
        Alternate Gravity Theories
      etc.

    Quantum Mysticism… 

  Basically lots of stuff for which there is
 little to no empirical evidence…
& a load of hype...

RQM:
Relativistic

QM

Quantum
Gravity?

Reality

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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Physical Limit-Cases as Venn Diagram
Which limit-regions use which physics?

 

Quantum Gravity? Actual GR?

 

SR limit-case: |v| << c

QM limit-case: ħ|∇∙p| << (p∙p)
or ψ→Re[ψ]

Change by a few quanta 
has negligible effect

on overall state

GR limit-case: gμν → ημν 
Minkowski “Flat” SpaceTime

= (Curvature ~ 0)
 

SRQM
Special Relativity → Relativistic QM

CM 
Classical 

Mechanics QM 
Non-relativistic 

Quantum 
Mechanics

Classical SR 
Classical (non-QM)
Special Relativity

Classical GR 
Classical (non-QM)
General Relativity

RQM 
Relativistic QM

Instead of taking the Physical Theories as set, examine 
Physical Reality and then apply various limiting-conditions.

What do we then call the various regions?

As we move inwards from any region on the diagram, we 
are adding more stringent conditions which give physical 

limiting-cases of “larger:more encompassing” theories.

If one is in Classical GR, one can get Classical SR by 
moving toward the Minkowski SpaceTime limit.

If one is in RQM, one can get Classical SR by moving 
toward the Hamilton-Jacobi non-QM limit, or to standard 

QM by moving toward the SR low-velocity limit.

Looking at it this way, I can define SRQM to be equivalent 
to Minkowski SpaceTime, which contains RQM, and leads 

to Classical SR, or QM, or CM by taking additional limits.

My assertion:
There is no “Quantized Gravity”

Actual GR contains SRQM and Classical GR.
Perhaps “Gravitizing QM”...

Reality

Large gravity
fields typically lead

to relativistic speeds |v| ~ c 

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)
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Special Relativity → Quantum Mechanics
Background: Proven Physics

Both General Relativity (GR) and Special Relativity (SR) have passed very stringent tests of multiple varieties.
Likewise, Relativistic Quantum Mechanics (RQM) and standard Quantum Mechanics (QM) have passed all tests within their realms of validity:
{ generally micro-scale systems: ex. Single particles, ions, atoms, molecules, electric circuits, etc., 
  but a few special macro-scale systems: ex. Bose-Einstein condensates, super-currents, super-fluids, long-distance entanglement, etc.}.

To date, however, there is no observational/experimental indication that quantum effects "alter" the fundamentals of either SR or GR.
Likewise, there are no known violations, QM or otherwise, of Local Lorentz Invariance (LLI) nor of Local Position/Poincaré Invariance (LPI).
In fact, in all known experiments where both SR/GR and QM are present, QM respects the principles of SR/GR, whereas SR/GR modify the results of QM.  
All tested quantum-level particles, atoms, isotopes, super-positions, spin-states, etc. obey GR's Universality of FreeFall & Equivalence Principle and SR's 
{ E = mc2 } and speed-of-light (c) communication/signaling limit.  Meanwhile, quantum-level atomic clocks are used to measure gravitational red:blue-shift 
effects. i.e. GR gravitational frequency-shift (gravity time-dilation) alters atomic=quantum-level timing.  Think about that for a moment...

Some might argue that QM modifies the results of SR, such as via non-commuting measurements.  However, that is an alteration of CM expectations,
not SR expectations.  In fact, there is a basic non-zero commutation relation fully within SR: [∂μ,Xν] = ημν which will be derived from purely SR Principles
in this treatise. The actual commutation part ( Commutator [a,b] ) is not about ( ћ ) or ( i ), which are just Lorentz invariant multipliers.

On the other hand, GR Gravity *does* induce changes in quantum interference patterns and hence modifies QM:
See the COW gravity-induced neutron QM interference experiments and the LIGO gravitational-wave detections via QM interferometry.
Likewise, SR induces fine-structure splitting of spectral lines of atoms, “quantum” spin, spin magnetic moments, spin-statistics (fermions & bosons), 
antimatter, QED, Lamb shift, relativistic heavy-atom effects (liquid mercury, color of gold, lead batteries, heavy noble-gas interactions, relativistic 
chemistry...), etc. - essentially requiring QM to be RQM to be valid. QM is instead seen to be limiting-case of RQM for { |v| << c }.

Some QM scientists say that quantum entanglement is "non-local", but you still can't send any real messages/signals/information/particles faster than
SR's speed-of-light (c).  The only “non-local” aspect is the alteration of probability-distributions based on knowledge-changes obtained via measurement.
A local measurement can only alter the “partial information” known about the probability-distribution of a distant (entangled) system.
There is no FTL communication-with nor alteration-of the distant particle. Getting a Stern-Gerlach “up” here doesn’t cause the distant entangled particle to 
suddenly start moving “down” there.  One only knows “now” that it “would” go down “if” the distant experimenter actually performs the measurement.

QM respects the principles of SR/GR, whereas SR/GR modify the results of QM

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
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Special Relativity → Quantum Mechanics
Background: GR Principles

Principles/Axioms and Mathematical Consequences of GR:

Equivalence Principle: Inertial Motion = Geodesic Motion, Universality/Equivalency of Free-Fall, Mass inertial = Massgravitational

Relativity Principle: SpaceTime (M) has a Lorentzian/pseudo-Riemannian Metric (gμν), SR:Minkowski Space rules apply locally (ημν)

General Covariance Principle: Tensors describe Physics, Laws of Physics are independent of chosen Coordinate System

Invariance Principle: Invariant Interval Measure comes from Tensor Invariance Properties, 4D SpaceTime from Invariant Trace[gμν]=4

Causality Principle: Minkowski Diagram/Light-Cone give {Time-Like, Light-Like(Null), Space-Like} Measures and Causality Conditions

Einstein:Riemann’s Ideas about Matter & Curvature:
Riemann(g) has 20 independent components → too many
Ricci(g) has 10 independent components = enough to describe/specify a gravitational field

{c,G} are Fundamental Physical Constants

To-date, there are no known violations of any of these GR Principles.

It is vitally important to keep the mathematics fixed to known physics.  There are too many instances of trying to apply theoretical math to 
physics (ex. String Theory – no physical evidence to date).  It doesn’t work that way.  Nature is the arbiter of what math works with physics. 
Tensor mathematics applies well to known physics {SR and GR}, which have been extremely well-tested in a variety of physical situations.

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

GR limiting-case: gμν → ημν 
Minkowski “Flat” SpaceTime 
Metric = (Curvature ~ 0)

All known experiments to date comply with all of these Principles, including QM and RQM



  

Old Paradigm: QM (for comparison) 
SR and QM still as separate theories

QM limiting-case better defined, still no QG

GR

SR RQM

QFT

CM

Quantum 
Gravity ???

Multiple
Particles

Obscure QM Axioms:
Wave-Particle Duality
Unitary Evolution
Operator Formalism
Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle
Pauli Exclusion Principle
Hermitian Generators
Correspondence Principle to CM
Born Probability Interpretation
h,ħ = physical constants

QM

It is known that QM + SR “join nicely” together to form RQM, but problems with RQM + GR...

A fortuitous 
merging?

Yet another 
“would be”
fortuitous 
merging???

50+ years 
searching for 
QG with
no success...

Another fortuitous 
merging??

SR limiting-case:
   |v| << c

QM limiting-case:
ħ|∇∙p| << (p∙p)
or ψ→Re[ψ]

Simple GR Axioms:
Principle of Equivalence
Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric gμν

c,G = physical constants

GR limiting-case: gμν → ημν 
Minkowski “Flat” SpaceTime 
Metric = (Curvature ~ 0)

SR → QM
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*New Paradigm: SRQM or [SR→QM]* 
QM derived from SR + a few empirical facts

Simple and fits the data

QM

GR

SR RQM

QFT

This new paradigm explains why RQM “miraculously fits” SR, but not necessarily GR

CM

Derived RQM **Principles**:
Wave-Particle Duality
Unitary Evolution
Operator Formalism
Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle
Pauli Exclusion Principle
Hermitian Generators
h,ħ = physical constants

Derived QM **Principles**:
Correspondence Principle to CM
Born Probability Interpretation

QM limiting-case:
{ħ|∇∙p| << (p∙p)} or {ψ→Re[ψ]}
Change by a few quanta has 
negligible effect on overall state

Quantum 
Gravity ???

(relations)
SR 4-vector:
R=<Event>
U=dR/dτ
P=(mo)U
K=(1/ħ)P
∂=(-i)K

SRQM   

Multiple
Particles

SR limiting-case:
   |v| << c

Simple GR Axioms:
Principle of Equivalence
Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric gμν

c,G = physical constants

GR limiting-case: gμν → ημν 
Minkowski “Flat” SpaceTime 
Metric = (Curvature ~ 0)

(properties)
SR 4-vector:
R=(ct,r)
U=γ(c,u)
P=(E/c,p)
K=(ω/c,k)
∂=(∂t/c,-∇)

SR → QM
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*New Paradigm: SRQM w/ EM*
QM, EM, CM derived from
SR + a few empirical facts

QM
EM w/ spin

GR

SR RQM
QED

QFT

(properties)
SR 4-vector & EM tensor:
R=(ct,r)       A=(φ/c,a)
U=γ(c,u)      J=(cρ,j)
P=(E/c,p)
K=(ω/c,k)   Fαβ=[   0  , -ej/c ]
∂=(∂t/c,-∇)         [+ei/c,-εij

kbk]
F=γ(Ė/c,f)
N=n(c,u)

This new paradigm explains why RQM “miraculously fits” SR, but not necessarily GR

CM q=0

EM q≠0

Derived RQM **Principles**:
Wave-Particle Duality
Unitary Evolution
Operator Formalism
Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle
Pauli Exclusion Principle
Hermitian Generators
h,ħ = physical constants

Derived QM **Principles**:
Correspondence Principle to CM
Born Probability Interpretation

Quantum 
Gravity ???

(relations)
SR 4-vector & EM tensor:
R=<Event> A=(φo/c2)U
U=dR/dτ     J=(ρo)U=(q)N
P=(mo)U     K= -∂[Φphase]
K=(1/ħ)P    Fαβ=∂αAβ-∂βAα

∂=(-i)K      U·Fαβ=(1/q)F
F=dP/dτ     ∂·Fαβ=(μo)J
N=(no)U     ∂·J=0

SRQM   

Multiple
Particles

SR limiting-case:
   |v| << c

QM limiting-case:
{ħ|∇∙p| << (p∙p)} or {ψ→Re[ψ]}
Change by a few quanta has 
negligible effect on overall state

Simple GR Axioms:
Principle of Equivalence:
Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric gμν

c,G = physical constants

GR limiting-case: gμν → ημν 
Minkowski “Flat” SpaceTime 
Metric = (Curvature ~ 0)

SR → QM
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4-Vector SRQM Interpretation
of QM
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Classical SR w/ EM Paradigm (for comparison)

CM & EM derived from 
SR + a few empirical facts

GR

SR SR
EM

CM q=0

EM q≠0

(relations)
SR 4-vector & EM tensor:
R=<Event> A=(φo/c2)U
U=dR/dτ     J=(ρo)U=(q)N
P=(mo)U     K= -∂[Φphase]

     Fαβ=∂αAβ-∂βAα

∂=(-i)K      U·Fαβ=(1/q)F
F=dP/dτ     ∂·Fαβ=(μo)J
N=(no)U     ∂·J=0

The entire classical SR→EM,CM structure is based on the 
limiting-case of quantum effects being negligible.

Notice that only the SR 4-Vector relation: K=(1/ħ)P 
is missing from the Classical Interpretation…

All of the SR 4-Vectors, including (K & ∂),
are still present in the Classical setting.

K is used in the Relativistic Doppler Effect and EM waves.
∂ is used in the SR Conservation/Continuity Equations,
Maxwell Equations, Hamilton-Jacobi, Lorenz Gauge, etc.
∂=(-i)K may be somewhat controversial, but it is the equation for 
complex plane-waves, which are in classical EM (in real form).

This (Classical=non-QM) SR→{EM,CM} paradigm has been working successfully for decades...

Background Inherent Assumption

QM limiting-case:
{ħ|∇∙p| << (p∙p)} or {ψ→Re[ψ]}
Hamilton-Jacobi non-quantum
Change by a few quanta has 
negligible effect on overall state

SR limiting-case:
   |v| << c

Simple GR Axioms:
Principle of Equivalence
Invariant Interval Measure
Tensors describe Physics
SpaceTime Metric gμν

c,G = physical constants

GR limiting-case: gμν → ημν 
Minkowski “Flat” SpaceTime 
Metric = (Curvature ~ 0)

(properties)
SR 4-vector & EM tensor:
R=(ct,r)       A=(φ/c,a)
U=γ(c,u)      J=(cρ,j)
P=(E/c,p)
K=(ω/c,k)   Fαβ=[   0  , -ej/c ]
∂=(∂t/c,-∇)         [+ei/c,-εij

kbk]
F=γ(Ė/c,f)
N=n(c,u)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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John B. Wilson



  

New Paradigm:
SRQM View as Venn Diagram

The SRQM view: Each level (range of validity) is a subset of the larger level.

GR
General Relativity

SRQM
Special Relativity → Relativistic QM  

GR limiting-case: gμν → ημν Minkowski “Flat” SpaceTime = (Curvature ~ 0)

QM
Non-relativistic Quantum Mechanics

SR limiting-case: |v| << c

CM
Classical Mechanics

QM limiting-case: ħ|∇∙p| << (p∙p) or ψ→Re[ψ] 
Change by a few quanta has negligible

effect on overall state

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

New Paradigm:
SRQM View w/ EM as Venn Diagram

The SRQM view: Each level (range of validity) is a subset of the larger level

GR
General Relativity

SRQM
Special Relativity → Relativistic QM  

GR limiting-case: gμν → ημν Minkowski “Flat” SpaceTime = (Curvature ~ 0)

QM
Non-relativistic Quantum Mechanics

SR limiting-case: |v| << c

CM
Classical Mechanics

QM limiting-case: ħ|∇∙p| << (p∙p) or ψ→Re[ψ] 
Change by a few quanta has negligible

effect on overall state

q=0

     
  q≠0, A

≠0     
 

EM w/ spin     
   Q

ED      
     

  

     
 EM     

ex.Stern-Gerlach     
 ex.photon     

   G
R EM     

  

     
     

ex.photoelectric
 effect    

polarization    e
x.Hawking- 

     
ex.electron diffra

ction     
     

     
     

     
     

   U
nruh     

 

ex.Aharonov-Bohm     
     

     
     

     
     

 radiation?

 

q≠0, A
≠0

q=0

q = EM charge
A = 4-EMVectorPotential

SR → QM
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Newton's laws of classical physics are greatly simplified by the use of physical 3-vector notation, which converts 3 separate space components,
which may be different in various coordinate systems, into a single invariant object, a vector, with an invariant magnitude:
The basis-values of these components can differ, yet still refer to the same overall 3-vector object. 

→ (ax,ay,az) Cartesian/Rectangular 3D basis
 → (ar,aθ,az) Polar/Cylindrical 3D basis

→ (ar,aθ,aΦ) Spherical 3D basis

→ (at,ax,ay,az) Cartesian/Rectangular 4D basis 
→ (at,ar,aθ,az) Polar/Cylindrical 4D basis 
→ (at,ar,aθ,aφ) Spherical 4D basis

SR is able to expand the concept of mathematical vectors into the Physical 4-Vector,
which combines both (time) and (space) components into a single (TimeSpace) object:
These 4-Vectors are elements of Minkowski 4D SR SpaceTime.
Typically there is a Speed-of-Light factor (c)
in the temporal component to make the dimensional units match.
eg. R = (ct,r): overall dimensional units of [length] = SI Unit [m]
This also allows the 4-Vector name to match up with the 3-vector name.

In this presentation:
I use the (+,-,-,-) metric signature, giving A∙A = AμημνAν = [(a0)2 - a∙a] = (a0

o)2 
4-Vectors will use Upper-Case Letters, ex. A; 3-vectors will use lower-case letters, ex. a; I always put the (c) in the temporal component.
Vectors of both types will be in bold font; components and scalars in normal font and usually lower-case. 4-Vector name will match 3-vector name.
Tensor form will usually be normal font with a tensor index, ex. Aμ or ai, with Greek TimeSpace index (0,1..3); Latin SpaceOnly index (1..3)

SR language beautifully expressed
with Physical 4-Vectors

4-Position
R = Ru = (ru) = (ct,r)
= (r0,r i) = (r0,r1,r2,r3)

= <Event>

c

⊗

[s]

[m]

[m]

SR 4-Vector (4D)
Classical 3-vector (3D)

Classical scalar (1D)
Lorentz
4-Scalar
[m/s]

Classical 3D objects styled this 
way to emphasize that they 
are actually just the separated 
components of SR 4-Vectors.
The triangle/wedge (3 sides) 
represents splitting the 
components into a scalar and 
3-vector.

time 
t

3-position
r = r i→(x,y,z)
= <location>

Classical (scalar  ;  3-vector)
 Galilean Not Lorentz
Invariant    Invariant

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

3-vector = 3D (1,0)-tensor
a = ai = (ai) = (a) = (a1,a2,a3)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

 

a∙a=ajδ
jk
ak=(a1)2+(a2)2+(a3)2=|a|2

4-Vector = 4D (1,0)-Tensor
A = Aμ = (aμ) = (a0,ai) = (a0,a) = (a0,a1,a2,a3)

A∙A=Aμη
μν

Aν=(a0)2-a∙a=(a0
o)2 

The scalar products of either type: {3D,4D} are basis-independent.
However, unlike the 3D magnitude (only +)=Riemannian=positive-definite, 
 the 4D magnitude can be (+/-)=pseudo-Riemannian→CausalConditions



  

SR 4-Vectors & Lorentz Scalars
Frame-Invariant Equations

SRQM Diagramming Method
4-Vectors are type (1,0)-Tensors, Lorentz {4-}Scalars are type (0,0)-Tensors, 4-CoVectors are type (0,1)-Tensors,
(m,n)-Tensors have (m) # upper-indices and (n) # lower-indices. Vμ, S, Cμ, Tαβγ..{m indicies}

μν..{n indicies}

 
Any equation which employs only Tensors, such as those with only 4-Vectors and Lorentz 4-Scalars, (ex. P = moU) is automatically
Frame-Invariant, or coordinate-frame-independent.  One’s frame-of-reference plays no role in the form of the overall equations.
This is also known as being “Manifestly-Invariant”. This is exactly what Einstein meant by his postulate:
“The laws of physics should have the same form for all inertial observers”.  Use of the RestFrame-naught ( o) helps show this.
It is seen when the spatial part of a magnitude can be set to zero (at-rest).  Then the temporal part would equal the rest value.

The components (a0,a1,a2,a3) of the 4-Vector A can vary depending on the observer and their choice of coordinate system, but the
4-Vector A = Aμ itself is invariant.  Equations using only 4-Tensors, 4-Vectors, and Lorentz 4-Scalars are true for all inertial observers. 
The SRQM Diagramming Method makes this easy to see in a visual format, and will be used throughout this treatise.
The following examples are SR frame-invariant equations:

U∙U = (c)2

U = γ(c,u)
P = (mc,p) = (E/c,p) = moU = (Eo/c2)U
K = (ω/c,k) = (ω/c,ωn̂/v

phase
) = (ωo/c2)U

P∙U = Eo

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)ωo/c2

U∙U=c2

Equation Form SRQM Diagram Form

P∙U=Eo

The SRQM Diagram Form has all of the 
info of the Equation Form, but shows 
overall relationships and symmetries 
among the 4-Vectors much more clearly.

Blue: Temporal components
Red: Spatial components
Purple: Mixed TimeSpace components

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

4-Vector = 4D (1,0)-Tensor
A = Aμ = (aμ) = (a0,ai) = (a0,a) = (a0,a1,a2,a3) → (at,ax,ay,az){rectangular basis} 

A∙A = Aμη
μν

Aν =

(a0)2-a∙a = (a0
o)2



  

We want to be clear, however, that SR 4-Vectors are NOT generalizations of Classical or Quantum 3-vectors.

SR 4-Vectors are the primitive elements of Minkowski SpaceTime (4D) which incorporate both:
a {temporal scalar element} and a {spatial 3-vector element} as components.  Temporals and Spatials are metrically distinct, but can mix in SR.
4-Vector A = Aμ = (aμ) = (a0,a1,a2,a3) = (a0,a) → (at,ax,ay,az) with component scalar (at) & component 3-vector a → (ax,ay,az)

It is the Classical or Quantum 3-vector (a) which is a limiting-case approximation of the spatial part of SR 4-Vector (A) for { |v| << c }.

i.e. The Energy (E) and 3-momentum (p) as “separate” entities occurs only in the low-velocity limit { |v| << c } of the Lorentz Boost Transform.
They are actually part of a single 4D entity: the 4-Momentum P = (E/c,p); with the components: temporal (E), spatial (p), dependent on a
frame-of-reference, while the overall 4-Vector P is invariant. Likewise with (t) and (r) in the 4-Position R.  

SR is Minkowskian; obeys Lorentz/Poincaré Invariance. CM is Euclidean; obeys Galilean Invariance.

SR 4-Vectors are primitive elements of 
Minkowski SpaceTime (4D)←(1+3)D

4-Position
R=(ct,r)

4-Position
CM

R
CM

=(ct  ;  r)
Classical limiting-case

|v| << c

[s]

[m]

[m]
1/c

4-Momentum
P=(E/c,p)

4-Momentum
CM

P
CM

=(E/c  ;  p)

(E) can intermix with (p)
via a Lorentz Boost
Transformation 
Λμ’

ν→Bμ’
ν

Spatial components can 
intermix via a Lorentz Rotation 
Transform Λμ’

ν→Rμ’
ν

(t) can intermix with (r)
via a Lorentz Boost
Transformation 
Λμ’

ν→Bμ’
ν

(E) is totally
independent of (p)
only classically

Spatial components can
intermix via a Galilean (space-only) Rotation
Transform Rj’

k

(t) is totally
independent of (r) 
only classically

Classical limiting-case
|v| << c

[kg∙m2/s2]
c

[kg∙m/s]

[kg∙m/s]

Minkowski
(1+3)D → 4D [TimeSpace]

Euclidean
[Time] + 3D [Space]

Lorentz
Invariant

Galilean
Invariant

3-position
r = r i→(x,y,z)

time
t

3-momentum
p→(px,py,pz)

energy
E

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Classical (scalar  ;  3-vector)
 Galilean Not Lorentz
Invariant    Invariant

SR → QM
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4-Vector SRQM Interpretation
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SRQM Study
Manifest Invariance:

Invariant SR 4-Vector Relations

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

Relations among 4-Vectors and Lorentz 4-Scalars are Manifestly Invariant, meaning that they are true in all inertial reference frames.

Consider a particle at a SpaceTime <Event> that has properties described by 4-Vectors A and B:

One possible relationship is that the two 4-Vectors are related by a Lorentz 4-Scalar (S):  ex. B = (S) A.
How can one determine this?  Answer: Make an experiment that empirically measures the tensor invariant [ B∙A / A∙A ].
If B = (S) A
B∙A = (S) A∙A  or  B∙C = (S) A∙C
(S) = [ B∙A / A∙A ] Note that this basically a vector projection.
(S) = [ B∙C / A∙C ] Can also be mediated by another 4-Vector C

Run the experiment many times.  If you always get the same result for (S), then it is likely that the relationship is true, and thus invariant.

Example: Measure (SP) = [ P∙U / U∙U ] for a given particle type.
Repeated measurement always give (SP) = mo

This makes sense because we know [ P∙U ] = γ(E - p∙u) = Eo and  [ U∙U ] = c2

Thus, 4-Momentum P = (Eo/c2)U = (mo)U = (mo)*4-Velocity U

Example: Measure (SK) = [ K∙U / U∙U ] for a given particle type. 
Repeated measurement always give (SK) = (ωo/c2) 
This makes sense because we know [ K∙U ] = γ(ω - k∙u) = ωo and  [ U∙U ] = c2 
Thus, 4-WaveVector K = (ωo/c2)U = (ωo/c2)*4-Velocity U

Since P and K are both related to U, this would also mean that the
4-Momentum P is related to the 4-WaveVector K in a particular manner for each given particle type… a hint for later...

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)ωo/c2

U∙U=c2

P∙P=(moc)2=(Eo/c)2

K∙K=(ωo/c)2

P∙U=moc2=Eo

K∙U=ωo

mo
2

(Eo/c2)2

4-Vector
A=(a0,a)

4-Vector
B=(b0,b)=SA

S=B∙A/A∙A
=B∙C/A∙C

(ωo/c2)2

?



  

β = v/c ; β = |β|:  dimensionless Velocity Beta Factor { β=(0..1); rest at (β=0); speed-of-light (c) at (β=1) }
γ = 1/√[1-β2] = 1/√[1-β∙β]: dimensionless Lorentz Relativistic Gamma Factor { γ=(1..∞); rest at (γ=1); speed-of-light (c) at (γ=∞) }

(1+x)n ~ (1 + nx + O[x2]) for { |x| << 1 } Approximation used for SR→Classical limiting-cases

Lorentz Transformation Λμ'
ν = ∂Xμ′/∂Xν = ∂ν[Xμ′]: a relativistic frame-shift, such as a rotation or velocity boost

It transforms a 4-Vector in the following way: Xμ′ = Λμ'
ν Xν : with Einstein summation over the paired indices, and the (‘) indicating an alternate frame. 

A typical Lorentz Boost Transformation Λμ'
ν → Bμ'

ν for a linear-velocity frame-shift (x,t)-Boost in the x̂-direction:
 

Original  Aν = (at, ax, ay, az)
Boosted Aμ’ = (at, ax, ay, az)' = Λμ'

νAν → Bμ'
νAν = (γat - γβax, -γβat + γax, ay, az) {for x̂-boost Lorentz Transform}

A'∙B' = (Λμ'
νAν)∙(Λρ'

σBσ) = A∙B = 
 
Aμη

μν
Bν = AμB

μ
 =A

ν
Bν = Σ

ν=0..3
[a

ν
bν] = Σ

u=0..3
[aub

u
] = (a0b

0
 + a1b

1
 + a2b

2
 + a3b

3
)

 = (a0b0 - a∙b) = (a0b0 - a1b1 - a2b2 - a3b3)
using the Einstein summation convention where upper:lower paired-indices are summed over

∂[X] = ∂μ[Xν] = (∂t/c,-∇)(ct,x) = Diag[∂t/c[ct],-∇[x]] = Diag[1,-I(3)] = Diag[1,-1,-1,-1] = ημν  Minkowski “Flat” SpaceTime Metric 

Some SR Mathematical Tools 
Definitions and Approximations

Lorentz 
x-Boost 
Transform 
Λμ’

ν→Bμ'
ν =

     t      x     y     z 
t  [ γ    -βγ     0    0 ]
x [ -βγ    γ     0    0 ]
y [  0     0     1    0 ]
z [  0     0     0    1 ]

SpaceTime
∂∙R = ∂μRμ = 4

Dimension

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM
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4-Vector SRQM Interpretation
of QM
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SR:Minkowski Metric
∂[R] = ∂μRν = ημν = Vμν + Hμν

→Diag[1,-I(3)]=Diag[1,-δjk]
for Cartesian

= ημν = ημν

”Particle Physics” Convention
Symmetric

     t      x     y     z 
t  [ 1     0      0     0 ]
x [  0     -1    0     0 ]
y [  0     0     -1    0 ]
z [  0     0     0    -1 ]

  1   0j  
 0i  -δij 

SR:Minkowski Metric
∂[R] = ∂μRν = ημν = Vμν + Hμν →

Diag[1,-1,-1,-1] = Diag[1,-I(3)] = Diag[1,-δjk]
{in Cartesian form}  ”Particle Physics” Convention

{ημμ} = 1/{ημμ} : ημ
ν = δμ

ν              Tr[ημν]=4

SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1



  

Properties of Minkowski SpaceTime Events

SRQM Study: Ordering of SpaceTime Events 
Temporal Causality vs. Spatial Topology,

Simultaneity vs. Stationarity
 Venn Diagram 

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM
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Time-Like Ordering of... Space-Like Ordering of...

Light-Like (Null) Separated Events Light-Like (Null) Separated Events

Time-Like Separated Events Time-Like Separated Events

Space-Like Separated Events Space-Like Separated Events
(co-linear)

Causal: Invariant = Absolute Temporal Order (A→B→C)
{ ProperTime (to = τ) for | clock at-rest | }
{ Time Dilation (t =γto = γτ) for ←moving clock→ }
All observers agree on temporal order of time-separated events,
although temporal event separation may be ←Time-Dilated→.

Non-Causal: Relative → Relativity of Simultaneity (A←?→B)
Simultaneity: (only if in reference-frame with Same-Time occurrence)
(“no wait” for simultaneous events, “wait” in all other refence frames)
2 space-separated events may occur in any temporal order = frame dependent

Topological: Invariant = Absolute Spatial Order (A→B→C)
All observers agree on spatial order/topology of light-separated events,
and on the invariant time:space event interval measurement.
All observers measure invariant LightSpeed (c) in their own frames.

Non-Topological: Relative → Relativity of Stationarity (A←?→B)
Stationarity: (only if in reference-frame with Same-Place occurrence)
(“no motion” for stationary particle/worldline, “motion” in all other frames)
2 time-separated events may occur in any spatial order = frame dependent

Causal: Invariant = Absolute Temporal Order (A→B→C)
All observers agree on temporal order of light-separated events,
and on the invariant time:space event interval measurement.
All observers measure invariant LightSpeed (c) in their own frames. 

Topological: Invariant = Absolute Spatial Order (A→B→C) or (C→B→A)
{ ProperLength (Lo) for | ruler at-rest | } by rotation

{ Length Contraction (L = Lo/γ) for →moving ruler← }
All observers agree on spatial order/topology of space-separated events,
although spatial event separation may be →Length-Contracted←.

4-Displacement (between <events>)
ΔR=ΔRμ=(cΔt,Δr)=R2-R1 {finite}

dR=dRμ=(cdt,dr)       {infintesimal}

Time-Like Invariant Interval
ΔR∙ΔR=(cΔt)2-Δr∙Δr → +(cΔτ)2

Light-Like Invariant Interval
ΔR∙ΔR=(cΔt)2-Δr∙Δr → 0

Space-Like Invariant Interval
ΔR∙ΔR=(cΔt)2-Δr∙Δr → -(|Δro|)2

U∙U=c2 U∙U=c2



  

SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram:
The Basis of Classical SR Physics

Special Relativity via 4-Vectors
Focus on a few of the main SR Physical 4-Vectors:

<Event> Location

<Event> Motion

<Event> Alteration

These 4-Vectors give some of the main classical results of Special Relativity,
including SR concepts like:
The Minkowski Metric, SpaceTime Dimension = 4, Lorentz Transformations
<Events>, Invariant Interval Measure,
Causality (=Temporal Ordering), Topology (=Spatial Ordering)
The Invariant Speed-of-Light (c), Invariant Proper Measurements (Time:Space)
Relativity: Time Dilation (←clock moving→), Length Contraction (→ruler moving←)
Invariants: Proper Time  ( | clock at rest | )  , Proper Length         ( | ruler at rest | )
Temporal Ordering: Causality (Time-like event separation) is Absolute, Simultaneity (Space-like event separation) is Relative
Spatial Ordering: Stationarity (Time-like event separation)  is Relative, Topology (Space-like event separation)      is Absolute
Relativity of Simultaneity:Stationarity, Minkowski Diagrams, Light Cone
Use of the Lorentz Scalar Product to make Lorentz Invariants
Invariant SR Wave Equations, via the d’Alembertian (Lorentz Scalar Product of 4-Gradient with itself)
Continuity Equations, etc.

4-Position
R=Rμ=(rμ)=(r0,ri)=(ct,r)=<Event>

=(r0,r1,r2,r3)→(ct,x,y,z)

4-Velocity
U=Uμ=(uμ)=(u0,ui)=γ(c,u)

=(u0,u1,u2,u3)→γ(c,ux,uy,uz)

4-Gradient
∂=∂R=∂μ=(∂μ)=(∂0,∂i)=(∂

t
/c,-∇)

=(∂0,∂1,∂2,∂3)→(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

4-Velocity
U=γ(c,u)
=dR/dτ

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 

4-Vector SRQM Interpretation
of QM
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Absolute/Invariant:
Causality is to Time-like event separation as
Topology is to Space-like event separation

Relativistic:
Simultaneity is to Space-like event separation as 

Stationary is to Time-like event separation



  

SRQM Diagram:
The Basis of Classical SR Physics

Special Relativity via 4-Vectors
The Basis of most all Classical SR Physics is in the SR Minkowski Metric of 
“Flat” SpaceTime ημν which can be generated from the 4-Position R and
4-Gradient ∂, and determines the measurement between <Events>.

This Minkowski Metric ημν provides the relations between the
4-Vectors of SR: 4-Position R, 4-Gradient ∂, 4-Velocity U.

The Tensor Invariants of these 4-Vectors give the:
Invariant Interval Measures & Causality:Topology, from R∙R
Invariant d’Alembertian Wave Equation, from ∂∙∂
Invariant Magnitude LightSpeed (c), from U∙U

The relation between 4-Gradient ∂ and 4-Position R
gives the Dimension of SpaceTime (4),
the Minkowski Metric ημν, and the Lorentz Transformations Λμ'

ν.

The relation between 4-Gradient ∂ and 4-Velocity U
gives the ProperTime Derivative d/dτ.
Rearranging gives the ProperTime Differential dτ,
which leads to relativistic Time Dilation & Length Contraction.

The ProperTime Derivative d/dτ:
acting on 4-Position R gives 4-Velocity U
acting on the SpaceTime Dimension Lorentz Scalar
gives the Continuity of 4-Velocity Flow.

The relation between 4-Displacement ΔR and 4-Velocity U
gives Relativity of Simultaneity:Stationarity.

One of the most important properties is the Tensor Invariant
Lorentz Scalar Product ( dot = ∙ ), provided by the
lowered- index form of the Minkowski Metric ημν.

From here, each object will be examined in turn...

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

Invariant Interval
R∙R=(ct)2-r∙r=(cτ)2

ΔR∙ΔR=(cΔt)2-Δr∙Δr=(cΔτ)2

dR∙dR=(cdt)2-dr∙dr=(cdτ)2

 

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂

t 
/c)2- ∙∇ ∇

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Velocity
U=γ(c,u)
=dR/dτ

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t
+u∙∇)

=γ(∂
t
+(dx/dt)∂

x
+(dy/dt)∂

y
+(dz/dt)∂

z
)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform

 ημν 
∙

SpaceTime Dim
Tr[ημν] = 4 = ΛμνΛμν
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SR is a theory about the 
relations between 4D 
SpaceTime <Events>,

ie. how they are 
“measured”
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The 4-Position is essentially one of
the most fundamental 4-Vectors of SR.
It is the SpaceTime location of an <Event>,
the basic element of Minkowski SpaceTime:
a time (t) & a place (r) → (when,where) = (ct,r) = (rμ).
Technically, the 4-Position is just one of the possible properties of
an <Event>, which may also have a 4-Velocity, 4-Momentum, 4-Spin, etc.
But I write the 4-Position as = to an <Event> since that is the most basic property.

The 4-Position relates time to space via the fundamental
physical constant (c): the Speed-of-Light = “(c)elerity ; (c)eleritas”,
which is used to give consistent dimensional units across all SR 4-Vectors.

The 4-Position is a specific type of 4-Displacement,
for which one of the endpoints is the <Origin>, or 4-Zero. 

R2→R, R1→Z
ΔR = R2 - R1 → R - Z = R

As such, the 4-Position and 4-Zero are Lorentz Invariant (point rotations and boosts),
but not Poincaré Invariant (Lorentz + time & space translations), since translations can move the <Origin>.

The general 4-Displacement and 4-Differential(Displacement) are invariant under both
Lorentz and Poincaré transformations, since neither of their endpoints are pinned this way.

The 4-Differential(Displacement) is just the infinitesimal version of the finite 4-Displacement,
and is used in the calculus of SR. U=dR/dτ : dR=Udτ

4-Displacement ΔR=(cΔt,Δr)=UΔτ=R2-R1=(ct2-ct1,r2-r1): {finite}
4-Differential dR=(cdt,dr)=Udτ: {infintesimal}
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)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
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U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
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SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram:
The Basis of Classical SR Physics

4-Position, 4-Displacement, 4-Differential

4-Zero, 4-Origin
Z=(0,0)=(0,0,0,0)=(0μ)=<Origin>

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 

4-Position Rμ

R=(ct,r)=(rμ)=<Event>

4-Vector SRQM Interpretation
of QM
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Music is to time as 
artwork is to space

4-Creativity
☼ = ( Music , Artwork )

4-Position R=(ct,r)=(rμ)=<Event>
R = ∫dR = ∫Udτ = ∫γ(c,u)dτ = ∫(c,u)γdτ = ∫(c,u)dt = (ct,r)

R = ΣΔR = ΣUΔτ = Σγ(c,u)Δτ = Σ(c,u)γΔτ = Σ(c,u)Δt = (ct,r)



  

4-Gradient
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Relativity of
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U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
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ProperTime Differential
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=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform

 ημν 
∙

SpaceTime Dim
Tr[ημν] = 4 = ΛμνΛμν

  4

SR → QM

A Tensor Study
of Physical 4-Vectors

Δt

Δr

SRQM Diagram:
The Basis of Classical SR Physics

Invariant Intervals, TimeSpace
Causality (time), LightSpeed, Topology (space)

The Invariant Interval is the Lorentz Scalar Product
of the {4-Position, 4-Displacement, 4-Differential} with 
itself, giving a magnitude-squared, which may be (+/-).

     R∙R=  (ct)2  - r∙r   = (cto)2 = (cτ)2

ΔR∙ΔR=(cΔt)2-Δr∙Δr=(cΔto)2=(cΔτ)2 
 dR∙dR=(cdt)2-dr∙dr =(cdto)2=(cdτ)2

future

elsewhere

c

-c

time-like interval (+)

space-like interval (‒)

light-like:null:photonic interval (0)

LightCone

past

*

now ∙ here

The 4D intervals are invariant, meaning that all observers must 
agree on their magnitudes, regardless of differing reference 
frames. This leads to the idea of ProperTime (Δτ), which is the 
time-displacement measured by a clock at-rest, and ProperLength 
(Lo), which is space-displacement measured by a ruler at-rest.  
This also leads to the various Causality Conditions of SR, and the 
concept of the (Minkowski Diagram) Light Cone. The differential 
form dR∙dR is apparently also still true in GR.

ΔR

   (cΔτ)2  Time-like:Temporal (+) {causal = 1D temporally-ordered, non-topological}
ΔR∙ΔR = [(cΔt)2 - Δr∙Δr] = (0)  Light-like:Null:Photonic (0) {causal & topological, maximum signal speed (|Δr/Δt|=c)}

   -(Δro)2  Space-like:Spatial (‒) {non-causal, topological = 3D spatially-ordered}

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar
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(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 

4-Vector SRQM Interpretation
of QM
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4-Displacement ΔR=(cΔt,Δr)=UΔτ=R2-R1=(ct2-ct1,r2-r1): {finite}
4-Differential dR=(cdt,dr)=Udτ: {infintesimal}

4-Position Rμ

R=(ct,r)=(rμ)=<Event>

Absolute/Invariant (Ordering of Events)
Causality is temporal Topology: Topology is spatial Causality

Absolute/Invariant:
Causality is to Time-like event separation as
Topology is to Space-like event separation

Relativistic:
Simultaneity is to Space-like event separation as 

Stationary is to Time-like event separation



  

4-Gradient
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t
/c,-∇)
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z
)
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Continuity of
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Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
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SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram:
The Basis of Classical SR Physics

SpaceTime Dimension = 4D←(1+3)D

The Tesseract, 
a 4D cube, 
symbolizes
4D SpaceTime

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Position
R=(ct,r)→(ct,x,y,z)

 SRQM Diagram 

4-Vector SRQM Interpretation
of QM
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SR : Minkowski 
SpaceTime is 4D

(1+3)D = 4D
0D ()      1D (x)    2D (x,y)          3D (x,y,z)       4D (ct,x,y,z)

∂∙R = 4 : The 4-Divergence SpaceTime Dimension Relation
= (∂

t
/c,-∇)∙(ct,r)

= [(∂
t
/c)*(ct) - (-∇)∙(r)]

= (∂
t
[t] + ∙∇ r)

= (∂
t
[t] +∂

x
[x] +∂

y
[y] +∂

z
[z])

= (∂[t]/∂t +∂[x]/∂x +∂[y]/∂y +∂[z]/∂z)
= (1+1+1+1)
= 4
Alt. Derivation:
(∂∙R) = (∂α∙Rβ) = (∂αηαβRβ) = ηαβ(∂αRβ) = ηαβ(ηαβ) = ηβ

β = ηα
α = δα

α 
= (δ0

0+δ1
1+δ2

2+δ3
3) = (1+1+1+1) = 4

This Tensor Invariant Lorentz Scalar relation gives the dimension of SpaceTime.
The only way there can more dimensions is if there is another SpaceTime direction 
available.  4-Divergence (∂∙_) is also used in SR Conservation Laws, ex. (∂∙J) = 0

All empirical evidence to-date indicates that there are only the 4 known dimensions:
1 temporal (t): measured in SI units = [s], with (ct): measured in SI units [m]
3 spatial (x, y, z) : measured in SI units = [m]

These are of course the ones that appear in the

     : measured in SI units [m]

δμν = δμ
ν = δμν = I(4) = {1 if μ=ν, else 0} = Diag[1,1,1,1]

4D Kronecker Delta

4-Gradient ∂μ

∂=(∂
t
/c,-∇)=(∂μ)

4-Position Rμ

R=(ct,r)=(rμ)=<Event>SpaceTime
∂∙R=∂μημνRν=∂νRν=4

Dimension



  

Derivation:
∂[R] = ∂μRν

=(∂
t
/c,-∇)[(ct,r)]

=[∂
t
/c*ct, -∇ct]

  [∂
t
/c*r , -∇r  ]

=[ ∂tt,   0  ] 
  [ 0 , -∇r ]

= Diag[+1,-δjk] = ημν

The SR:Minkowski Metric ημν is the fundamental SR (2,0)-Tensor, which shows how intervals are “measured” in SR SpaceTime.
It is itself the low-mass = (Curvature ~ 0) limiting-case of the more general GR metric gμν. It can be divided into temporal and spatial parts.
The Minkowski Metric can be used to raise/lower indices on other tensors and 4-Vectors.
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SRQM Diagram:
The Basis of Classical SR Physics

The Minkowski Metric (ημν), Measurement

The component representation of
the Minkowski Metric ημν 
will differ with the chosen basis,
just like with 4-Vectors.

ημν→Diag[1,-1,-1,-1] : Cartesian/Rectangular basis
ημν→Diag[1,-1,-1/r2,-1] : Polar/Cylindrical basis
ημν→Diag[1,-1,-1/r2,-1/(r sin[θ])2] : Spherical basis

Generally, components [ημμ] = 1/[ημμ] and ημ
ν = δμ

ν

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR:Temporal Projection
"Vertical"  Vμν = TμTν →

Diag[1,0,0,0] = Diag[1,0jk]

SR:Spatial Projection
"Horizontal"  Hμν = ημν-TμTν →
Diag[0,-1,-1,-1] = Diag[0,-δjk]

+

4-UnitTemporal
T=Tμ=γ(1,β)=U/c

⊗

 SRQM Diagram 

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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The SR : Minkowski Metric ημν is the
“Flat SpaceTime” low-curvature limiting-case 

of the more general GR Metric gμν. 

“Vertical”
Vμν Temporal

Hμν Spatial
”Horizontal”

4-Gradient ∂μ

∂=(∂
t
/c,-∇)=(∂μ)

4-Position Rμ

R=(ct,r)=(rμ)=<Event>

SR:Minkowski Metric
∂[R] = ∂μRν = ημν = Vμν + Hμν →

Diag[1,-1,-1,-1] = Diag[1,-I(3)] = Diag[1,-δjk]
{in Cartesian form}  ”Particle Physics” Convention

{ημμ} = 1/{ημμ} : ημ
ν = δμ

ν              Tr[ημν]=4

Alt. Derivation: ∂μXν = ημσ∂σXν = ημσ(∂/∂Xσ)Xν = ημσ(∂Xν/∂Xσ) = ημσ(δσ
ν) = ημν

δμν = δμ
ν = δμν = I(4) = {1 if μ=ν, else 0} = Diag[1,1,1,1]

4D Kronecker Delta



  

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

Invariant Interval
R∙R=(ct)2-r∙r=(cτ)2

ΔR∙ΔR=(cΔt)2-Δr∙Δr=(cΔτ)2

dR∙dR=(cdt)2-dr∙dr=(cdτ)2

 

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂

t 
/c)2- ∙∇ ∇

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Velocity
U=γ(c,u)
=dR/dτ

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t
+u∙∇)

=γ(∂
t
+(dx/dt)∂

x
+(dy/dt)∂

y
+(dz/dt)∂

z
)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform

 ημν 
∙

SpaceTime Dim
Tr[ημν] = 4 = ΛμνΛμν

  4

SR → QM

A Tensor Study
of Physical 4-Vectors

Lorentz Transform Properties:
Λμ

ν
 = (Λ-1)

ν

μ

Λμ

α
Λα

ν
 = ημ

ν
 = δμ

ν

ΛμνΛμν = 4 : SpaceTime Dimension
η

μν
Λμ

α
Λν

β
  = η

αβ

Det[Λμ
ν] = ±1 : (+)=Linearity; (-)=Anti-Linearity

**The Trace Invariant of the various Lorentz Transforms
leads to very interesting results: CPT Symmetry and Antimatter**

SRQM Diagram:
The Basis of Classical SR Physics
The Lorentz Transform ∂ν[Rμ′]=Λμ'

ν

General Lorentz Boost Transform (symmetric,continuous): 
for a linear-velocity time-space-mixing frame-shift (Boost) 
in the v/c=β=(β1,β2,β3)-direction: Λμ'

ν
 → Bμ'

ν
 = 

 
 
 
General Lorentz Rotation Transform (non-symmetric,continuous): 
for an angular-displacement spatial-only frame-shift (Rotation) 
angle θ about the n̂=(n1,n2,n3)-direction: Λμ'

ν
 → Rμ'

ν
 = 

 
 
 
General Lorentz Discrete Transforms (symmetric,discrete): 
Identity I(4)    Time-Reverse    Parity ComboPT 
Λμ'

ν
 → ημ'

ν
 = δμ'

ν
    Λμ'

ν
 → Tμ'

ν
    Λμ'

ν
 → Pμ'

ν
Λμ'

ν
 → (PT)μ'

ν
 

= Diag[1,δi
j]    = Diag[1-,δi

j]     = Diag[1,-δi
j] = Diag[-1,-δi

j]

  1   0  
 0   δi

j 

1         0j     
   0i   ( δij-ninj )cos(θ)-( εij

knk )sin(θ)+ninj

  γ -γβj    
 -γβi (γ-1)βiβj/(β∙β)+δij  

 -1   0  
 0   δi

j 
  1   0  
 0  -δi

j 
 -1   0  
 0  -δi

j 

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 

Invariant Tr[ Λμ’
ν ] →

-∞,..,(-4),..,-2,..,(0),..,+2,..,(+4),…,+∞
Trace identifies CPT Symmetry

 in the Lorentz Transform

4-Vector SRQM Interpretation
of QM
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1

4-Gradient ∂μ

∂=(∂
t
/c,-∇)=(∂μ)

4-Position Rμ

R=(ct,r)=(rμ)=<Event>

Tensorial Lorentz Transform Λμ'
ν

acting on 4-Vector [ Rμ' = Λμ'
ν Rν ]

∂ν[Rμ'] = (∂/∂Rν)[Rμ'] = (∂/∂Rν)[Λμ'
α Rα]

 = Λμ'
α (∂/∂Rν)[Rα] = Λμ'

αηα
ν = Λμ'

ν

Det[Λμ
ν]=±1

ΛμνΛμν=4

 

Tr[Λμ
ν]={-∞..+∞}

=Lorentz Transform Type

 

Tr[Λμ
ν]={-∞..+∞}

=Lorentz Transform Type



  

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

Invariant Interval
R∙R=(ct)2-r∙r=(cτ)2

ΔR∙ΔR=(cΔt)2-Δr∙Δr=(cΔτ)2

dR∙dR=(cdt)2-dr∙dr=(cdτ)2

 

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂

t 
/c)2- ∙∇ ∇

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Velocity
U=γ(c,u)
=dR/dτ

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t
+u∙∇)

=γ(∂
t
+(dx/dt)∂

x
+(dy/dt)∂

y
+(dz/dt)∂

z
)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform

 ημν 
∙

SpaceTime Dim
Tr[ημν] = 4 = ΛμνΛμν
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SR → QM

A Tensor Study
of Physical 4-Vectors

Tensor Invariants include: Trace, InnerProduct, Determinant, etc.
4-Div[4-Pos] , Trace of the Minkowski Metric , and
the InnerProduct of any of the Lorentz Transforms
give the Dimension of SR SpaceTime = 4D.

Minkowski Metric
Trace Invariant
Trace[ημν] 
= Tr[ημν] 
= ημν[ημν] 
= ημ

μ

= δμ
μ

= (1+1+1+1)
= 4

SRQM Diagram:
The Basis of Classical SR Physics
SpaceTime Dimension = 4D, again!

4-Tensor
Tμν = [T00,T01,T02,T03]

[T10,T11,T12,T13]
[T20,T21,T22,T23]
[T30,T31,T32,T33]

General Tensor
Trace Invariant

Tr[Tμν]=Tν
ν=(T0

0+T1
1+T2

2+T3
3)

=(T00-T11-T22-T33)=T

Minkowski
Metric ημν

→
 [+1,0,0,0]
[0,-1,0,0]
[0,0,-1,0]
[0,0,0,-1]

Tr[ημν]=ην
ν=(1) - (-1) - (-1) - (-1)= 4

4-Divergence
of 4-Position
∂∙R 
= ∂μ∙Rν 
= ∂μημνRν 
= ημν∂μRν 
= ημνημν 
= Tr[ημν] 
= 4 Minkowski 

Trace Invariant

Conservation:Non-Divergence 
of Minkowksi Metric                 

    ∂∙ημν

= ∂σ∙ημν

= ∂σησμημν = ∂σησμημν

= ∂μημν = ∂σηα
ν

= ∂σδα
ν

= 0ν = 0ν

Lorentz Transform
Inner Prod Invariant
ημνΛμ

αΛν
β = ηαβ

ηαβημνΛμ
αΛν

β = ηαβηαβ

ηαβΛμ
αημνΛν

β = ηαβηαβ

(ηαβΛμ
α)(ημνΛν

β) = ηαβηαβ

ΛμβΛμβ = ηαβηαβ = Tr[ημν]
ΛμβΛμβ = 4
= 4

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 

4-Vector SRQM Interpretation
of QM
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SR : Minkowski 
SpaceTime is 4D

(1+3)D = 4D

∂∙R = Tr[ημν] = ΛμβΛμβ = 4
The SpaceTime Dimension Relations



  

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

Invariant Interval
R∙R=(ct)2-r∙r=(cτ)2

ΔR∙ΔR=(cΔt)2-Δr∙Δr=(cΔτ)2

dR∙dR=(cdt)2-dr∙dr=(cdτ)2

 

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂

t 
/c)2- ∙∇ ∇

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Velocity
U=γ(c,u)
=dR/dτ

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t
+u∙∇)

=γ(∂
t
+(dx/dt)∂

x
+(dy/dt)∂

y
+(dz/dt)∂

z
)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform

 ημν 
∙

SpaceTime Dim
Tr[ημν] = 4 = ΛμνΛμν
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SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram:
The Basis of Classical SR Physics

Lorentz Scalar (Dot) Product (ημν = ∙)
The Tensor Invariant Lorentz Scalar Product (LSP) is the SR 4D (Dot) Product.
It is used to make Invariant Lorentz Scalars from two 4-Vectors.
A∙B = Aμ∙Bν = AμημνBν = AνBν = AμBμ = (a0b0 - a∙b) = (a0

ob0
o)

A∙A = Aμ∙Aν = AμημνAν  = AνAν = AμAμ = (a0a0 - a∙a)  = (a0
o)2

=    →Diag[+1,-1,-1,-1]{ Cartesian }

   with êμ and êν as basis vectors
   A = Aμêμ → Aμ { Cartesian }

( ημν ) is itself just the lowered-index form of the
SR Minkowski Metric ( ημν ), with individual components
[ ημμ ] = 1/[ ημμ ], else 0. In Cartesian basis, this gives { ημν = ημν }.

The LSP is used in just about every relation between any two interesting 4-Vectors.  
It also gives the Invariant Magnitude of a single 4-Vector. If the 4-Vector is temporal, 
then the spatial component can be set to zero, giving the rest-frame invariant value, 
or the (o)bserver rest value (“naught” = o).

 ημν 
∙

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 

 ημν 
∙

4-Vector SRQM Interpretation
of QM
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a0 or a
0
: (0)th = temporal component (can relativistically vary)

ao: (o)bserver’s rest-frame Invariant value (does not vary)

ημν 
∙

êμêν

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)ωo/c2

U∙U=c2

P∙P=(moc)2=(Eo/c)2

K∙K=(ωo/c)2

P∙U=moc2=Eo

K∙U=ωo

mo
2

(Eo/c2)2

(ωo/c2)2



  

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

Invariant Interval
R∙R=(ct)2-r∙r=(cτ)2

ΔR∙ΔR=(cΔt)2-Δr∙Δr=(cΔτ)2

dR∙dR=(cdt)2-dr∙dr=(cdτ)2

 

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂

t 
/c)2- ∙∇ ∇

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Velocity
U=γ(c,u)
=dR/dτ

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t
+u∙∇)

=γ(∂
t
+(dx/dt)∂

x
+(dy/dt)∂

y
+(dz/dt)∂

z
)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform

 ημν 
∙

SpaceTime Dim
Tr[ημν] = 4 = ΛμνΛμν
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SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram:
The Basis of Classical SR Physics

4-Velocity U, SpaceTime <Event> Motion

4-Velocity U is the ProperTime Derivative (d/dτ)
of the 4-Position R or of the 4-Displacement ΔR.

It is the SR 4-Vector that describes
the motion of <Events> through SpaceTime.
For an un-accelerated observer,
the 4-Velocity is along the WorldLine at all points.
For an accelerated observer,
the 4-Velocity is still tangent to the WorldLine at each point,
but changes direction as the WorldLine bends thru SpaceTime.

The 4-Velocity is unlike most of the other SR 4-Vectors in that it only
has 3 independent components, whereas the others usually have 4.
This is due to the constraint placed by the Tensor Invariant of the 4-Velocity.  
U∙U has a constant magnitude, giving the Speed-of-Light (c) in SpaceTime.

The 4-Velocity also usually has the Relativistic Gamma factor (γ) exposed in 
component form, whereas most of the other temporal 4-Vectors have it 
absorbed into the Lorentz 4-Scalar factor that goes into their components.

4-Velocity U = Uα = γ(c,u) = (γc,γu)
4-Momentum P = Pα = (mc,p) = moU = γmo(c,u) = m(c,u) = (mc,mu) = (E/c,p)

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

U∙U=c2 P∙P=(moc)2=(Eo/c)2

Components:
3 independent   +  1 independent             = 4 independent

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

A = U’ = R’’ is normal
to WorldLine

(A is Spatial)

U·A = 0

U = R’ is tangent
to WorldLine

(U is Temporal)

            WorldLine

R moves along
Worldline

τ
 SRQM Diagram 

4-Vector SRQM Interpretation
of QM
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P = moU = (Eo/c2)U
The temporal components give

Einstein’s famous
 E = mc2 = γmoc2= γEo

The spatial components give
p = mu = γmou

E & m: Relativistically varying
Eo & mo: Lorentz Scalar Invariants

4-Velocity U=γ(c,u)=(γc,γu)=(U∙∂)R=γ(∂
t
+u∙∇)R=(d/dτ)R=

=dR/dτ=(dt/dt)(dR/dτ)=(dt/dτ)(dR/dt)=γ(dR/dt)=γ(cṫ,ṙ)=γ(c,u)=Uα

Relativistic Gamma γ = 1/√[ 1 - β∙β ], β = u/c



  

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
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4-Displacement
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∂∙R=4
SpaceTime
Dimension

Invariant Interval
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dR∙dR=(cdt)2-dr∙dr=(cdτ)2

 

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂
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/c)2- ∙∇ ∇
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 γd/dt[..]
 d/dτ[..]

4-Velocity
U=γ(c,u)
=dR/dτ

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t
+u∙∇)

=γ(∂
t
+(dx/dt)∂

x
+(dy/dt)∂

y
+(dz/dt)∂

z
)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform
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∙

SpaceTime Dim
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SRQM Diagram:
The Basis of Classical SR Physics

4-Velocity Magnitude = Invariant Speed-of-Light (c)

The Lorentz Scalar Product of the 4-Velocity gives the 
Invariant Magnitude Speed-of-Light (c), one the main 
fundamental SR physical constants of physics. 
Technically, it is the maximum speed of SR causality, 
which any massless particles, ex. the photon, travel at.

U∙U
= γ(c,u)∙γ(c,u)
= γ2(c2 - u∙u)
= [1/(1 - β∙β)](c2 - u∙u) = [1/(1 - β∙β)]c2(1 - β∙β)
= c2: Invariant Magnitude Speed-of-Light (c)

This fundamental constant Invariant (c) provides an extra 
constraint on the components of 4-Velocity U,
making it have only 3 independent components (u).

This allows one to make new 4-Vectors related to
4-Velocity by multiplying by other Lorentz Scalars.
(Lorentz Scalar)*(4-Velocity) = (New 4-Vector)

P = (mc,p) = moU
K = (ω/c,k) = (ωo/c2)U

The newly made 4-Vector thus has
{3+1 = 4} independent components.

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

ωo/c2U∙U=c2

P∙P=(moc)2=(Eo/c)2

K∙K=(ωo/c)2

If (c) was not a constant, but varied somehow, then all 4-Vectors made from the
4-Velocity would have more than 4 independent components, which is not observed. 
It seems a compelling argument against variable light-speed theories.

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)
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An interesting thing to note is that all 
<events> move at the Speed-of-Light 
(c) in 4D SpaceTime. 
Massive at-rest particles simply travel 
at (c) temporally Uo = (c,0), while 
massless photons can move at (c) 
spatially as well (in vacuum).

4-Velocity U=γ(c,u)=(γc,γu)=(U∙∂)R=γ(∂
t
+u∙∇)R=(d/dτ)R=

=dR/dτ=(dt/dt)(dR/dτ)=(dt/dτ)(dR/dt)=γ(dR/dt)=γ(cṫ,ṙ)=γ(c,u)=Uα

Relativistic Gamma γ = 1/√[ 1 - β∙β ], β = u/c
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Invariant Interval
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4-Velocity
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Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν
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SRQM Diagram:
The Basis of Classical SR Physics
Relativity of Simultaneity:No-Wait

(Simultaneity = Same-Time Occurrence)

If Lorentz Scalar (U·ΔX = 0 = c2Δτ),
then the ProperTime displacement (Δτ) is zero, 
and the <Event>’s separation (ΔX = X

2
 - X

1
) is orthogonal

to the worldline at U.

<Event>‘s X
1
 and X

2
 are therefore simultaneous (Δτ = 0)

for the observer on this worldline at U. 

Examining the equation we get γ(c2Δt - u·Δx) = 0.
The coordinate time difference between the events is (Δt = u·Δx/c2) 
The condition for simultaneity in an alternate reference frame
(moving at 3-velocity u wrt. the worldline U) is Δt = 0,
which implies (u·Δx) = 0. 

This condition can be met by:
(|u| = 0), the alternate observer is not moving wrt. the events,
i.e. is on worldline U or on a worldline parallel to U.
(|Δx| = 0), the events are at the same spatial location (co-local).
(u·Δx = 0 =|u||Δx|cos[θ]), the alternate observer's motion is
perpendicular (orthogonal, θ=90°) to the spatial separation Δx 
of the events in that frame. 

If none of these conditions is met,
then the events will not be simultaneous
in the alternate reference-frame.

This can be shown on a Minkowski Diagram.
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Relativity of Simultaneity:
U∙ΔX = γ(c,u)∙(cΔt,Δx) = γ(c2Δt - u∙Δx)

= c2Δto = c2Δτ

Realizing that Simultaneity is not an 
invariant concept was a breakthrough 
that lead Einstein to Special Relativity.

Temporal Ordering:

Simultaneity (same time occurrence) is Relative
Space-like Separated Events:
Can appear in any temporal order,
depending on one’s reference frame. (Boost)

Causality is Absolute
Time-like Separated Events:
All observers agree on 1D causal ordering.
Causality is an invariant concept.

Spatial Ordering:

Stationarity (same place occurrence=no motion) is Relative
Time-like Separated Events:
Can appear in any spatial order,
depending on one’s reference frame. (Boost)

Topology is Absolute
Space-like Separated Events:
All observers agree on 3D spatial ordering.
Topology/topological-extension is an invariant concept.
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SRQM Diagram:
The Basis of Classical SR Physics
Relativity of Stationarity:No-Motion

(Stationarity = Same-Place Occurrence)

Let <Event>‘s X1 and X2 be local (Δx’ = 0)
for the observer on worldline at U. 

This has equation (U·ΔX) = γ(c2Δt - u·Δx) = γ’(c2Δt’ - u·Δx’).

To be stationary/motionless in the Rest-Frame is Δx’ = 0.

This gives:
γ(c2Δt - u·Δx) = γ’(c2Δt’)

To be stationary/motionless in the Boosted Frame is Δx = 0.

γ(c2Δt) = γ’(c2Δt’)
γ(Δt) = γ’(Δt’)

There are combinations of the Relativistic Gamma factor
determined by boosts which allow for this, but many more
which do not…

If this conditions is not met, 
then the events will not be stationary
in the alternate reference-frame.

This can be shown on a Minkowski Diagram.
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Relativity of Stationarity:
U∙ΔX = γ(c,u)∙(cΔt,Δx) = γ(c2Δt - u∙Δx)

= c2Δto = c2Δτ

Temporal Ordering:

Simultaneity (same time occurrence) is Relative
Space-like Separated Events:
Can appear in any temporal order,
depending on one’s reference frame. (Boost)

Causality is Absolute
Time-like Separated Events:
All observers agree on 1D causal ordering.
Causality is an invariant concept.

Spatial Ordering:

Stationarity (same place occurrence=no motion) is Relative
Time-like Separated Events:
Can appear in any spatial order,
depending on one’s reference frame. (Boost)

Topology is Absolute
Space-like Separated Events:
All observers agree on 3D spatial ordering.
Topology/topological-extension is an invariant concept.

Realizing that Stationarity is not an 
invariant concept leads to a duality of 
Time and Space, via Lorentz Boosts.
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SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram:
The Basis of Classical SR Physics
The ProperTime Derivative (d/dτ)

The derivation shows that the ProperTime Derivative
(d/dτ) is an Invariant Lorentz Scalar.  Therefore, all 
observers must agree on its magnitude, regardless of 
their frame-of-reference.

It can be used to make new 4-Vectors from existing
4-Vectors, as it is taking the derivative of an existing
4-Vector by a Lorentz Scalar: the ProperTime τ.
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4-Position
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4-Acceleration
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4-Momentum
P=(E/c,p)=(mc,p)

4-Force
F=γ(Ė/c,f)

 Eo/c2 = mo

 U∙∂[..]
γd/dt[..]
d/dτ[..]

 U∙∂[..]
γd/dt[..]
d/dτ[..]

Relativistic Gamma γ = 1/√[ 1 - β∙β ], β = u/c
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SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram:
The Basis of Classical SR Physics

ProperTime Derivative on SR 4-Vectors and Scalars

4-Vectors (some acted on by PT Derivative):
4-Position R = <Event> 
4-Velocity U = dR/dτ 
4-Acceleration A = dU/dτ 
...
4-Momentum P = moU 
4-Force F = dP/dτ 

As one can see from the list, the ProperTime Derivative 
gives the 4-Vectors that are the change in status of the 
4-Vector that ProperTime Derivative acts on.  It can 
also act on Scalar Values to give deep SR results.

∂∙R = 4: SpaceTime Dimension is 4
d/dτ(∂∙R) = d/dτ(4) = 0 
d/dτ(∂∙R) = d/dτ[∂]∙R + ∂∙U = 0 
...
∂∙U = 0: Conservation of the SR 4-Velocity Flow

U∙U = c2: Tensor Invariant of 4-Velocity 
d/dτ[U∙U] = d/dτ[c2] = 0 
d/dτ[U∙U] = d/dτ[U]∙U + U∙d/dτ[U] = 2(U∙A) = 0
U∙A = U∙U’ = 0: The 4-Velocity is SpaceTime 
orthogonal to it’s own 4-Acceleration
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4-Acceleration
U’ = A=γ(cγ’,γ’u+γa)
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A = U’ = R’’ is normal
to WorldLine

(A is Spatial)

U·A = 0

U = R’ is tangent
to WorldLine

(U is Temporal)

            WorldLine

R moves along
Worldline

τ
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The ProperTime Derivative
U∙∂ =γ(c,u)∙(∂
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SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram:
The Basis of Classical SR Physics

ProperTime Differential (dτ) →
Time Dilation & Length Contraction

There are several ways to derive Time Dilation.

ProperTime Differential (Lorentz 4-Scalar): dτ =(1/γ)dt

Take the temporal component of the 4-Vector relation.
dt = γdτ = γdto

Δt = γΔτ = γΔto : Time Dilation!

The coordinate time Δt measured by an observer is 
“dilated”, compared to the ProperTime as measured by a 
clock moving with the object.  This has the effect that 
moving objects appear to age more slowly than at-rest 
objects.  The effect is reciprocal as well. Since velocity is 
relative, each observer will see the other as ageing more 
slowly, similarly to the effect that each will appear 
smaller to the other when seen at a distance.

Now multiply both sides by the moving-frame speed [v].
vΔt = γvΔτ 
vΔt = distance Lo the moving clock travels wrt. frame, 
which is a proper (fixed-to-frame) displacement length.
Lo = γL
L = (1/γ)Lo : Length Contraction!
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ν or Tμ
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(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)
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SR 4-Scalar
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Lorentz Scalar

Time Dilation Length Contraction

Red and Blue lengths equal in the 
moving frame, blue is contracted 
in the ProperTime frame
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4-Differential
dR=(cdt,dr)

4-Velocity
U=γ(c,u)=dR/dτdτ

U∙U=c2dR∙dR=(cdτ)2 dτ2

Invariant ProperTime=(| clock at-rest |) ; Invariant ProperLength=(| ruler at-rest |)
Time Dilation=(←clock moving→)     ; Length Contraction=(→ruler moving←)

The ProperTime Derivative
U∙∂ =γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t
+u∙∇) = γd/dt = d/dτ



  

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

Invariant Interval
R∙R=(ct)2-r∙r=(cτ)2

ΔR∙ΔR=(cΔt)2-Δr∙Δr=(cΔτ)2

dR∙dR=(cdt)2-dr∙dr=(cdτ)2

 

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂t /c)2- ∙∇ ∇

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Velocity
U=γ(c,u)
=dR/dτ

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂t /c,-∇)=γ(∂t+u∙∇)

=γ(∂
t
+(dx/dt)∂

x
+(dy/dt)∂

y
+(dz/dt)∂

z
)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform

 ημν 
∙

SpaceTime Dim
Tr[ημν] = 4 = ΛμνΛμν

  4

SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram:
The Basis of Classical SR Physics

4-Gradient ∂, SR 4-Vector Function:Operator

The 4-Gradient (∂μ)=(∂
t
/c,-∇) is the index-raised version 

of the SR Gradient One-Form (∂μ)=(∂
t
/c,∇).

It is the 4D version of the partial derivative function
of calculus, one partial for each dimensional direction.

It is a 4-Vector function that can act on other 4-Vectors, 
4-Scalars, or 4-Tensors.  The 4-Gradient tells how 
things change wrt. time and space.

It is instrumental in creating the ProperTime Derivative 
U∙∂ = γd/dt = d/dτ.

The 4-Gradient plays a major role in advanced
physics, showing how SR waves are formed,
creating the Hamilton-Jacobi equations, the
Euler-Lagrange equations, Conservation
Equations (∂∙_=0), Maxwell’s Equations,
the Lorenz Gauge, the d’Alembertian, etc.  It gives the 
Dimension of SpaceTime, the Minkowski Metric, and 
the Lorentz Transformations.  In QM, it provides
the Schrödinger relations.

The 4-Gradient is fundamental
in connecting SR to QM.

Hamilton-Jacobi Equation: PT = -∂[Saction]
SR Plane-Wave Equation: KT = -∂[Φphase]

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

= -∂[Saction]

4-TotalWaveVector
K

T
=(ω

T
/c,k

T
)

= -∂[Φphase]

E
To/ωTo

-Φphase

-Saction

E
To/ωTo

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

4-Gradient
∂=(∂

t
/c,-∇)

[..]

acting on
Lorentz
Scalar

argument

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Gradient
∂=∂μ=(∂μ)=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

 SRQM Diagram 

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

The 4-Gradient is a 4D 
vector-valued function 
which can act on other 
SR objects: 4-scalars,
4-vectors, 4-tensors
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SR → QM

A Tensor Study
of Physical 4-Vectors

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

Invariant Interval
R∙R=(ct)2-r∙r=(cτ)2

ΔR∙ΔR=(cΔt)2-Δr∙Δr=(cΔτ)2

dR∙dR=(cdt)2-dr∙dr=(cdτ)2

 

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂t /c)2- ∙∇ ∇

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Velocity
U=γ(c,u)
=dR/dτ

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂t /c,-∇)=γ(∂t+u∙∇)

=γ(∂
t
+(dx/dt)∂

x
+(dy/dt)∂

y
+(dz/dt)∂

z
)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform

 ημν 
∙

SpaceTime Dim
Tr[ημν] = 4 = ΛμνΛμν
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SRQM Diagram:
The Basis of Classical SR Physics

Invariant d’Alembertian Wave Equation (∂∙∂)

The Lorentz Scalar Invariant of the 4-Gradient gives the
Invariant d’Alembertian Wave Equation, describing SR wave motion.
It is seen in the SR Maxwell Equation for EM light waves. 

Importantly, the d’Alembertian is fully from basic SR rules,
with no quantum axioms required. However,
it will be seen again in the Klein-Gordon RQM wave equation.

It provides for the introduction of an SR Wave 4-Vector K,
which can also be given by the negative Gradient of a Lorentz Scalar Phase.

4-WaveVector K = (ωo/c2)U = (ω/c,k) = -∂[Φphase] = ∂[K∙R]

The usual mathematical (complex) plane-wave solutions apply in SR:
f = (a)*e^[±i(K∙R)], with (a)mplitude possibly {4-Scalar S, 4-Vector Vμ, 4-Tensor Tμν}

       {KG wave,  EM wave   , Grav wave}

4-Velocity
U=γ(c,u)

4-WaveVector
K=(ω/c,k)ωo/c2

U∙U=c2
K∙K=(ωo/c)2

4-Position
R=(ct,r)

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Invariant Phase
K∙R = (ω/c,k)∙(ct,r)

=(ωt - k∙r) = -Φphase,plane
 

4-Gradient
∂=(∂

t
/c,-∇)

..[K∙R]
..∫[K∙dR]
..[-Φ

phase
]

 

∂∙∂=(∂
t 
/c)2- ∙∇ ∇

(∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

∂∙∂=(∂
t 
/c)2- ∙∇ ∇

d’Alembertian

Lorenz Gauge
Conservation of

EM Potential: ∂∙A=0

Magnetic Const
μo

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 

R∙R=(cτ)2

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SR is the “natural” 4D 
arena for the description 

of waves, using the 
d’Alembertian

∂∙∂ = (∂
t 
/c)2- ∙∇ ∇

SR is the “natural” 4D 
arena for the description 

of waves, using the 
d’Alembertian

∂∙∂ = (∂
t 
/c)2- ∙∇ ∇
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4-CurrentDensity
J=Jμ=(ρc,j)=ρ(c,u)=ρoU

=qnoU=qN

4-(EM)VectorPotential
A=Aμ=(φ/c,a)=(φo/c2)U
AEM=AEM

μ=(φEM/c,aEM)



  

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

Invariant Interval
R∙R=(ct)2-r∙r=(cτ)2

ΔR∙ΔR=(cΔt)2-Δr∙Δr=(cΔτ)2

dR∙dR=(cdt)2-dr∙dr=(cdτ)2

 

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂t /c)2- ∙∇ ∇

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-Velocity
U=γ(c,u)
=dR/dτ

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂t /c,-∇)=γ(∂t+u∙∇)

=γ(∂
t
+(dx/dt)∂

x
+(dy/dt)∂

y
+(dz/dt)∂

z
)

= γd/dt = d/dτ

Continuity of
4-Velocity Flow

 ∂∙U=0

 

Invariant Magnitude
LightSpeed

U∙U=c2

Relativity of
Simultaneity:Stationarity

U∙ΔR = γ(c,u)∙(cΔt,Δr)
= γ(c2Δt - u∙Δr)
= c2Δto = c2Δτ

 

ProperTime Differential
dτ =(1/γ)dt

=Time Dilation

∂[R]=∂μRν=ημν

→Diag[1,-1,-1,-1]
=Diag[1,-δjk]
Minkowski

Metric

∂
ν
[Rμ′]

=∂Rμ′/∂Rν=Λμ'
ν

Lorentz
Transform

 ημν 
∙

SpaceTime Dim
Tr[ημν] = 4 = ΛμνΛμν
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SRQM Diagram:
The Basis of Classical SR Physics

Continuity of 4-Velocity Flow (∂∙U=0)
Continuity of 4-Velocity Flow ∂∙U=0
This leads to all the SR Conservation Laws.

∂∙R = 4 
d/dτ(∂∙R) = d/dτ(4) = 0  
d/dτ(∂∙R) = d/dτ(∂)∙R + ∂∙d/dτ(R) = 0 
d/dτ(∂∙R) = d/dτ[∂]∙R + ∂∙U = 0 
∂∙U = -d/dτ[∂]∙R 
∂∙U = -(U∙∂)[∂]∙R 
∂∙U = -(Uν∂ν)[∂μ]Rμ 
∂∙U = -Uν∂ν∂μRμ 
∂∙U = -Uν∂μ∂νRμ: I believe this is legit, partials commute 
∂∙U = -Uν∂μηνμ 
∂∙U = -Uν(0ν) 
∂∙U = 0 
Conservation of the 4-Velocity Flow 
(4-Velocity Flow-Field)

All of the Physical Conservation Laws are in the form of 
a 4-Divergence, which is a Lorentz Invariant Scalar 
equation. 
 
These are local continuity equations which basically 
say that the temporal change of a quantity is balanced 
by the flow of that quantity into or out-of a local region. 
 
Conservation of Charge: 
ρo∂∙U = ∂∙ρoU = ∂∙J = (∂

t 
ρ + ∙∇ j) = 0

∂∙R=4
SpaceTime
Dimension

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Continuity of
4-Velocity Flow

 ∂∙U=0

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SR → QM

A Tensor Study
of Physical 4-Vectors

SRQM Diagram: 
The Basis of Classical SR Physics 

<Event> Substantiation
Now focus on a few more of the main SR 4-Vectors.

<Event> Location

<Event> Motion

<Event> Alteration

  
<Event> Substantiation
(particle:mass)

 
<Event> Substantiation
(wave:phase oscillation)

<Event> Substantiation
(charge Q or q)

<Event> Substantiation 
(dust:number N or no)

These 4-Vectors give more of the main classical results of Special Relativity,
including SR concepts like:
SR Particles and Waves, Matter-Wave Dispersion
Einstein’s E = mc2 = γmoc2= γEo, Rest Mass, Rest Energy
Conservation of Charge (Q), Conservation of Particle Number (N), Continuity Equations

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

4-Velocity
U=γ(c,u)
=dR/dτ

4-Momentum Pμ

P=(E/c,p)=(mc,p)=(mc,mu)
=(Eo/c2)U=moU

4-WaveVector Kμ

K=(ω/c,k)=(ω/c,ωn̂/v
phase

)

=(1/cT,n̂/λ)=(ωo/c2)U

4-CurrentDensity:ChargeFlux Jμ

J=(ρc,j)=(ρc,ρu)
=(ρo)U=(qno)U=(q)N

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 
4-Position Rμ

R=(ct,r)=<Event>

4-Velocity Uμ

U=γ(c,u)

4-Gradient ∂μ

∂=(∂
t
/c,-∇)

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

4-(Dust)NumberFlux Nμ

N=(nc,n)=(nc,nu)
=(no)U
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SR → QM

A Tensor Study
of Physical 4-Vectors

4-Position R=(ct,r)
4-Gradient ∂=(∂

t
/c,-∇)

4-Velocity U = γ(c,u)

4-Momentum P = (E/c,p) = moU = γmo(c,u) = m(c,u) 
 
Temporal part: E = γEo= γmoc2 = mc2

{energy} E = moc2 + (γ-1)moc2

         (rest) + (kinetic)

Spatial part: p = γmou = mu 
{3-momentum}

4-Momentum P = (E/c,p) = -∂[Saction,free] = -(∂
t
/c,-∇)[Saction,free]

Temporal part: E = -∂
t
[Saction,free]

{energy} 
 
Spatial part: p = +∇[Saction,free]
{3-momentum}

SRQM Diagram:
The Basis of Classical SR Physics
4-Momentum, Einstein’s E = mc2

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

4-Velocity
U=γ(c,u)
=dR/dτ

4-Momentum
P=(E/c,p)=(mc,p)

mo

 Eo/c2

..[P∙R]
..∫[P∙dR]

..[-S
action,free

]

Einstein’s
E=γEo=γmoc2=mc2

Energy:Mass
Equivalence
Rest Mass

   moU∙∂[..]
 moγd/dt[..]
 mod/dτ[..]

Hamilton-Jacobi Equation
P

T
 = -∂[Saction]

ProperTime Derivative
U∙∂=γd/dt=d/dτ

P∙P=(moc)2

=(Eo/c)2

(P∙P) = (E/c)2-(p∙p) = (moc)2

               E2 = (|p|c)2 + (moc2)2 
                     E2 = (|p|c)2 + (Eo)2 : Einstein Mass:Energy

Relativistic Energy(E):Mass(m) vs Invariant Rest Energy(Eo):Mass(m
o
)

E = γEo= γmoc2 = mc2
Trace[Tμν] = ημνTμν = Tμ

μ = T
V∙V = VμημνVν = [(v0)2 - v∙v] = (v0

o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

(mo) = (Eo/c2)
= [P∙U]/[U∙U] = Eo/c2

= [P∙R]/[U∙R] = -Sact/c2τ

which matches:

Sact = -∫moc2 dτ
Sact = -∫Eo dτ
for a free particle

Sact = -∫(moc2 + V)dτ
Sact = -∫(Eo + V)dτ
in a potential

 SRQM Diagram 
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SR → QM

A Tensor Study
of Physical 4-Vectors

4-Position R=(ct,r) 
4-Gradient ∂=(∂

t
/c,-∇) 

4-Velocity U = γ(c,u)

4-WaveVector K = (ω/c,k) = (ωo/c2)U = γ(ωo/c2)(c,u)
 
Temporal part: ω = γωo

{angular frequency} 

Spatial part: k = γ(ωo/c2)u = (ω/c2)u = ωn̂/vphase

{3-wavevector} |u * vphase| = c2

4-WaveVector K = (ω/c,k) = -∂[Φphase,free] = -(∂
t
/c,-∇)[Φphase,free]

Temporal part: ω = -∂
t
[Φphase,free]

{angular frequency} 
 
Spatial part: k = +∇[Φphase,free]
{3-wavevector}

SRQM Diagram:
The Basis of Classical SR Physics

4-WaveVector, u * vphase = c2

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

4-Velocity
U=γ(c,u)
=dR/dτ

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

ωo/c2

..[K∙R]
..∫[K∙dR]

..[-Φ
phase,free

]

   (ωo/c2)U∙∂[..]
 (ωo/c2)γd/dt[..]
 (ωo/c2)d/dτ[..]

Wave Phase Equation
K

T
 = -∂[Φphase]

ProperTime Derivative
U∙∂=γd/dt=d/dτ

 K∙K=(ωo/c)2

(K∙K) = (ω/c)2-(k∙k) = (ωo/c)2

             ω2 = (|k|c)2 + (ωo)2 : Matter-Wave Dispersion Relation
Relativistic AngFreq(ω) vs Invariant Rest AngFreq(ωo)

ω = γωo

Wave Velocity 
v

group
*v

phase
= c2

Rest Angular
Frequency

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

 SRQM Diagram 

(ωo/c2)
= [K∙U]/[U∙U] = ωo/c2

= [K∙R]/[U∙R] = -Φphase/c2τ

which matches:

Φphase = -∫ωo dτ
for a free particle

Φphase = -∫(ωo + V/ћ)dτ
in a potential
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4-Position R=(ct,r) 
4-Gradient ∂=(∂

t
/c,-∇) 

4-Velocity U = γ(c,u)

4-CurrentDensity J = (ρc,j) = ρoU = γρo(c,u) = ρ(c,u) 
4-ChargeFlux J

Temporal part: ρ = γρo

{charge-density}

Spatial part: j = γρou = ρu 
{3-current-density}

Conservation of Charge (Q)

∂∙J = (∂
t
/c,-∇)∙(ρc,j) = (∂

t
ρ + ∇∙j) = 0

Continuity Equation:Noether’s Theorem
The temporal change in charge density is balanced by
the spatial change in current density.
Charge is neither created nor destroyed
It just moves around as charge currents...

SRQM Diagram:
The Basis of Classical SR Physics

4-CurrentDensity, Charge Conservation

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

4-Velocity
U=γ(c,u)
=dR/dτ

4-CurrentDensity
J=(ρc,j)=(ρc,ρu)

ρo

J∙J=(ρoc)2

(J∙J) = (ρc)2-(j∙j) = (ρoc)2

ρ2 = (|j|/c)2 + (ρo)2 
Relativistic ChargeDensity(ρ) vs Invariant Rest ChargeDensity(ρo)

ρ = γρo

(∂∙J) = 0

Conservation of Charge
∂∙J = 0

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
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 SRQM Diagram 

 

Q = ∫ρd3x = ∫γρod3x = ∫γdr ρodA
→ ρoVo

∫dT∙J = -cQ/Vo

Rest Volume
Vo = ∫γd3x = ∫γdr dA

emphasizing linear contraction along direction dr

  4

ρ2

= |j|2/c2+ρo
2

= ρ2|u|2/c2+ρo
2

= ρ2|β|2+ρo
2

= ρo
2/(1-|β|2)

= γ2ρo
2

ρ = γρo



  

4-Position R=(ct,r) 
4-Gradient ∂=(∂

t
/c,-∇) 

4-Velocity U = γ(c,u)

4-NumberFlux N = (nc,n) = noU = γno(c,u) = n(c,u) 

Temporal part: n = γno

{number-density}

Spatial part: n = γnou = nu 
{3-number-flux}

Conservation of Particle # (N)

∂∙N = (∂
t
/c,-∇)∙(nc,n) = (∂

t
n + ∇∙n) = 0

Continuity Equation:Noether’s Theorem
The temporal change in number density is balanced by
the spatial change in number-flux.
Particle # is neither created nor destroyed
It just moves around as number currents...

SRQM Diagram:
The Basis of Classical SR Physics

4-(Dust)NumberFlux, Particle # Conservation

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

4-Velocity
U=γ(c,u)
=dR/dτ

  4

4-NumberFlux
N=(nc,n)=(nc,nu)

no

N∙N=(noc)2

(N∙N) = (nc)2-(n∙n) = (noc)2

n2 = (|n|/c)2 + (no)2 
Relativistic NumberDensity(n) vs Invariant Rest NumberDensity(no)

n = γno

(∂∙N) = 0

Conservation of Particle #
∂∙N = 0

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
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 SRQM Diagram 

 

N = ∫nd3x = ∫γnod3x= ∫γdr nodA
→ noVo

∫dT∙N = -cN/Vo

Rest Volume
Vo = ∫γd3x = ∫γdr dA

emphasizing linear contraction along direction dr

n2

= |n|2/c2+no
2

= n2|u|2/c2+no
2

= n2|β|2+no
2

= no
2/(1-|β|2)

= γ2no
2

n = γno



  

Lorentz Transforms Λμ’ν = ∂ν[Xμ′]
(Continuous) vs (Discrete)

(Proper Det=+1) vs (Improper Det=-1)
The main idea that makes a generic 4-Vector into an SR 4-Vector is that it must transform correctly according to an SR Lorentz Transformation { Λμ'

ν = ∂Xμ′/∂Xν = ∂ν[Xμ′]},
which is basically any linear, unitary or antiunitary, transform (Determinant[Λμ'

ν] = ±1) which leaves the Invariant Interval unchanged.
The SR continuous transforms (variable with some parameter) have {Det = +1, Proper} and include:
“Rotation” {a mixing of space-space coordinates} and “(Velocity) Boost” {a mixing of time-space coordinates}.
The SR discrete transforms can be {Det = +1, Proper} or {Det = -1, Improper} and include:
”Space Parity-Inversion” {reversal of the space coordinates} , “Time-Reversal” {reversal of the temporal coordinate} ,
The “Identity” {no change}, and various single dimension Flips and their combinations.

Typical Lorentz Boost Transformation,
for a linear-velocity frame-shift (x,t)-Boost in the x̂-direction:

Aν = (at, ax, ay, az)

Aμ’ = (at, ax, ay, az)'
= Bμ'

ν
Aν

= (γat – γβax, -γβat + γax, ay, az)
{for x̂-boost Lorentz Transform}

Lorentz Parity-Inversion Transformation: 
 
Aν = (at, ax, ay, az) 

Aμ’ = (at, ax, ay, az)'
= Pμ'

ν
Aν

= (at, -ax, -ay, -az)
{for Parity Inverse Lorentz Transform}

4-Vector
A=Aν=(a0,a)

→(at, ax, ay, az)

Boosted 4-Vector
A’=Aμ’=Λμ’

νAν→Bμ’
νAν=(a0’,a’)

ex. for x̂-boost
→(γat - γβax, -γβat + γax, ay, az)

Parity-Inversed 4-Vector
A’=Aμ’=Λμ’

νAν→Pμ’
νAν=(a0’,a’)

→(at, -ax, -ay, -az)

Proper: preserves orientation of basis

Discrete: ex. Parity has no variable parameters

Lorentz
Boost
Transform
Λμ’

ν→Bμ'
ν =

     t      x     y     z 
t  [  γ   -βγ     0    0 ]
x [ -βγ    γ     0    0 ]
y [  0     0     1    0 ]
z [  0     0     0    1 ]

Lorentz
Parity
Transform
Λμ’

ν→Pμ'
ν =

     t      x     y     z 
t  [  1     0     0     0 ]
x [  0     -1    0     0 ]
y [  0     0     -1    0 ]
z [  0     0     0    -1 ]

Det[Bμ’
ν]= +1, Proper

γ2 - β2γ2 = +1

Det[Pμ’
ν]= -1, Improper
(-1)3 = -1

Improper: reverses orientation of basis

Continuous: ex. Boost depends on variable parameter β, with γ=1/√[1-β2]

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1



  

β = v/c:  dimensionless Velocity Beta Factor { β=(0..1), with speed-of-light (c) at (β=1) }
γ = 1/√[1-β2] = 1/√[1-β∙β]:  dimensionless Lorentz Relativistic Gamma Factor { γ=(1..∞) }

Typical Lorentz Boost Transform (symmetric):
for a linear-velocity frame-shift (x,t)-Boost in the x̂-direction:
Λμ'

ν → Bμ'
ν [ζ] = e^-(ζ∙K) =

[  γ   -βγ 0  0 ]    [  cosh[ ζ ]  -sinh[ ζ ] 0   0 ]      (    0  1  0  0  )
[ -βγ  γ  0   0 ] = [ -sinh[ ζ ]   cosh[ ζ ] 0   0 ] = e^(ζx 1  0  0  0  )
[  0    0  1   0 ]    [     0 0 1   0 ]      (    0  0  0  0  )
[  0    0  0   1 ]    [     0 0 0   1 ]      (    0  0  0  0  )

Aν = (at, ax, ay, az)
Aμ’ = (at, ax, ay, az)' = Bμ'

νAν = (γat - γβax, -γβat + γax, ay, az)

Typical Lorentz Rotation Transform (non-symmetric):
for an angular-displacement frame-shift (x,y)-Rotation about the ẑ-direction:
Λμ'

ν → Rμ'
ν [θ] = e^(θ∙J) = 

[  1          0           0  0  ]    (    0  0  0  0  )
[  0   cos[ θ ]   -sin[ θ ]  0  ]  = e^(θz 0  0 -1  0  )
[  0    sin[ θ ]   cos[ θ ]  0  ]    (    0  1  0  0  )
[  0   0    0  1  ]    (    0  0  0  0  )
 
Aν = (at, ax, ay, az) 
Aμ’ = (at, ax, ay, az)' = Rμ'

νAν = (at, cos[ θ ]ax - sin[ θ ]ay,sin[ θ ]ax + cos[ θ ]ay, az)

Lorentz Transforms Λμ’
ν = ∂ν[Xμ′]

Proper Lorentz Transforms (Det=+1):
Continuous: (Boost) vs (Rotation)

Lorentz Transforms:
 Lambda( Λ ) for Lorentz 

( B ) for Boost 
( R ) for Rotation

Proper Transforms
Determinant = +1

{ cos2  +  sin2 = +1 }

{   γ2      - β2γ2   = +1 }
{cosh2 - sinh2 = +1 }

ζ = rapidity = hyperbolic angle
γ = cosh[ ζ ] = 1/√[1-β2]
βγ = sinh[ ζ ]
β = tanh[ ζ ]

Rotated 4-Vector
Circularly-Rotated

A’=Aμ’=Rμ’
νAν=(a0’,a’)

Lorentz Rotation
Transform
Λμ’

ν→Rμ’
ν

4-Vector
A=Aν=(a0,a)

Boosted 4-Vector
Hyperbolically-Rotated
A’=Aμ’=Bμ’

νAν=(a0’,a’)

Lorentz Boost
Transform
Λμ’

ν→Bμ’
ν 

Det[Rμ’
ν]=Det[Bμ’

ν]
= +1

  1          0           0  0  
  0   cos[ θ ]   -sin[ θ ]  0  
  0    sin[ θ ]   cos[ θ ]  0  
  0   0    0  1  

  cosh[ ζ ]  -sinh[ ζ ] 0   0 
 -sinh[ ζ ]   cosh[ ζ ] 0   0 
     0 0 1   0 
     0 0 0   1 

 γ  -βγ    0   0
-βγ   γ    0   0 
 0    0    1   0
 0    0    0   1

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1

The Lorentz Rotation Rμ’
ν is a 4D rotation matrix.

It simply adds the time component, which remains
unchanged, to the standard 3D rotation matrix.



  

Lorentz Transforms Λμ’ν = ∂ν[Xμ′]
Proper Lorentz Transforms (Det=+1):

(Boost) vs (Rotation) vs (Identity)
General Lorentz Boost Transform (symmetric,continuous):
for a linear-velocity frame-shift (Boost)
in the v/c=β=(β1,β2,β3)-direction:
Λμ'

ν → Bμ'
ν =

General Lorentz Rotation Transform (non-symmetric,continuous):
for an angular-displacement frame-shift (Rotation)
angle θ about the n̂=(n1,n2,n3)-direction:
Λμ'

ν → Rμ'
ν =

Lorentz Identity Transform (symmetric,”discrete:continuous”): 
for a non-frame-shift (Identity)
in any direction
Λμ'

ν → ημ'
ν = δμ'

ν = Diag[1,δi
j] = I(4) =

β = v/c:  dimensionless Velocity Beta Factor { β=(0..1), with speed-of-light (c) at (β=1) } 
γ = 1/√[1-β2] = 1/√[1-β∙β]:  dimensionless Lorentz Relativistic Gamma Factor { γ=(1..∞) }
Identity transformation for zero relative motion/rotation: B[0] = R[0] = I(4)

Proper Transformation = positive unit determinant: det[B] = det[R] = det[η] = +1.
Inverses: B(v)−1 = B(−v) (relative motion in the opposite direction), and R(θ)−1 = R(−θ) (rotation in the opposite sense about the same axis)
Matrix symmetry: B is symmetric (equals transpose, B=BT), while R is nonsymmetric but orthogonal (transpose equals inverse, RT = R−1)

The Lorentz Identity Transform is 
the limit of both the Rotation and 
Boost Transfoms when the 
respective “rotation angle” is 0

Rotated 4-Vector
Circularly-Rotated

A’=Aμ’=Rμ’
νAν=(a0’,a’)

Lorentz Rotation
Transform
Λμ’

ν→Rμ’
ν

4-Vector
A=Aν=(a0,a)

Boosted 4-Vector
Hyperbolically-Rotated
A’=Aμ’=Bμ’

νAν=(a0’,a’)

Identical 4-Vector
Un-Rotated

A’=Aμ’=ημ’
νAν=(a0’,a’)=A

Lorentz Identity
Transform

Λμ’
ν→ημ’

ν = I
(4)

No mixing      Space-Space       Time-Space

  1   0j  
 0i   δi

j 

1         0j     
  0i   ( δi

j-ninj )cos(θ)-( εi
jknk )sin(θ)+ninj

  γ -γβj    
 -γβi (γ-1)βjβj /(β∙β)+δi

j  

Λμ’
ν = 

[ Λ0’
0,Λ0’

j ]
[ Λi’

0 ,Λi’
j ]

Lorentz Boost
Transform
Λμ’

ν→Bμ’
ν

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

Tr[Rμ'
ν]={0..4}

Det[Rμ'
ν]=+1

 

Tr[Bμ'
ν]={4..Infinity}

Det[Bμ'
ν]=+1

Tr[ημ'
ν]=4

Det[ημ'
ν]=+1

ΛμνΛμν = 4

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1

The Lorentz Rotation Rμ’
ν ( Tr={0..4} ) meets 

      the Lorentz Boost Bμ’
ν ( Tr={4..+∞} ) at

             the 4D Identity I(4) ( Tr={4} )



  

General Lorentz Parity-Inversion Transform:
Λμ'

ν → Pμ'
ν (Improper,symmetric,discrete)

=

General Lorentz Time-Reversal Transform: 
Λμ'

ν → Tμ'
ν (Improper,symmetric,discrete)

=

General Lorentz Identity Transform: 
Λμ'

ν → ημ'
ν = δμ'

ν = I(4) (Proper,symmetric)
= 

Both the Parity-Inversion (P) and Time-Reversal (T) have a Determinant of -1, which is an improper transform.
However, combinations (PP), (TT), (PT) have overall Determinant of +1, which is proper.
Classical SR Time Reversal neglects spin and charge.  When included, there is also a Charge-Conjugation(C) transform.
Then one gets (CC),(PP),(TT),(PT)(PT) & (CPT) transforms all leading back to the Identity (I(4)).

  1   0j  
 0i   δi

j 

Lorentz Transforms Λμ’ν = ∂ν[Xμ′]
Discrete (non-continuous)

(Parity-Inversion) vs (Time-Reversal) vs (Identity)

Parity-Inverted 4-Vector
A’=Aμ’=Pμ’

νAν=(a0’,a’)
=(a0,-a)

Lorentz
Parity-Inversion

Transform
Λμ’

ν→Pμ’
ν

= 

4-Vector
A=Aν=(a0,a)

Time-Reversed 4-Vector
A’=Aμ’=Tμ’

νAν=(a0’,a’)
=(-a0,a)

Lorentz
Time-Reversal

Transform
Λμ’

ν→Tμ’
ν

= 

 

Identical 4-Vector
A’=Aμ’=ημ’

νAν=(a0’,a’)
=(a0,a)=A

Lorentz
Identity

Transform
Λμ’

ν→ημ’
ν = I

(4)

=

Det[ημ’
ν]

=+1

No mixing   Time Space        TimeSpace

Original 4-Vector
A=Aν=(a0,a)

Lorentz
Parity-Inversion

Transform
Λμ’

ν→Pμ’
ν

Lorentz
Time-Reversal

Transform
Λμ’

ν→Tμ’
ν

Lorentz
Identity

Transform
Λμ’

ν→ημ’
ν=δμ’

ν

Tr[Pμ’
ν]= -2Tr[Tμ’

ν]= +2Tr[ημ’
ν]= +4

  -1   0j  
  0i   δi

j 

  1   0j  
 0i  -δi

j 

  1   0j  
 0i  -δi

j 
  -1   0j  
  0i   δi

j 
  1   0j  
 0i   δi

j 

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

Λμ’
ν = 

[ Λ0’
0,Λ0’

j ]
[ Λi’

0 ,Λi’
j ]

ΛμνΛμν = 4

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1

Lorentz
ComboPT
Transform

Λμ’
ν→(PT)μ’

ν = -I
(4)

= 
  -1  0j  
 0i  -δi

j 

Lorentz
ComboPT
Transform

Λμ’
ν→(PT)μ’

ν

Tr[(PT)μ’
ν]= -4

Combo PT’d 4-Vector
A’=Aμ’=(PT)μ’

νAν=(a0’,a’)
=(-a0,-a)

Det[Tμ’
ν]=Det[Pμ’

ν]
= -1

Det[(PT)μ’
ν]

=+1

Note that the Trace of Discrete Lorentz Transforms 
goes in steps from {-4,-2,2,4}.  As we will see in a bit, 
this is a major hint for SR antimatter.



  

Lorentz Transforms Λμ’ν = ∂ν[Xμ′]
Discrete & Fixed Rotation → Particle Exchange

Lorentz Coordinate-Flip Transforms

Lorentz
Parity
Transform
Λμ’

ν→Pμ'
ν =

Fxyzμ'
ν 

     t      x     y     z 
t  [  1     0     0     0 ]
x [  0     -1    0     0 ]
y [  0     0     -1    0 ]
z [  0     0     0    -1 ]

Lorentz
Flip-t
Transform
Λμ’

ν→Ftμ'
ν =

= Tμ'
ν

     t      x     y     z 
t  [ -1     0     0     0 ]
x [  0     1     0     0 ]
y [  0     0     1     0 ]
z [  0     0      0    1 ]

Lorentz
Flip-x
Transform
Λμ’

ν→Fxμ'
ν =

     t      x     y     z 
t  [  1     0     0     0 ]
x [  0     -1    0     0 ]
y [  0     0      1    0 ]
z [  0     0     0     1 ]

Lorentz
Flip-y
Transform
Λμ’

ν→Fyμ'
ν =

     t      x     y     z 
t  [  1     0     0     0 ]
x [  0     1     0     0 ]
y [  0     0     -1    0 ]
z [  0     0     0     1 ]

Lorentz
Flip-z
Transform
Λμ’

ν→Fzμ'
ν =

     t      x     y     z 
t  [  1     0     0     0 ]
x [  0     1     0     0 ]
y [  0     0      1    0 ]
z [  0     0     0    -1 ]

Tr[Ftμ'
ν]= 2

Det[Ftμ'
ν]= -1

Tr[Fxμ'
ν]= 2

Det[Fxμ'
ν]= -1

Tr[Fyμ'
ν]= 2

Det[Fyμ'
ν]= -1

Tr[Fzμ'
ν]= 2

Det[Fzμ'
ν]= -1

Any single Lorentz Flip Transform is Improper, with a 
Determinant of -1.  However, pairwise combinations are 
Proper, with a Determinant of +1. 

The combination of any two Spatial Flips is the equivalent 
of a Spatial Rotation by (π) about the associated rotational 
axis.  Since this is a Proper transform, it is also the 
equivalent of a particle location exchange.

The combination of all three Spatial Flips, Flip-xyz, gives 
the Lorentz Parity Transform, which is again Improper.

The Flip-t is the standard Lorentz Time-Reversal, 
Improper.

Lorentz
Flip-xy
Transform
Λμ’

ν→Fxyμ'
ν =

Exchange

     t      x     y     z 
t  [  1     0     0     0 ]
x [  0     -1    0     0 ]
y [  0     0     -1    0 ]
z [  0     0     0     1 ]

Tr[Fxyμ'
ν]= 0

Det[Fxyμ'
ν]= +1

⊗

⊗

Tr[Fxyzμ'
ν]= -2

Det[Fxyzμ'
ν]= -1

Lorentz
z-Rotation
Transform
Λμ’

ν→Rμ'
ν =

   t       x         y         z 
t  [ 1     0         0         0 ]
x [ 0  cos[θ]  -sin[θ]    0 ]
y [ 0  sin[θ]   cos[θ]    0 ]
z [ 0      0         0        1 ]

Tr[Rμ'
ν]=2+2cos[θ]={0..4}

Det[Rμ'
ν]=cos[θ]2 + sin[θ]2= +1

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Λμ’
ν = 

[ Λ0’
0,Λ0’

j ]
[ Λi’

0 ,Λi’
j ]

ΛμνΛμν = 4
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1



  

Time-reversal 
Λμ'

ν → Tμ'
ν 

 
t → -t* 

time parity 
anti-unitary

Other Axis
Flips

Λμ'
ν → Fμ’

ν

Flip-x
Λμ'

ν → Fxμ'
ν

x → -x
unitary

Identity I(4)

Λμ'
ν → ημ'

ν = δμ'
ν

= Bμ'
ν[0]

= Rμ’
ν[0] = Rμ’

ν[2π]
no mixing

unitary

Charge-Conjugation
Λμ'

ν → Cμ'
ν

-R* → R, -q → q
charge parity
anti-unitary

Neg Identity -I(4)

Λμ'
ν → -ημ'

ν= -δμ'
ν

=PTcombo
R → -R*
all flipped

unitary

Boost (any Axis)
Λμ'

ν → Bμ'
ν

t:x | t:y | t:z

Parity-Inversion
Λμ'

ν → Pμ’
ν

r → -r
space parity

unitary

Rotation-z
Λμ'

ν → Rμ’
ν[π]

= Flip-xy
= Fxyμ’

ν

x:y

Rotation-z
Λμ'

ν → Rμ’
ν[3π/2]

 
x:y

Rotation-z
Λμ'

ν → Rμ’
ν[π/2]

 
x:y

Other Axis
Rotations
Λμ'

ν → Rμ’
ν

Lorentz Transforms Λμ’ν = ∂ν[Xμ′]
Lorentz Transform Connection Map

Discrete
Flip-x

Discrete
Flip-y

Discrete
Flip-t

Continuous
Various 
Boosts

Continuous
Rotate-z

Discrete
Flip-charge

Discrete
Particle Exchange=Flip-xy

Discrete
Flip-z

Discrete
Flip-t

Continuous
Rotate-z

Continuous
Rotate-z

Continuous
Rotate-z

Discrete
Various
Flips

Continuous
Various
Rotations

Discrete
Flip-y

Discrete
Flip-x

Discrete
Flip-xy

Tr[Rμ'
ν]={0..4}

Det[Rμ'
ν]=+1

 

Tr[Bμ'
ν]={4..Infinity}

Det[Bμ'
ν]=+1

Tr[ημ'
ν]=4

Det[ημ'
ν]=+1

Tr[Rμ'
ν(π)]=0

Det[]=+1

Tr[Rμ'
ν(π/2)]=2

Det[]=+1

Tr[Rμ'
ν(3π/2)]=2

Det[]=+1

Tr[-ημ'
ν]= -4

Det[-ημ'
ν]=+1

Tr[Pμ'
ν]= -2

Det[Pμ'
ν]= -1

Tr[Cμ'
ν]=4

Det[]=+1
Tr[Tμ'

ν]=2
Det[Tμ'

ν]= -1

Tr[Fμ'
ν]=2

Det[Fμ'
ν]= -1

Tr[Fμ'
ν]=2

Det[Fμ'
ν]= -1

Discrete
Various
Flips

Det[ Proper ] = +1

Det[ Improper ] = -1

Flip-xy * Rot-z[θ] = Rot-z[θ+π]
Particle Exchange

Flip-ij * Rot-k[θ] = Rot-k[θ+π] 
Particle Exchange
(orthogonal ijk)

Discrete Space-Parity=Flip-xyz

Flip-y
Λμ'

ν → Fyμ'
ν

y→ -y
unitary

Separate Set
of Boosts & Rotations

By CPT Symmetry,  this should 
be equivalent to the

regular Positive Identity I(4):
Feynman-StueckelbergCPT Symmetric Equivalent
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1



  

Lorentz Transforms Λμ’ν = ∂ν[Xμ′] 
Lorentz Transform Connection Map – Discrete Transforms 

CPT, Big-Bang, (Matter-AntiMatter), Arrow-of-Time

Examine all possible combinations of Discrete Lorentz Transformations which are Linear (Determinant of ±1).

A lot of the standard SR texts only mention (P)arity-Inverse and (T)ime-Reversal.  However, there are many others, including 
(F)lips and (R)otations of a fixed amount.  However, the (T)imeReversal and Combo(P)arity(T)ime take one into a separate section 
of the chart. Taking into account all possible discrete Lorentz Transformations fills in the rest of the chart.  The resulting 
interpretation is that there is CPT Symmetry (Charge:Parity:Time) and Dual TimeSpace (with reversed timeflow). In other words, 
one can go from the Identity Transform (all +1) to the Negative Identity Transform (all -1) by doing a Combo PT Lorentz Transform 
or by Negating the Charge (Matter→Antimatter).  The Feynman-Stueckelberg Interpretation aligns with this as the AntiMatter Side.

This is similar to Dirac’s prediction of AntiMatter, but without the formal need of Quantum Mechanics, or Spin. In fact, it is more 
general than Dirac’s work, which was about the electron.  This is from general Lorentz Transforms for any kind of particle:event.

 t 
+1
+1
+1
+1
+1
+1
+1
+1
-1
-1
-1
-1
-1
-1
-1
-1
 t 

 x 
+1
+1
+1
+1
-1
-1
-1
-1
+1
+1
+1
+1
-1
-1
-1
-1
 x 

 y 
+1
+1
-1
-1
+1
+1
-1
-1
+1
+1
-1
-1
+1
+1
-1
-1
 y 

 z 
+1
-1
+1
-1
+1
-1
+1
-1
+1
-1
+1
-1
+1
-1
+1
-1
 z 

 Discrete NormalMatter (NM) Lorentz Transform Type 
Minkowski-Identity : AM-Flip-txyz=AM-ComboPT
Flip-z
Flip-y
Flip-yz=Rotate-yz(π)
Flip-x
Flip-xz=Rotate-xz(π)
Flip-xy=Rotate-xy(π)
Flip-xyz=ParityInverse : AM-Flip-t=AM-TimeReversal
Flip-t=TimeReversal : AM-Flip-xyz=AM-ParityInverse
AM-Flip-xy=AM-Rotate-xy(π)
AM-Flip-xz=AM-Rotate-xz(π)
AM-Flip-x
AM-Flip-yz=AM-Rotate-yz(π)
AM-Flip-y
AM-Flip-z
AM-Minkowski-Identity : Flip-txyz=ComboPT
 Discrete AntiMatter (AM) Lorentz TransformType 

 Trace  : Determinant 
Tr = +4 : Det = +1 Proper
Tr = +2 : Det = -1 Improper
Tr = +2 : Det = -1 Improper
Tr = 0   : Det = +1 Proper
Tr = +2 : Det = -1 Improper
Tr = 0   : Det = +1 Proper
Tr = 0   : Det = +1 Proper
Tr = -2  : Det = -1 Improper
Tr = +2 : Det = -1 Improper
Tr = 0   : Det = +1 Proper
Tr = 0   : Det = +1 Proper
Tr = -2  : Det = -1 Improper
Tr = 0   : Det = +1 Proper
Tr = -2  : Det = -1 Improper
Tr = -2  : Det = -1 Improper
Tr = -4  : Det = +1 Proper
 Trace  : Determinant 

Note that the 
(T)imeReversal

and

Combo 
(P)arityInverse & 
(T)imeReversal 

take

 NormalMatter
↕↕

AntiMatter

Matter-AntiMatter
Dual balance along Temporal

Binary Spatial states
for 3 units:dimensions

Discrete Lorentz
Transform (1,1)-Tensor

{ octagon representation }
Pair production ( + - )
  in little circles ( •  • )

Tao – I Ching – YinYang
fantastic metaphors for

SR SpaceTime...
Tao: “Flow of the Universe”

”way, path, route, road”
I Ching: ”Book of Changes”

”Transformations”
YinYang: “Positive/Negative”
”complementary opposites”

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1



  

Lorentz Transforms Λμ’ν = ∂ν[Xμ′] 
Lorentz Transform Connection Map – Trace Identification 

CPT, Big-Bang, (Matter-AntiMatter), Arrow-of-Time

Line up by 
Trace 
Invariant 
values

 Discrete NormalMatter (NM) Lorentz Transform Type 
Minkowski-Identity : AM-Flip-txyz=AM-ComboPT

Flip-t=TimeReversal, Flip-x, Flip-y, Flip-z
AM-Flip-xyz=AM-ParityInverse

Flip-xy=Rotate-xy(π), Flip-xz=Rotate-xz(π), Flip-yz=Rotate-yz(π)

AM-Flip-xy=AM-Rotate-xy(π), AM-Flip-xz=AM-Rotate-xz(π), AM-Flip-yz=AM-Rotate-yz(π)

Flip-xyz=ParityInverse
AM-Flip-t=AM-TimeReversal, AM-Flip-x, AM-Flip-y, AM-Flip-z

AM-Minkowski-Identity : Flip-txyz=ComboPT
 Discrete AntiMatter (AM) Lorentz TransformType 

 Trace : Determinant 
Tr = +4 : Det = +1 Proper

Tr = +2 : Det = -1 Improper

Tr = 0   : Det = +1 Proper

Tr = 0   : Det = +1 Proper

Tr = -2 : Det = -1 Improper

Tr = -4 : Det = +1 Proper
 Trace : Determinant 

+∞

+4

+2

0

-2

-4

-∞

+I(4)

-I(4)

NormalMatter 
Boosts

Det = +1 Proper
Tr = {+4..+∞}

AntiMatter 
Rotations

Det = +1 Proper
Tr = {0..-4}

NormalMatter 
Rotations

Det = +1 Proper
Tr = {0..+4}

AntiMatter Boosts
Det = +1  Proper

Tr = {-4..-∞}

AntiMatter 
Flips

NormalMatter 
Flips

AntiMatter 
Identity

Det = +1 Proper 
Tr = -4

NormalMatter 
Identity

Det = +1 Proper 
Tr = +4

All Lorentz Transforms have Tensor Invariants: Determinant of ±1 and Inner Product of 4.
However, one can use the Tensor Invariant Trace to Identify CPT Symmetry & AntiMatter

Tr[ NM-Rotate ] = {0...+4} Tr[NM-Identity] = +4   Tr[NM-Boost] = {+4...+∞}
Tr[ AM-Rotate ] = {0….-4} Tr[AM-Identity] = -4   Tr[AM-Boost] = {-4.....-∞}

Two interesting properties of (1,1)-Tensors, of which the Lorentz Transform is an example:
Trace = Sum (Σ) of EigenValues : Determinant = Product (Π) of EigenValues

As Rank 4 Tensors, each Lorentz Transform has 4 EigenValues (EV’s). 
Create an Anti-Transform which has all EigenValue Tensor Invariants negated. 
Σ[-(EV’s)] = -Σ[EV’s]: The Anti-Transform has negative Trace of the Transform. 
Π[-(EV’s)] = (-1)4Π[EV’s] = Π[EV’s]: The Anti-Transform has equal Determinant.

 
The Trace Invariant identifies a “Dual” Negative-Side for all Lorentz Transforms.
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SR:Lorentz Transform
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ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1



  

Lorentz Transforms Λμ’ν = ∂ν[Xμ′] 
Lorentz Transform Connection Map - Interpretations 

CPT, Big-Bang, (Matter-AntiMatter), Arrow-of-Time

Based on the Lorentz Transform properties of the last few pages, here is interesting observation about Lorentz Transforms:
They all have Determinant of ±1, and Inner Product of 4, but the Trace varies depending on the particular Transform.

The Trace of the Identity is at 4. Assume this applies to normal matter particles.
The Trace of normal matter particle Rotations varies from (0..4)
The Trace of the normal matter particle Boosts varies from (4..Infinity)
So, one can think of Trace = 4 being the connection point between normal matter Rotations and Boosts.

Now, various Flip Transforms (inc. the Time Reversal and Parity Transforms, and their combination as PT transform),
take the Trace in steps from (-4,-2,0,+2+4). Applying a bit of symmetry:

The Trace of the Negative Identity is at -4. Assume this applies to anti-matter particles.
The Trace of anti-matter particle Rotations varies from (0..-4) 
The Trace of the anti-matter particle Boosts varies from (-4..-Infinity)
So, one can think of Trace = -4 being the connection point between anti-matter Rotations and Boosts.

This observation would be in agreement with the CPT Theorem (Feynman-Stueckelberg) idea that normal matter particles moving 
backward in time are CPT symmetrically equivalent to antimatter particles moving forward in time.

Now, scale this up to Universe size: The Baryon Asymmetry problem (aka. The Matter-AntiMatter Asymmetry Problem).
If the Universe was created as a huge chunk of energy, and matter-creating energy is always transformed into matter-antimatter 
mirrored pairs, then where is all the antimatter???  Turns out this is directly related to the Arrow-of-Time Problem as well.

Answer: It is temporally on the “Other/Dual side” of the Big-Bang!  The antimatter created at the Big-Bang is travelling in the 
negative time (-t) direction from the Big-Bang creation point, and the normal matter is travelling in the positive time direction (+t).  
Universal CPT Symmetry. So, what happened “before” the Big-Bang?  It “is” the AntiMatter Dual to our normal matter universe!
Pair-production is creation of AM-NM mirrored pairs within SpaceTime. The Big-Bang is the creation of SpaceTime itself.

This also resolves the Arrow-of-Time Problem.  If all known physical microscopic processes are time-symmetric, why is the flow of 
Time experienced as uni-directional???  {see Wikipedia “CPT Symmetry”,“CP Violation”,”Andrei Sakharov”}

Answer: Time flow on this side of the Universe is in the (+t) direction, while time flow on the dual side of the Universe is in the (-t) 
direction.  The math all works out. Time flow is bi-directional, but on opposite sides of the Big-Bang! Universal CPT Symmetry.

This gives total CPT Symmetry to all of the possible Lorentz Transforms (AM=Antimatter, NM=Normal Matter):
           Various (AM_Flips) : Various (NM_Flips)

-Infinity...(AM_Boosts)...(AM_Identity=-4)...(AM_Rotations)...0...(NM_Rotations)...(+4=NM_Identity)...(NM_Boosts)...+Infinity

CPT Symmetry:
each side follows Big-Bang!
it’s own time-arrow Creation of
with “matter” acting SpaceTime
“properly”. :) itself

This solves the:
Baryon (Matter-AntiMatter) Asymmetry Problem

& Arrow(s)-of-Time Problem ( + / - )

(-)     (+)
AM    NM

Pair-Production
in This side

Pair-Production 
in Dual side

(-)     (+)
NM    AM

NormalMatter
This side of Universe

+t

-t
Dual side of Universe

AntiMatter
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ν
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Lorentz Transforms Λμ’ν = ∂ν[Xμ′] 
Lorentz Transform Connection Map – Interpretations 2 

CPT, Big-Bang, (Matter-AntiMatter), Arrows-of-Time

This idea of Universal CPT Symmetry also gives a Universal Dimensional Symmetry as well.

Consider the well known “balloon” analogy of the universe expansion.  The “spatial” coordinates are on the surface of the balloon, 
and the expansion is in the +t direction.  There is symmetry in the +/- directions of the spatial coordinates, but the time flow is 
always uni-directional, +t, as the balloon gets bigger.

By allowing a “dual side”, it provides a universal dimensional symmetry.  One now has +/- symmetry for the temporal directions.

The “center” of the Universe is literally, the Big Bang Singularity.  It is the “center=zero” point of both time and space directions.

The expansion gives time flow always AWAY FROM the Big Bang singularity in both the Normal Side (+) and the Dual Side (-).
The spatial coordinates expand in both the (+/-) directions on both sides.

Note that this gives an unusual interpretation of what came “before” the Big Bang.
The “past” on either side extends only to the BB singularity, not beyond. Time flow is always away from this creation singularity.

This is also in accord with known black hole physics, in that all matter entering a BH ends at the BH singularity.
Time and space coordinates both come to a stop at either type of singularity, from the point of view of an observer that is in the 
spacetime but not at the singularity.
 
So, the Big Bang is a “starting” singularity, and black holes are “ending” singularities. 
Also provides for idea of “white holes” actually just being black holes on the alternate side.  White hole=time-reversed black hole.
This way, the mass is still attractive. Time flow is simply reversed on the alternate side so stuff still goes INTO the hole...

So, Universal CPT Symmetry = Universal Dimensional Symmetry.

And, going even further, I suspect this is the reason there is a duality in Metric conventions.
In other words, physicists have wondered why one can use {+,-,-,-} or {-,+,+,+}.
I submit that one of these metrics applies to the Normal Matter side, while the other complementarily applies to the Dual side.
This would allow correct causality conditions to apply on either side.
Again, this is similar to the Dirac prediction of antimatter based on a duality of possible solutions.

This gives total CPT Symmetry to all of the possible Lorentz Transforms (AM=Antimatter, NM=Normal Matter):
           Various (AM_Flips) : Various (NM_Flips)

-Infinity...(AM_Boosts)...(AM_Identity=-4)...(AM_Rotations)...0...(NM_Rotations)...(+4=NM_Identity)...(NM_Boosts)...+Infinity

CPT Symmetry:
each side follows Big-Bang!
it’s own time-arrow Creation of
with “matter” acting SpaceTime
“properly”. :) itself

This solves the:
Baryon (Matter-AntiMatter) Asymmetry Problem

& Arrow(s)-of-Time Problem ( + / - )

(-)     (+)
AM    NM

Pair-Production
in This side

Pair-Production 
in Dual side

(-)     (+)
NM    AM

NormalMatter
This side of Universe

+t

-t
Dual side of Universe

AntiMatter
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ν
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SRQM Study:
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de Sitter Group SO(1,4)
de Sitter invariant relativity

(maybe?)

Poincaré Group ISO(1,3)
{ r << r

dS
 = de Sitter Radius}

r
dS

 = √[3/Λ] = LH/√[ΩΛ]

SR & GR Physics
(** currently thought correct **)

Λμ'
ν → Bμ'

ν =
Boost

Galilei Group
{ |v| << c }

Classical Physics

Λμ'
ν → Sμ'

ν =         
Motion:Shear           

     t      x     y     z 
t  [ γ    -βγ    0    0 ]
x [ -βγ    γ    0    0 ]
y [  0     0     1    0 ]
z [  0     0     0    1 ]

     t      x     y     z 
t  [   1     0    0    0 ]
x [  -β     1    0    0 ]
y [  0     0     1    0 ]
z [  0     0     0    1 ]

Model
SpaceTimes

Klein Geometry G/H

Λ < 0 Λ = 0 Λ > 0

Lorentzian
pseudo-Riemannian

Anti de Sitter
SO(3,2)/SO(3,1)

Minkowski
ISO(3,1)/SO(3,1)
ds2 = (cdt)2 - dx·dx

De Sitter
SO(4,1)/SO(3,1)

Riemannian Hyperbolic
SO(4,1)/SO(4)

Euclidean
ISO(4)/SO(4)
ds2 = (cdt)2 + dx·dx

Spherical
SO(5)/SO(4)



  

Lie Groups

Transformations
(# of independent parameters = # continuous symmetries = # Lie Dimensions)

Galilean Transformation Group aka. Inhomogeneous Galilean Transformation
Lie group of all affine isometries of Classical:Euclidean Time + Space (preserve quadratic form δij)

General Linear,Affine Transform Xμ' = Λμ'
νXν + ΔXμ’ with Det[Λμ'

ν] = ±1
(6+4=10)

 Translation Transform ΔXμ’

(1+3=4) 4-Vector
Galilean Transform Λμ'

ν

(3+3=6) 4-Tensor {mixed type-(1,1)}

Classical Transforms: Venn Diagram
Full Galilean = Galilean + Translations

(10) (6) (4)

Discrete Continuous

Homogeneity 
{same all points}

Temporal
ΔXμ' → (cΔt,0)

(1)
Δt

Spatial
ΔXμ' → (0,Δx)

(3)
Δx | Δy | Δz

Discrete Continuous

Isotropy
{same all directions}

4-Zero
ΔXμ' → (0,0)

(0)
no motion

Parity-Inversion
Λμ'

ν → Pμ’
ν

(0)
r → -r

space parity
unitary

Time-reversal
Λμ'

ν → Tμ'
ν

(0)
t → -t*

time parity
anti-unitary

Rotation
Λμ'

ν → Rμ’
ν

(3)
x:y | x:z | y:z

Motion:Shear
Λμ'

ν → Sμ'
ν

(3)
t:x | t:y | t:z

SpatialFlipCombos
Λμ'

ν → Fμ'
ν

(0)
{x|y|z} → -{x|y|z}

unitary

Identity I(4)

Λμ'
ν → ημ'

ν=δμ'
ν

(0)
no mixing

unitary
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de Sitter Group SO(1,4)
de Sitter invariant relativity

(maybe?)

Poincaré Group ISO(1,3)
{ r << r

dS
 = de Sitter Radius}

r
dS

 = √[3/Λ] = LH/√[ΩΛ]

SR & GR Physics
(** currently thought correct **)

Λμ'
ν → Bμ'

ν =
Boost

Galilei Group
{ |v| << c }

Classical Physics

Λμ'
ν → Sμ'

ν =         
Motion:Shear           

     t      x     y     z 
t  [ γ    -βγ    0    0 ]
x [ -βγ    γ    0    0 ]
y [  0     0     1    0 ]
z [  0     0     0    1 ]

     t      x     y     z 
t  [   1     0    0    0 ]
x [  -β     1    0    0 ]
y [  0     0     1    0 ]
z [  0     0     0    1 ]



  

Transformations
(# of independent parameters = # continuous symmetries = # Lie Dimensions)

Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation
Lie group of all affine isometries of SR:Minkowski TimeSpace (preserve quadratic form ημν)

General Linear,Affine Transform Xμ' = Λμ'
νXν + ΔXμ’ with Det[Λμ'

ν] = ±1
(6+4=10)

 Translation Transform ΔXμ’

(1+3=4) 4-Vector
Lorentz Transform Λμ'

ν

(3+3=6) 4-Tensor {mixed type-(1,1)}

SRQM Transforms: Venn Diagram
Poincaré = Lorentz + Translations

(10) (6) (4)
M01 M02 M03

M10 M12 M13

M20 M21 M23

M30 M31 M32

P0

P1

P2

P3

4-AngularMomentum Mμν = Xμ ^ Pν = XμPν - XνPμ 
= Generator of Lorentz Transformations (6) 
= { Λμ’

ν→Rμ'
ν Rotations (3) + Λμ’

ν→Bμ'
ν Boosts (3) } 

 
4-LinearMomentum Pμ 
= Generator of Translation Transformations (4) 
= { ΔXμ'→(cΔt,0) Time (1) + ΔXμ'→(0,Δx) Space (3) }

Det[Λμ'
ν] = +1 for Proper Lorentz Transforms

Det[Λμ'
ν] = -1 for Improper Lorentz Transforms

Lorentz Matrices can be generated by a matrix M
with Tr[M]=0 which gives:
{ Λ = e ^ M = e ^ (+θ∙J - ζ∙K) }
{ ΛT = (e ^ M)T =  e ^ MT }
{ Λ-1 = (e ^ M)-1 =  e ^ -M }

M = +θ∙J - ζ∙K
B[ζ] = e^(-ζ∙K)
R[θ] = e^(+θ∙J)
Λ = e ^ M = e ^ (+θ∙J - ζ∙K)

Rotations Ji = -εimnMmn/2, Boosts Ki = Mi0

[ (R→ -R*) ] or [ (t→ -t*) & (r→ -r) ] imply q→ -q
Feynman-Stueckelberg Interpretation
Amusingly, Inhomogeneous Lorentz adds homogeneity.

Discrete Continuous

Homogeneity 
{same all points}

Temporal
ΔXμ' → (cΔt,0)

(1)
Δt

Spatial
ΔXμ' → (0,Δx)

(3)
Δx | Δy | Δz

Discrete

          CPT Symmetry
{Charge}
{Partiy}
{Time}

Continuous

Isotropy
{same all directions}

4-Zero
ΔXμ' → (0,0)

(0)
no motion

Parity-Inversion
Λμ'

ν → Pμ’
ν

(0)
r → -r

space parity
unitary

Charge-Conjugation
Λμ'

ν → Cμ'
ν

(0)
R → -R*, q → -q

charge parity
anti-unitary

Time-reversal
Λμ'

ν → Tμ'
ν

(0)
t → -t*

time parity
anti-unitary

Rotation
Λμ'

ν → Rμ’
ν

(3)
x:y | x:z | y:z

Boost
Λμ'

ν → Bμ'
ν

(3)
t:x | t:y | t:z

SpatialFlipCombos
Λμ'

ν → Fμ'
ν

(0)
{x|y|z} → -{x|y|z}

unitary

Identity I(4)

Λμ'
ν → ημ'

ν=δμ'
ν

(0)
no mixing

unitary
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1



  

Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation 
The group of all isometries of SR:Minkowski Spacetime (6 + 4 = 10)
(preserve quadratic form) 
General Linear,Affine Transform Xμ' = Λμ'

νXν + ΔXμ’ with Det[Λμ'
ν] = ±1 

4-AngularMomentum Mμν = X ^ P = XμPν - XνPμ 
= Generator of Lorentz Transformations (6) 
= { Λμ’

ν→Rμ'
ν Rotations (3) + Λμ’

ν→Bμ'
ν Boosts (3) } 

 
4-LinearMomentum Pμ = P
= Generator of Translation Transformations (4) 
= { ΔXμ'→(cΔt,0) Time (1) + ΔXμ'→(0,Δx) Space (3) }

Jacobi’s Formula for Complex Square Matrix A: Det(Exp[A])=Exp(Tr[A]) 
Det(A)4D = ((tr A)4 - 6 tr(A2)(tr A)2 + 3(tr(A2))2 + 8 tr(A3) tr A - 6 tr(A4))/24

4-Displacement
ΔX=(cΔt,Δx)

Translation Transform
Generated ΔXμ’(t,x) = exp[X∙P/ћ]μ’

Review of SR Transforms
10 Poincaré Symmetries, 10 Conservation Laws

10 Generators : Noether’s Theorem

E/c = p0

p = pj

4-Velocity
U=γ(c,u)
=dX/dτ

4-Momentum
Pμ = P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
X=(ct,x)

∂∙X=4
SpaceTime
Dimension

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Minkowski
∂[X]=∂μ[Xν]=ημν

Metric

4-AngMomentum
Tensor

Mμν = XμPν - XνPμ = X ^ P
→ 

[ 0     -cnx   -cny   -cnz] 
[+cnx    0      +lz      -ly ] 
[+cny   -lz      0       +lx ] 
[+cnz   +ly      -lx      0  ] 

= 
[  0  , -cnj ]
[+cni, εij

k
lk ]

0 -cn

cnT l = x ^ p
*

Generator
Pμ

 Lorentz Transform   ∂ν[Xμ’] = ∂Xμ’/∂Xν = Λμ’
ν

Generated Λμ’
ν(ζ,θ) = exp[1/2 ωαβMαβ]μ’

ν = exp[ζ∙K + θ∙J]μ’
ν

Lorentz General Time-Space
Boost
Transform
Λμ’

ν→Bμ'
ν =

Generated by relativistic massmoment 3-vector cn

γ  -γβj    
 -γβi  (γ-1)βjβj /(β∙β)+δi

j  

Lorentz General Space-Space
Rotation
Transform
Λμ’

ν→Rμ'
ν =

Generated by angular-momentum-3-vector l = r ^ p

1  0j     
 0i  ( δi

j-ninj )cos(θ)-( εi
jknk )sin(θ)+ninj

ΔTime Transform ΔXμ’→(cΔt,0)
Generated by energy E = cp0

ΔSpace Transform ΔXμ’→(0,Δx)
Generated by 3-momentum p = pi

Conservation of scalar Energy (temporal)

 Conservation of 4-Momentum
(1 + 3) = (4) Laws

Conservation of Linear
3-momentum (spatial)

Conservation of
relativistic 3-mass-moment

(temporal-spatial)

Conservation of
4-AngularMomentum
(3 + 3) = (6) Laws

Conservation of Angular
3-momentum (spatial-spatial)

*
Generator

Mμν

Angular Mμν + Linear Pμ

(3 + 3)         +   (1 + 3)
=  (6)           +      (4)
= 10 Symmetries = 10 Generators = 10 Conservation Laws: Noether’s Theorem 

Lagrange “Shift Operator” version of Taylor’s Theorem: ea(d/dx) f(x)=f(x+a)
Bloch Theorem:Translation Operator: ei(K∙R)ψ(X) = ψ(X+R), with K as reciprocal lattice
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Review of SR Transforms
Poincaré Algebra & Generators

Casimir Invariants
The (10) one-parameter groups can be expressed directly as exponentials of the generators: Poincaré Algebra is the Lie Algebra of the Poincaré Group.
U[I, (a0,0)] = e^(ia0·H) = e^(ia0·P0): (1) Hamiltonian = Energy = Temporal Momentum H
U[I, (0,λâ)] = e^(-iλâ·p): (3) Linear Momentum p
U[Λ(iλθ̂/2), 0] = e^(iλθ̂·j): (3) Angular Momentum j
U[Λ(λφ̂/2), 0] = e^(iλφ̂·k): (3) Lorentz Boost k
The Poincaré Algebra is the Lie Algebra of the Poincaré Group:
Total of (1+3+3+3 = 4+6 = 10) Invariances from Poincaré Symmetry

Covariant form: 
These are the commutators of the the Poincaré Algebra :
[Xμ, Xν] = 0μν

[Pμ, Pν] = -iћq(Fμν) if interacting with EM field; otherwise = 0μν for free particles
Mμν = (XμPν - XνPμ) = iћ(Xμ∂ν – Xν∂μ)
[Mμν, Pρ] = iћ( ηρνPμ – ηρμPν)
[Mμν, Mρσ] = iћ(ηνρMμσ + ημσMνρ + ησνMρμ + ηρμMσν)

Component form: Rotations Ji = -εimnMmn/2, Boosts Ki = Mi0

[Jm,Pn] = iεmnkPk

[Jm,P0] = 0
[Kj,Pk] = iηjkP0

[Kj,P0] = -iPj

[Jm,Jn] = iεmnkJk

[Jm,Kn] = iεmnkKk

[Km,Kn] = -iεmnkJk, a Wigner Rotation resulting from consecutive boosts
[Jm + iKm,Jn - iKn] = 0

Poincaré Algebra has 2 Casimir Invariants = Operators that commute with all of the Poincaré Generators
These are {P2 = PμPμ = (moc)2, W2 = WμWμ = -(moc)2j(j + 1) }, with Wμ = (-1/2)εμνρσJνρPσ as the Pauli-Lubanski Pseudovector

[P2,P0] = [P2,Pi] = [P2,Ji] = [P2,Ki] = 0: Hence the 4-Momentum Magnitude squared commutes with all Poincaré Generators
[W2,P0] = [W2,Pi] = [W2,Ji] = [W2,Ki] = 0: Hence the 4-SpinMomentum Magnitude squared commutes with all Poincaré Generators

Very importantly, the Poincaré group has Casimir Invariant Eigenvalues  = { Mass m, Spin j },
hence Mass *and* Spin are purely SR phenomena, no QM axioms required!

This Representation of the Poincaré Group or Representation of the Lorentz Group
is known as Wigner's Classification in Representation Theory of Particle Physics

Mμν = X ^ P = XμPν - XνPμ

Pμ = P

M = Generator of Lorentz Transformations (6) = { Rotations (3) + Boosts (3) } 
P = Generator of Translation Transformations (4) = { Time (1) + Space (3) } 
 
Rotations Ji = -εimnMmn/2, Boosts Ki = Mi0

The set of all Lorentz Generators V = {ζ∙K + θ∙J} forms a vector space over the real numbers. 
The generators {Jx , Jy , Jz , Kx , Ky , Kz} form a basis set of V. The components of the axis-angle 
vector and rapidity vector {θx , θy , θz , ζx , ζy , ζz} are the coordinates of a Lorentz generator wrt. 
this basis.  

M01= -cn1 M02= -cn2 M03= -cn3

M10= cn1 M12= l3 M13= -l2

M20= cn2 M21= -l3 M23= l1

M30= cn3 M31= l2 M32= -l1

E/c = p0

p = pj

0 -cn

cnT l = x ^ p

P0

P1

P2

P3

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

10 Poincaré Symmetry Invariances
Noether’s Theorem: 10 SR Conservation Laws

d’Alembertian Invariant Wave Equation: ∂∙∂ = (∂t/c)2 - ∙∇ ∇ = (∂τ/c)2

Time Translation:
Let XT = (ct+cΔt,x), then ∂[XT] = (∂t/c,-∇)(ct+cΔt,x) = Diag[1,-1] = ∂[X] = ημν 
so ∂[XT] = ∂[X] and ∂[K] = [[0]]
(∂∙∂)[K∙XT] = ∂∙(∂[K∙XT]) = ∂[K]∙XT+K∙∂[XT] = 0+K∙∂[X] = ∂[K]∙X+K∙∂[X] = ∂∙(∂[K∙X]) = (∂∙∂)[K∙X]: Time Translation Invariance (1)

Conservation of Energy = (Temporal) Momentum E
Space Translation: Temporal part of Pμ = (E/c,p)
Let XS = (ct,x+Δx), then ∂[XS] = (∂t/c,-∇)(ct,x+Δx) = Diag[1,-1] = ∂[X] = ημν 
so ∂[XS] = ∂[X] and ∂[K] = [[0]]
(∂∙∂)[K∙XS] = ∂∙(∂[K∙XS]) = ∂[K]∙XS+K∙∂[XS] = 0+K∙∂[X] = ∂[K]∙X+K∙∂[X] = ∂∙(∂[K∙X]) = (∂∙∂)[K∙X]: Space Translation Invariances (3)

Conservation of Linear (Spatial) Momentum p
Lorentz Space-Space Rotation: Spatial part of Pμ = (E/c,p)
Let XR = (ct,R[x]), then ∂[XR] = (∂t/c,-∇)(ct,R[x]) = Diag[1,-1] = ∂[X] = ημν 
so ∂[XR] = ∂[X] and ∂[K] = [[0]]
(∂∙∂)[K∙XR] = ∂∙(∂[K∙XR]) = ∂[K]∙XR+K∙∂[XR] = 0+K∙∂[X] = ∂[K]∙X+K∙∂[X] = ∂∙(∂[K∙X]) = (∂∙∂)[K∙X]: Lorentz Space-Space Rotation Invariances (3)

Conservation of Angular (Spatial) Momentum l
Lorentz Time-Space Boost: Spatial-Spatial part of Mμν = X^P
Let XB = γ(ct-β∙x,-βct+x), then ∂[XB] = (∂t/c,-∇)γ(ct-β∙x,-βct+x) = [[γ,-γβ],[-γβ,γ]] = Λμν

∂[K∙XB] = ∂[K]∙XB+K∙∂[XB] = ΛμνK = KB = a Lorentz Boosted K, as expected
∂∙KB = ∂∙ΛμνK = Λμν(∂∙K) = Λμν(0) = 0 = ∂∙K = Divergence of K = 0, as expected
(∂∙∂)[K∙XB] = ∂∙(∂[K∙XB]) = ∂∙KB = ∂∙K = ∂∙(∂[K∙X]) = (∂∙∂)[K∙X]: Lorentz Time-Space Boost Invariances (3)

Conservation of Relativistic Mass-Moment n
Temporal-Spatial part of Mμν = X^P

SR Waves: see Wikipedia: Relativistic Angular Momentum
Let Ψ = ae^-i(K∙X), ΨT = ae^-i(K∙XT), ΨS = ae^-i(K∙XS), ΨR = ae^-i(K∙XR), ΨB = ae^-i(K∙XB)
(∂∙∂)[K∙XT] = (∂∙∂)[K∙XS] = (∂∙∂)[K∙XR] = (∂∙∂)[K∙XB] = (∂∙∂)[K∙X]: Wave Equation Invariant under all Poincaré transforms
Total of (1+3+3+3 = 10) Invariances from Poincaré Symmetry

4-Gradient
∂=(∂t/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

=(∂/c∂t,-∂/∂x,-∂/∂y,-∂/∂z)

Invariant
d’Alembertian

Wave Equation
∂∙∂=(∂

t 
/c)2- ∙∇ ∇

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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An example of the magnitude of a 3-vector is the length of a 3-displacement Δr = (r
1
 - r

0
).

Examine 3-position r
1
 → r = (x,y,z), which is a 3-displacement with the base at the origin r

0
 → 0 = (0,0,0). 

The Dot Product of r, { r∙r = rjδ
jk
rk = r

k
rk = rjr

j
 = (x*x + y*y + z*z) = (x2 + y2 + z2) = r2 } is the Pythagorean Theorem. 

The Kronecker Delta δ
jk
 = Diag[1,1,1]  = I(3).

The magnitude is √[r∙r] = √[r2] = |r|.  3D magnitudes are always positive. 
 

The magnitude of a 4-Vector is very similar to the magnitude of a 3-vector, but there are some interesting differences. 
One uses the Lorentz Scalar Product, a 4D Dot Product, which includes a time component, and is based on the 
SR:Minkowski Metric Tensor. I typically use the “Particle Physics” convention of the Minkowski Metric
η

μν
 → Diag[1,-1,-1,-1] {Cartesian form}, with the other entries zero. 

 
A'∙A' = A∙A = 

 
Aμη

μν
Aν = A

ν
Aν = AμA

μ
 = Σ

ν=0..3
[a

ν
aν] = (a0a0 + a1a1 + a2a2 + a3a3) = Σ

u=0..3
[aua

u
] 

 = (a0a0 - a1a1 - a2a2 - a3a3) = (a0a0 - a∙a) 
using the Einstein summation convention where upper-lower paired indices are summed over. 
 
R∙R = (ct)2 - r∙r = (ct)2 - (x2 + y2 + z2) = (cΔτ)2

for 4-Position R = (ct,r) 
4D magnitudes can be negative(-),zero(0),positive(+)
 
 
The 4-Vector version has the Pythagorean element in the spatial components, the temporal component is of opposite sign.
This gives a “causality condition”, where SpaceTime intervals (in the [+,-,-,-] metric) can be:

SR 4-Vector Magnitudes
Dot Product, Lorentz Scalar Product

Einstein Summation Convention

4-Position
R = Rμ = (rμ) = (ct,r) = <Event>

Lorentz Invariant 
R∙R = Rμη

μν
Rν =(ct)2-r∙r = (cτ)2

Interval cτ

3-position
r = r j = (r j) = (r) = <location> → (x,y,z)

Galilean Invariant
r∙r = rjδ

jk
rk =(x)2+(y)2+(z)2 = (r)2 

length r

SpaceTime
∂∙R = ∂μRμ = 4

Dimension

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Classical (scalar  ;  3-vector)
 Galilean Not Lorentz
Invariant    Invariant
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SR:Minkowski Metric
∂[R] = ∂μRν = ημν = Vμν + Hμν →

Diag[1,-1,-1,-1] = Diag[1,-I(3)] = Diag[1,-δjk]
{in Cartesian form}  ”Particle Physics” Convention

{ημμ} = 1/{ημμ} : ημ
ν = δμ

ν              Tr[ημν]=4

SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1

   (cΔτ)2  Time-like:Temporal (+) {causal = 1D temporally-ordered, non-topological}
ΔR∙ΔR = [(cΔt)2 - Δr∙Δr] = (0)  Light-like:Null:Photonic (0) {causal & topological, maximum signal speed (|Δr/Δt|=c)}

   -(Δro)2  Space-like:Spatial (‒) {non-causal, topological = 3D spatially-ordered}



  

SRQM Study:
Lorentz Scalar Product A∙B = AμBμ

Exterior Product A^B = AμBν-AνBμ

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

4-EMVectorPotential
A=(φ/c,a)

Fμν =
∂^A=∂μAν-∂νAμ

EM Faraday
4-Tensor

φo/c2

mo

 Eo/c2

(∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

εoc2  

1/μo 

ρo

Electric:Magnetic
1/(εoμo ) = c2

Energy:Mass
E = mc2

EM

 ∂∙A=0
Lorenz
Gauge

   R∙P = -Saction,free

Action Scalar

Mμν =
R^P=RμPν-RνPμ

4-AngularMomentum
4-Tensor

Minkowski
∂[R]=∂μ[Rν]=ημν

Metric

SpaceTime
∂∙R=∂μRμ=4
Dimension

Lorentz
∂ν[Rμ’]=Λμ’

ν

Transform

There are at least three 4-Vector relations which use the Exterior Product.

∂^A = ∂μ ^ Aν = ∂μAν-∂νAμ = Fμν : the Faraday EM 4-Tensor
R^P = Rμ ^ Pν = RμPν-RνPμ = Mμν : the 4-Angular-Momentum
R^F = Rμ ^ Fν = RμFν-RνFμ = Γμν : the 4-Angular-Torque

This gives the components of each remarkably similar properties.

Likewise, each of these has a physical Dot Product relation as well.

∂∙A = ∂μAμ = 0 : the Lorenz Gauge, a conservation of 4-EMVectorPotential
R∙P = RμPμ = -Saction,free :  the Action Scalar
R∙F = RμFμ = ??? :  probably something important

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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∂∙∂=(∂
t 
/c)2- ∙∇ ∇

d’Alembertian



  

4-Displacement
ΔX=(cΔt,Δx)

      

SRQM Study:
4-Momentum → 4-Force

4-AngularMomentum → 4-Torque

4-Velocity
U=γ(c,u)
=dX/dτ

4-Momentum
Pμ = P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
X=(ct,x)

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Minkowski
∂[X]=∂μ[Xν]=ημν

Metric

4-AngMomentum
Tensor

Mμν = XμPν - XνPμ = X ^ P
→ 

[ 0     -cnx   -cny   -cnz] 
[+cnx    0      +lz      -ly ] 
[+cny   -lz     0        +lx ] 
[+cnz   +ly    -lx        0  ] 

= 
[  0  , -cnj ]
[+cni, εij

k
lk ]

4-Torque
Tensor

Γμν = XμFν - XνFμ = X ^ F
=

dMμν/dτ

 

= 

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Lorentz
∂ν[Xμ’]=Λμ’

ν

Transform

   X∙P = -Saction,free

4-Force
F=γ(Ė/c,f)

=dP/dτ

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

SpaceTime
∂∙X=∂μXμ=4
Dimension

Linear:
4-Force is the 
ProperTime Derivative of 4-Momentum.

Angular:
4-Torque is the 
ProperTime Derivative of 4-AngularMomentum.

d/dτ[ Mμν ]
= d/dτ[ XμPν – XνPμ ]
= [ UμPν + XμFν – UνPμ – XνFμ ]
= [ UμmoUν + XμFν – UνmoUμ – XνFμ ]
= [ UμmoUν – UνmoUμ + XμFν – XνFμ ]
= [ mo(UμUν – UνUμ) + XμFν – XνFμ ]
= [ mo(0μν) + XμFν – XνFμ ]
= [ XμFν – XνFμ ]

d/dτ[ Mμν ] = Γμν = [ XμFν – XνFμ ] = X ^ F

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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SR Minkowski SpaceTime
4-Vectors, 4-CoVectors, Scalars, Tensors

Invariant Lorentz Scalar Product
4-Vectors are actually tensorial entities of Minkowski SpaceTime, (1,0)-Tensors, which maintain covariance for inertial observers,
meaning that they may have different components for different observers, but describe the same physical object.
(like viewing a sculpture from different angles – snapshots look different but it's actually the same object)
There are also 4-CoVectors, or One-Forms, which are (0,1)-Tensors and dual to 4-Vectors.

Both GR and SR use a metric tensor gμν to describe measurements in SpaceTime.
SR uses the “flat” Minkowski Metric gμν → ημν = η

μν
 → Diag[1,-I(3)] = Diag[1,-δjk] = Diag[1,-1,-1,-1] {Cartesian form},

which is the {curvature ~ 0 limit = low-mass limit} of the GR metric gμν.

4-Vectors = (1,0)-Tensors
A = Aμ = (aμ) = (a0,ai) = (a0,a) = (a0,a1,a2,a3) → (at,ax,ay,az)
B = Bμ = (bμ) = (b0,bi) = (b0,b) = (b0,b1,b2,b3) → (bt,bx,by,bz)

4-CoVectors = (0,1)-Tensors
       A

μ
 = (a

μ
) = (a

0
,a

i
) = (a

0
,-a) = (a

0
, a

1
, a

2
, a

3
)  → (a

t
, a

x
, a

y
, a

z
)      where A

μ
 = η

μν 
Av and Aμ = ημν

 
A

v

        = (a
0
,a

i
) = (a0,-a) = (a0,-a1,-a2,-a3) → (at,-ax,-ay,-az)

       B
μ
 = (b

μ
) = (b

0
,b

i
) = (b

0
,-b) = (b

0
, b

1
, b

2
, b

3
)  → (b

t
, b

x
, b

y
, b

z
)      where B

μ
 = η

μν 
Bv and Bμ = ημν

 
B

v
 

        = (b
0
,b

i
) = (b0,-b) = (b0,-b1,-b2,-b3) → (bt,-bx,-by,-bz)

A'∙B' = A∙B = 
 
Aμη

μν
Bν = A

ν
Bν = AμB

μ
 = Σ

ν=0..3
[a

ν
bν] = Σ

u=0..3
[aub

u
] = (a0b0 - a∙b) = (a0b0 - a1b1 - a2b2 - a3b3)

using the Einstein summation convention where upper-lower paired indices are summed over

Proof that this is an invariant:
A'·B' = Aμ'ημ'ν'Bν' = 
(Λμ'

αAα) ημ'ν'(Λν'
βBβ) = (Λμ'

αημ'ν'Λν'
β) AαBβ = (Λν'

αΛν'β) AαBβ = (ηαρΛρ
ν'Λν'

β) AαBβ = (ηαρδρ
β) AαBβ = (ηαβ) AαBβ =

Aα(ηαβ)Bβ = A·B

Lorentz Scalar Product → Lorentz Invariant Scalar = Same value for all inertial observers
Lorentz Invariants are also tensorial entities: (0,0)-Tensors

4-Vector
A=Aν=(a0,a)

4-Vector
B=Bν=(b0,b)

4-Vector
A’=Aμ’=(a0’,a’)

4-Vector
B’=Bμ’=(b0’,b’)

 

Invariant Lorentz
Scalar Product

A∙B=AνBν=AμBμ=A’∙B’
=(a0b0 - a∙b)

=(a0’b0’- a’∙b’) 

Einstein & Lorentz “saw” the physics of SR, 
Minkowski & Poincaré “saw” the mathematics of SR. 
We are indebted to all of them for the simplicity, 
beauty, and power of how SR and 4-vectors work... 

Index
raising & lowering

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Lorentz Transform Λμ’ν
Aμ’=Λμ’νAν

Bμ’=Λμ’νBν

Det[Λμ’ν]=±1 ΛμνΛμν = 4

SR → QM
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SR 4-Vectors & Lorentz Scalars
Rest Values (“naughts”=o) are Lorentz Scalars

A∙A = (a0a0 - a∙a) = (a0
o)2, where (a0

o) is the rest-value, the value of the temporal coordinate when the spatial coordinate is zero.
The “rest-values” of several physical properties are all Lorentz scalars.

P = (mc,p) K = (ω/c,k)
P∙P = (mc)2 - p∙p K∙K = (ω/c)2 - k∙k
(P∙P) and (K∙K) are Lorentz Scalars. We can choose a frame that may simplify the expressions.

Choose a frame in which the spatial component is zero.
This is known as the “rest-frame” of the 4-Vector. It is not moving spatially.

P∙P = (mc)2 - p∙p = (moc)2 K∙K = (ω/c)2 - k∙k = (ωo/c)2

The resulting simpler expressions then give the “rest values”, indicated by ( o ).
RestMass (mo) and RestAngularFrequency (ωo)
They are Invariant Lorentz Scalars by construction.

This leads to simple relations between 4-Vectors.
P = (mo)U = (Eo/c2)U K = (ωo/c2)U

And gives nice Scalar Product relations between 4-Vectors as well.
P∙U = (mo)U∙U = (mo)c2 = (Eo) K∙U = (ωo/c2)U∙U = (ωo/c2)c2 = (ωo)

This property of SR equations is a very good reason to use the “naught” convention for specifying the difference between
relativistic component values which can vary, like (m), versus Rest Value Invariant Scalars, like (mo), which do not vary.
They are usually related via a Lorentz Factor: { m = γmo } and { E = γEo }, as seen in the relation of P and U.

P = (mc,p)    = (mo)U   = (mo)γ(c,u)     = (γmoc,γmou)   = (mc,mu)    = (mc,p)
P = (E/c,p) = (Eo/c2)U = (Eo/c2)γ(c,u) = (γEo/c,γEou/c2) = (E/c,Eu/c2) = (E/c,p)

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-Vector
A=(a0,a)=(a0,a1,a2,a3)
→(a0

o,0) {in spatial rest frame}

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)ωo/c2

U∙U=c2

P∙P=(moc)2=(Eo/c)2

K∙K=(ωo/c)2

A∙A=(a0
o)2

P∙U=moc2=Eo

K∙U=ωo

Notation:
“o” for rest values (naughts)
“0” for temporal components (0th index)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
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SR 4-Vectors & 4-Tensors
Lorentz Scalar Product & Tensor Trace

Invariants: Similarities
All {4-Vectors:4-Tensors} have an associated {Lorentz Scalar Product:Trace}

Each 4-Vector has a “magnitude” given by taking the Lorentz Scalar Product of itself.
V∙V = 

 
VμημνVν = VμVμ = VνVν = (v0v0 + v1v1 + v2v2 + v3v3) = (v0v0 - v∙v) = (v0

o)2

The absolute magnitude of V is √[|V∙V|]

Each 4-Tensor has a “magnitude” given by taking the Tensor Trace of itself.
Trace[Tμν] = Tr[Tμν] = ημνTμν = Tμ

μ = Tν
ν = (T0

0 + T1
1 + T2

2 + T3
3) = (T00 - T11 - T22 - T33) = T

Note that the Trace runs down the diagonal of the 4-Tensor.

Notice the similarities.  In both cases there is a tensor contraction with
the Minkowski Metric Tensor η

μν
 → Diag[1,-1,-1,-1] {Cartesian basis}

ex. P∙P = (E/c)2 - p∙p = (Eo/c)2 = (moc)2

which says that the “magnitude” of the 4-Momentum is the RestEnergy/c = RestMass*c

ex. Trace[ημν] = (η00 - η11 - η22 - η33) = 1 -(-1) -(-1) -(-1) = 1+1+1+1 = 4 
which says that the “magnitude” of the Minkowski Metric = SpaceTime Dimension = 4

4-Vector
V = Vμ = (v0,v)

V∙V=VμVμ=(v0v0 - v∙v)=(v0

o
)2

4-Tensor
Tμν = [T00,T01,T02,T03]

[T10,T11,T12,T13]
[T20,T21,T22,T23]
[T30,T31,T32,T33]

Tr[Tμν]=Tμ
μ=(T00-T11-T22-T33)=T

Lorentz Scalar Invariant

Trace Tensor Invariant

4-Momentum
P=(mc,p)=(E/c,p)

P∙P=(moc)2=(Eo/c)2

Minkowski Metric
∂[R]=ημν→Diag[1,-1,-1,-1]

Tr[ημν]= 4

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SR 4-Vectors & 4-Tensors
 More 4-Vector-based Invariants

Phase Space Integration
Some 4-Vectors have an alternate form of Tensor Invariant: dv’/v0’ = dv/v0

,in addition to the standard Lorentz Invariant V∙V = VμVμ = (v0v0 - v∙v) = (v0

o
)2 

If V∙V = (constant):, with V = (v0,v)
then d(V∙V) = 2*(V∙dV) = d(constant) = 0
hence (V∙dV) = 0 = v0dv0 - v∙dv
dv0 = v∙dv/v0

Generally:, with Λ = Λμ’
ν = Lorentz Boost Transform in the β-direction

V’ = ΛV : from which the temporal component v0’ = (γv0 - γβ∙v)
dV’ = ΛdV : from which the spatial component dv’ = (γdv - γβdv0)

Combining:
dv’ = (γdv - γβ(v∙dv/v0))
dv’ = (1/v0)*(γv0dv - γβ(v∙dv))
dv’ = (1/v0)*(γv0- γβ∙v)dv
dv’ = (γv0- γβ∙v)*(1/v0)*dv
dv’ = (v0’/v0)dv
dv’/v0’ = dv/v0 = Invariant of V = (v0,v) for V∙V = (constant)

So, for example:
P∙P = (moc)2 = (constant)

Thus, dp’/(E’/c) = dp/(E/c) = Invariant
Or: dp’/E’ = dp/E → d3p/E = dpxdpydpz/E = Invariant, usually seen as ∫ F(various invariants)*d3p/E = Invariant

4-Vector
V = Vμ = (v0,v)

V∙V=VμVμ=(v0v0 - v∙v)=(v0

o
)2

Lorentz Scalar Invariant

Phase Space Invariant

4-Momentum
P=(mc,p)=(E/c,p)

P∙P=(moc)2=(Eo/c)2

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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d3p/E

dv/v0 → d3v/v0 if V∙V=(constant)

An alternate approach is:
∫d4p δ[p2-(moc)2] 
= ∫d4p (1/2|moc|) (δ[p+moc] + δ[p-moc])
=cd3p/2E
= Invariant



  

d4X = -(Vo)dT·dX = -(dVo)T·dX = cdt d3x = cdt dx dy dz
The 4D Position coords that are integrated to give a 4D volume: SI units [m4]

4-Differential dX = (cdt,dx); dR = (cdt,dr);
4-UnitTemporal T = γ(1,β) = (γ,γβ)
4-UnitTemporalDifferential dT = d[(γ,γβ)] = (d[γ],d[γβ])

V = ∫dV = ∫dx ∫dy ∫dz = ∫∫∫dx dy dz = ∫d3x
V = Vo/γ = 3D Spatial Volume: SI units [m3]
dV = d3x = 3D Spatial Volume Element
γ = Vo/V
dγ = -(Vo/V2)dV

-(Vo)dT·dX = Invariant, because (Rest Scalar * Lorentz Scalar Product) = Invariant
= -(Vo)(d[γ],d[γβ])·(cdt,dx)
= -(Vo)(d[γ]cdt - d[γβ]·dx)
= -(Vo)(-(Vo/V2)dVcdt - d[γβ]·dx)
= -(Vo)(-(Vo/Vo

2)dVcdt - d[(1)(0)]·dx) by taking the usual rest-case
= -(Vo)(-(Vo/Vo

2)dVcdt)
= -(Vo)(-(1/Vo)dVcdt)
= dVcdt
= cdt dV
= cdt dx dy dz
= cdt d3x
= d4X = Invariant
And, this makes sense.
T is a temporal 4-Vector with fixed magnitude: T·T = 1
Therefore, dT must be a spatial 4-Vector
If dX is also spatial, then the Lorentz scalar product { (dT·dX) = -magnitude } will be negative with this choice of Minkoski Metric.
Thus, multiplying by -(Vo) gives a positive volume element{ cdt dx dy dz = d4X}
It is sort of quirky though, that the temporal (cdt) comes from the dX part, and the spatial (d3x) comes from the dT part.

SR 4-Vectors & 4-Tensors
More 4-Vector-based Invariants

Phase Space Integration

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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d4X
= cdt·dx·dy·dz
= cγdτ·dx·dy·dz

= cdt·d3x

4-UnitTemporalDifferential
dT=(d[γ],d[γβ])

4-Differential
dR=dRμ=(cdt,dr)

Phase Space 
Tensor Invariant

-Vo

 ημν 
∙

∫F[various Invariants]d4X
γdV

γdx·dy·dz
= γd3x

 cdτ



  

ρ d3x = ρ' d3x' = (-Vo/c)dT·J = Lorentz Scalar Invariant
n d3x = n' d3x' = (-Vo/c)dT·N = Lorentz Scalar Invariant

4-CurrentDensity J = (ρc,j)
4-NumberFlux N = (nc,n)
4-UnitTemporal T = γ(1,β) = (γ,γβ)
4-UnitTemporalDifferential dT = d[(γ,γβ)] = (d[γ],d[γβ])

V = Vo/γ
dγ = -(Vo/V2)dV

(-Vo/c)dT·J = Invariant, because (Rest Scalar * Lorentz Scalar Product) = Invariant
= (-Vo/c)(d[γ],d[γβ])·(ρc,j)
= (-Vo/c)(d[γ]ρc - d[γβ]·j)
= (-Vo/c)(-(Vo/V2)(dV)(ρc) - d[γβ]·j)
= (-Vo/c)(-(Vo/Vo

2)(dV)(ρc) - d[(1)0]·j)
= (-Vo/c)(-(Vo/Vo

2)(dV)(ρc))
= (dV/c)(ρc)
= (ρc)(dV/c)
= (ρ)(dV)
= ρ d3x

Total Charge  Q  = ∫γρo d3x = ∫ρ d3x = Lorentz Scalar Invariant
Total Particle #  N  = ∫γno d3x = ∫n d3x = Lorentz Scalar Invariant
Total RestVolume  Vo = ∫γd3x       = Lorentz Scalar Invariant 

This also gives an alternate way to define the RestVolume Invariant Vo.
(-Vo/c)dT·N = nd3x
N = ∫nd3x = ∫(-Vo/c)dT·N
cN/Vo = -∫dT·N
Vo = -cN/∫dT·N

SR 4-Vectors & 4-Tensors
More 4-Vector-based Invariants

Phase Space Integration

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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ρd3x

4-UnitTemporalDifferential
dT=(d[γ],d[γβ])

4-ChargeFlux
4-CurrentDensity
J=Jμ=(cρ,j)=ρ(c,u)

=ρoU=qnoU=qN

Phase Space 
Tensor Invariants

 ημν 
∙

 

Q = (-Vo/c)∫dT∙J
= ∫ρd3x = ∫γρod3x

→ ρoVo

Total EM Charge Q is a 
Lorentz Scalar Invariant

4-(Dust)NumberFlux
N=Nμ=(cn,nu)=n(c,u)

=noU

nd3x

-Vo/c

 ημν 
∙

 

N = (-Vo/c)∫dT∙N
= ∫nd3x = ∫γnod3x

→ noVo

Total # Particles N is a 
Lorentz Scalar Invariant

Vo = ∫γd3x 
= -cN/∫dT∙N = -cQ/∫dT∙J

∫

4-Velocity
U=Uμ=γ(c,u)no ρo

U∙U=c2

∫



  

d4P = (VPo)dT·dP = (dE/c) d3p = (dE/c) dpx dpy dpz

d4K = (VKo)dT·dK = (dω/c) d3k = (dω/c) dkx dky dkz

The 4D Momentum coords that are integrated to give a 4D Momentum Volume: SI Units [(kg·m/s)4]
The 4D WaveVector coords that are integrated to give a 4D WaveVector Volume: SI Units [(1/m)4]

4-DifferentialMomentum dP = (dE/c,dp)
4-DifferentialWaveVector dK = (dω/c,dk)
4-UnitTemporal T = γ(1,β) = (γ,γβ)
4-UnitTemporalDifferential dT = d[(γ,γβ)] = (d[γ],d[γβ])

VP = ∫dVP = ∫dpx∫dpy∫dpz = ∫∫∫dpx dpy dpz = ∫d3p
VP = γ(VPo) = 3D Volume in Momentum Space: SI Units [(kg·m/s)3]
dVP = dγ(VPo) = 3D Volume Element in Momentum Space
γ = (VP)/(VPo)
dγ = (dVP)/(VPo)

(VPo)dT·dP = Invariant, because Rest Scalar * Lorentz Scalar Product
= (VPo))(d[γ],d[γβ])·(dE/c,dp)
= (VPo)(d[γ]dE/c - d[γβ]·dp)
= (VPo)((dVP/VPo)dE/c - d[γβ]·dp)
= (VPo))((dVP/VPo)dE/c - d[(1)(0)]·dp) by taking the usual rest-case
= (VPo))((dVP/VPo)dE/c)
= (dVP) (dE/c)
= d3p (dE/c)
= (dE/c) d3p
= (dE/c) dpx dpy dpz

= d4P = Invariant

Likewise, d4K = Invariant

SR 4-Vectors & 4-Tensors
More 4-Vector-based Invariants

Phase Space Integration

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
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d4P
= (dE/c) dpx dpy dpz

= (dE/c) d3p

4-UnitTemporalDifferential
dT=(d[γ],d[γβ])

4-MomentumDifferential
dP=dPμ=(dE/c,dp)

VPo

 ημν 
∙

∫F[various Invariants]d4P

Phase Space 
Tensor Invariant

∫F[various Invariants]d4K



  

d3p d3x = (VPo)dT·(-Vo)dT = (-Vo)(VPo)dT·dT
d3k d3x = (VKo)dT·(-Vo)dT = (-Vo)(VKo)dT·dT

4-UnitTemporal T = γ(1,β) = (γ,γβ)
4-UnitTemporalDifferential dT = d[(γ,γβ)] = (d[γ],d[γβ])

(Vpo)dT·(-Vo)dT = Invariant
= (VPo)(d[γ],d[γβ])·(-Vo)(d[γ],d[γβ])
= (VPo)(-Vo)(d[γ]d[γ] - d[γβ]·d[γβ])
= (VPo)(-Vo)(-(Vo/V2)dV(dVP/(VPo)) - d[γβ]·d[γβ])
= (VPo)(-Vo)(-(Vo/Vo

2)dV(dVP/(VPo)) - d[(1)0]·d[(1)0])
= (VPo)(-Vo)(-(Vo/Vo

2)dV(dVP/(VPo))
= (VPo)dV(dVP/(VPo))
= dV dVP

= dVP dV
= d3p d3x = Invariant

Likewise, d3k d3x = Invariant

SR 4-Vectors & 4-Tensors
More 4-Vector-based Invariants

Phase Space Integration

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM
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of QM
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d3p d3x
= dpx dpy dpz dx dy dz

4-UnitTemporalDifferential
dT=(d[γ],d[γβ])

4-UnitTemporalDifferential 
dT=(d[γ],d[γβ])

-Vo
VPo

 ημν 
∙

∫F[various Invariants]d3p d3x

Phase Space 
Tensor Invariant

∫F[various Invariants]d3k d3x



  

SRQM Study: SR 4-Tensors
General → Symmetric & Anti-Symmetric

General
4-Tensor

Tμν =
[T00,T01,T02,T03]
[T10,T11,T12,T13]
[T20,T21,T22,T23]
[T30,T31,T32,T33]

Any SR Tensor Tμν = (Sμν + Aμν) can be decomposed into parts:
Symmetric Sμν = (Tμν+Tνμ)/2 with Sμν = +Sνμ

Anti-Symmetric Aμν = (Tμν-Tνμ)/2 with Aμν = -Aνμ

Sμν + Aμν = (Tμν+Tνμ)/2+(Tμν-Tνμ)/2 = Tμν/2 + Tμν/2 + Tνμ/2 - Tνμ/2 = Tμν + 0 = Tμν

Symmetric
4-Tensor

Sμν = 
[S00,S01,S02,S03]
[S10,S11,S12,S13]
[S20,S21,S22,S23]
[S30,S31,S32,S33]

=
[S00,  S01,  S02,  S03] 
[+S01, S11, S12,  S13]
[+S02,+S12, S22, S23]
[+S03,+S13,+S23,S33]

Anti-Symmetric
4-Tensor

Aμν = 
[A00,A01,A02,A03]
[A10,A11,A12,A13]
[A20,A21,A22,A23]
[A30,A31,A32,A33]

=
[ 0,  A01, A02, A03] 
[-A01, 0,  A12, A13]
[-A02,-A12, 0,  A23]
[-A03,-A13,-A23, 0]

Independent components: { 42 = 16 = 10 + 6 }
Max 16 possible Max 10 possible Max 6 possible

Importantly, the Contraction of any
Symmetric tensor with any
Anti-Symmetric tensor on the same index is 
always 0.

*Note* These don’t have to be composed from a 
single general tensor.

Sμν Aμν = 0

Proof:
Sμν Aμν

= Sνμ Aνμ: because we can switch dummy indices
= (+Sμν)Aνμ: because of symmetry
= Sμν(-Aμν): because of anti-symmetry
= -Sμν Aμν

= 0: because the only solution of {c = -c} is 0

Physically, the anti-symmetric part contains 
rotational information and the symmetric part 
contains information about isotropic scaling and 
anisotropic shear. 

aka
Skew-SymmetricTr[Aμν]=0

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

Tr[Sμν]=Sμ
μ



  

SRQM Study: SR 4-Tensors
Symmetric  → Isotropic & Anisotropic

Any Symmetric SR Tensor Sμν = (T
iso

μν + T
aniso

μν) can be decomposed into parts:
Isotropic T

iso
μν = (1/4)Trace[Sμν] ημν = (T) ημν

Anistropic T
aniso

μν = Sμν - T
iso

μν

The Anistropic part is Traceless by construction, and the Isotropic part has the same Trace as the 
original Symmetric Tensor.  The Minkowski Metric is a symmetric, isotropic 4-tensor with T=1.

Symmetric
4-Tensor

Sμν = 
[S00,S01,S02,S03]
[S10,S11,S12,S13]
[S20,S21,S22,S23]
[S30,S31,S32,S33]

=
[S00,  S01,  S02,  S03] 
[+S01, S11, S12,  S13]
[+S02,+S12, S22, S23]
[+S03,+S13,+S23,S33]

Independent components:
Max 10 possible Max 1 possible Max 9 possible

Importantly, the Contraction of any 
Symmetric tensor with any 
Anti-Symmetric tensor on the same index is 
always 0.

*Note* These don’t have to be composed from a 
single general tensor.

Sμν Aμν = 0

Proof:
Sμν Aμν

= Sνμ Aνμ: because we can switch dummy indices
= (+Sμν)Aνμ: because of symmetry
= Sμν(-Aμν): because of anti-symmetry
= -Sμν Aμν

= 0: because the only solution of {c = -c} is 0

Physically, the isotropic part represents a 
direction independent transformation (e.g., a 
uniform scaling or uniform pressure); the 
deviatoric part represents the distortion

Symmetric
Isotropic
4-Tensor
T

iso
μν =

[T, 0,0,0]
[0,-T,0,0]
[0,0,-T,0]
[0,0,0,-T]

with T=
(1/4)Trace[Sμν]

Symmetric
Anisotropic
4-Tensor
T

aniso
μν =

[S00-T,S01,S02,S03]
[S10,S11+T,S12,S13]
[S20,S21,S22+T,S23]
[S30,S31,S32,S33+T]

=
[S00-T,  S01,  S02,  S03] 
[+S01, S11+T, S12,  S13]
[+S02,+S12, S22+T, S23]
[+S03,+S13,+S23,S33+T] aka

Deviatoric
Tr[T

aniso
μν]=0Tr[T

iso
μν]=4TTr[Sμν]=4T

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SRQM Study: SR 4-Tensors
SR Tensor Invariants

The lowered-indices form of a 
tensor just negativizes the 

(time-space) and (space-time) 
sections of the upper-indices 

tensor

Invariants sometimes seen as 
I
1
 = (1/1)Tr[(Tμν)1] 

I
2
 = (1/2)Tr[(Tμν)2] 

I
3
 = (1/3)Tr[(Tμν)3] 

I
4
 = (1/4)Tr[(Tμν)4]

Lowered 4-Tensor
Tμν = ημρηνσTρσ

=
[T00 ,T01 ,T02 ,T03] 
[T10 ,T11 ,T12 ,T13] 
[T20 ,T21 ,T22 ,T23] 
[T30 ,T31 ,T32 ,T33] 

=
[+T00 , -T01 ,-T02 ,-T03]
[-T10 ,+T11 ,+T12 ,+T13]
[-T20 ,+T21 ,+T22 ,+T23]
[-T30 ,+T31 ,+T32 ,+T33]

4-Tensor
Tμν = [T00,T01,T02,T03]

[T10,T11,T12,T13]
[T20,T21,T22,T23]
[T30,T31,T32,T33]

Trace
Tensor Invariant

Tr[Tμν]=Tν
ν=(T00-T11-T22-T33)=T

TμνTμν

Det[Tμν]
Inner Product

Tensor Invariant
Determinant

Tensor Invariant
AsymmTri[Tμν]

Asymm Tri-Product
Tensor Invariant

S

V=Vμ=(vμ)=(v0,v1,v2,v3) 
 

V∙V =
 
(v0v0 - v∙v) = (v0

o)2 

If I got all the math right... 

Set of 4
EigenValues[Tμ

ν]

Eigenvalues Tensor 
Invariants

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

(0,0)-Tensor = Lorentz Scalar S: Has either (0) or (1) Tensor Invariant, depending on exact meaning
(S) itself is Invariant

(1,0)-Tensor = 4-Vector Vμ: Has (1) Tensor Invariant = The Lorentz Scalar Product
V∙V =

 
VμημνVν = ημνVμVν = Tr[VμVν] = VνVν = (v0v0 + v1v1 + v2v2 + v3v3) = (v0v0 - v∙v) = (v0

o)2 

(2,0)-Tensor = 4-Tensor Tμν: Has (4+) Tensor Invariants (though not all independent)
a) Tα

α = Trace = Sum of EigenValues for (1,1)-Tensors (mixed)
b) Tα

[αTβ
β] = Asymm Bi-Product → Inner Product

c) Tα
[αTβ

βTγ
γ] = Asymm Tri-Product → ?Name?

d) Tα
[αTβ

βTγ
γTδ

δ] = Asymm Quad-Product → 4D Determinant = Product of EigenValues for (1,1)-Tensors

eg. Tα
[αTβ

β] = Tα
αTβ

β - Tα
βTβ

α = (Tγ
γ)2 - Tα

βTβ
α{1} = (Tγ

γ)2 - Tα
βTβ

α{(¼)ηγδηγδ}
and, bending tensor rules slightly:  = (Tγ

γ)2 - Tα
βTβ

α{(¼)ηβδηβδ} = (Tγ
γ)2 - Tα

β(ηβδ)Tβ
α(ηβδ){(¼)} = (Tγ

γ)2 - TαδTδα{(¼)}
and, since linear combinations of invariants are invariant:
Examine just the (TαδTδα) part, which for symm|asymm is (±)(TαδTαδ) ie. the InnerProduct Invariant

a): Trace[Tμν] = Tr[Tμν] = ημνTμν = Tμ
μ = Tν

ν = (T0
0 + T1

1 + T2
2 + T3

3) = (T00 - T11 - T22 - T33) = (T)
for anti-symmetric: = 0

b): InnerProduct TμνTμν = T00T00 + Ti0Ti0 + T0jT0j + TijTij = (T00)2 - Σi[Ti0]2 - Σj[T0j]2 + Σi,j[Tij]2

for symmetric | anti-symmetric: = (T00)2 - 2Σi[Ti0]2 + Σi,j[Tij]2 = Σμ=ν[Tμν]2 - 2Σi[Ti0]2 + 2Σi>j[Tij]2

c): Antisymmetric Triple Product Tα
[αTβ

βTγ
γ] = Tr[Tμν]3 - 3(Tr[Tμν])(Tα

βTβ
α) + Tα

βTβ
γTγ

α + Tα
γTβ

αTγ
β

for anti-symmetric: = 0
d): Determinant  Det[Tμν] =?= -(1/2)ϵαβγδTαβTγδ

for anti-symmetric: Det[Tμν] = Pfaffian[Tμν]2 (The Pfaffian is a special polynomial of the matrix entries)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

Det[Tα
α] = Πk[λk]; with {λk} = Eigenvalues

Characteristic Eqns: Det[Tα
α - λkI(4)]=0



  

SRQM Study: SR 4-Tensors
SR Tensor Invariants
Tensor Gymnastics

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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Det[Tα
α] = Πk[λk]; with {λk} = Eigenvalues

Characteristic Eqns: Det[Tα
α - λkI(4)]=0

Some Tensor Gymnastics:

Matrix A = Tensor Ar
c

with rows denoted by “r”, columns by “c”

Example with dim=4: r,c={0..3}
Matrix A =
[ Ar=0

c=0  Ar=0
c=1 Ar=0

c=2 Ar=0
c=3 ]

[ Ar=1
c=0  Ar=1

c=1 Ar=1
c=2 Ar=1

c=3 ]
[ Ar=2

c=0  Ar=2
c=1 Ar=2

c=2 Ar=2
c=3 ]

[ Ar=3
c=0  Ar=3

c=1 Ar=3
c=2 Ar=3

c=3 ]

M = A x B = Ac
d Be

c = Me
d

,with the rows of A multiplied by the columns of B
due to the summation over index “c”

If we have sums over both indices:
Ac

d Bd
c = Md

d = Trace[M]
The sum over “c” gives the matrix multiplication and then the sum 
over “d” gives the Trace of the resulting matrix M

Ac
d Ad

c = (AxA)d
d = (N)d

d = Trace[N] = Trace[A2] = Tr[A2]
Ac

d Ad
c = (ηd

eAc
e)Ad

c = ηd
e(Ac

eAd
c) = ηd

e(Nd
e) = δd

e(Nd
e) = Tr[N] = Tr[A2]

Ac
[c Ad

d] = Ac
c Ad

d - Ac
d Ad

c = (Tr[A])2 – Tr[A2]
,with brackets [..] around the indices indicating anti-symmetric 
product

Aa
a = Tr[A]

Aa
[a Ab

b] = Aa
a Ab

b - Aa
b Ab

a = (Tr[A])2 - Tr[A2]

Aa
[a Ab

b Ac
c]

= + Aa
a Ab

b Ac
c - Aa

a Ab
c Ac

b + Aa
b Ab

c Ac
a - Aa

b Ab
a Ac

c + Aa
c Ab

a Ac
b - Aa

c Ab
b Ac

a

= +(Aa
a Ab

b Ac
c) - (Aa

a Ab
c Ac

b + Aa
b Ab

a Ac
c + Aa

c Ab
b Ac

a) + (Aa
b Ab

c Ac
a + Aa

c Ab
a Ac

b)
= +(Aa

a Ab
b Ac

c) - (Aa
a Ab

c Ac
b + Ac

c Aa
b Ab

a + Ab
b Aa

c Ac
a) + (Aa

b Ab
c Ac

a + Aa
c Ac

b Ab
a)

= +(Tr[A])3 - 3*(Tr[A])(Tr[A2]) + 2*(Tr[A3])

Aa
[a Ab

b Ac
c Ad

d] =
+Aa

aAb
bAc

cAd
d -Aa

aAb
bAc

dAd
c -Aa

aAb
cAc

bAd
d +Aa

aAb
cAc

dAd
b +Aa

aAb
dAc

bAd
c -Aa

aAb
dAc

cAd
b

-Aa
bAb

aAc
cAd

d +Aa
bAb

aAc
dAd

c +Aa
bAb

cAc
aAd

d -Aa
bAb

cAc
dAd

a -Aa
bAb

dAc
aAd

c +Aa
bAb

dAc
cAd

a

+Aa
cAb

aAc
bAd

d -Aa
cAb

aAc
dAd

b -Aa
cAb

bAc
aAd

d +Aa
cAb

bAc
dAd

a +Aa
cAb

dAc
aAd

b -Aa
cAb

dAc
bAd

a

-Aa
dAb

aAc
bAd

c +Aa
dAb

aAc
cAd

b +Aa
dAb

bAc
aAd

c -Aa
dAb

bAc
cAd

a -Aa
dAb

cAc
aAd

b +Aa
dAb

cAc
bAd

a

=
+Aa

aAb
bAc

cAd
d

-Aa
aAb

bAc
dAd

c -Aa
aAb

cAc
bAd

d -Aa
aAb

dAc
cAd

b -Aa
bAb

aAc
cAd

d -Aa
cAb

bAc
aAd

d -Aa
dAb

bAc
cAd

a 
+Aa

aAb
cAc

dAd
b +Aa

aAb
dAc

bAd
c +Aa

bAb
cAc

aAd
d +Aa

bAb
dAc

cAd
a +Aa

cAb
aAc

bAd
d +Aa

cAb
bAc

dAd
a +Aa

dAb
aAc

cAd
b +Aa

dAb
bAc

aAd
c 

+Aa
bAb

aAc
dAd

c +Aa
cAb

dAc
aAd

b Aa
dAb

cAc
bAd

a 
-Aa

bAb
cAc

dAd
a -Aa

bAb
dAc

aAd
c -Aa

cAb
aAc

dAd
b -Aa

cAb
dAc

bAd
a -Aa

dAb
aAc

bAd
c -Aa

dAb
cAc

aAd
b

=
+(Tr[A])4

-6*(Tr[A])2(Tr[A2]) 
+8*(Tr[A])(Tr[A3])
+3*(Tr[A2])2

-6*(Tr[A4])
=
+(Tr[A])4 -6*(Tr[A])2(Tr[A2]) +8*(Tr[A])(Tr[A3]) +3*(Tr[A2])2 -6*(Tr[A4])



  

SRQM Study: SR 4-Tensors
SR Tensor Invariants

Cayley-Hamilton Theorem

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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Det[Tα
α] = Πk[λk]; with {λk} = Eigenvalues

Characteristic Eqns: Det[Tα
α - λkI(4)]=0

General Cayley-Hamilton Theorem
Ad+cd-1Ad-1+...+c0A0= 0(d), with A = square matrix, d = dimension, A0 = Identity(d) = I(d)

Characteristic Polynomial: p(λ) = Det[A - λI(d)]

The following are the Principle Tensor Invariants for dimensions 1..4

dim = 1:  A1+c0A0 = 0  :  A - I1 I(1) = 0
I1 = tr[A] = Det1D[A] = λ1

dim = 2:  A2+c1A1+c0A0 = 0  :  A2 - I1 A1 + I2 I(2) = 0
I1 = tr[A] = Σ[Eigenvalues] = λ1 + λ2

I2 = ( tr[A]2 - tr[A2] )/2 = Det2D[A] = Π[Eigenvalues] = λ1λ2

dim = 3:  A3+c2A2+c1A1+c0A0 = 0  :  A3 - I1 A2 + I2 A1 - I3 I(3) = 0
I1 = tr[A] = Σ[Eigenvalues] = λ1 + λ2 + λ3

I2 = ( tr[A]2 - tr[A2] )/2 = λ1λ2 + λ1λ3 + λ2λ3

I3 = [ (tr A)3 - 3 tr(A2)(tr A) + 2 tr(A3) ]/6 = Det3D[A] = Π[Eigenvalues] = λ1λ2λ3

dim = 4:  A4+c3A3+c2A2+c1A1+c0A0 = 0  :  A4 - I1 A3 + I2 A2 - I3 A1 + I4 I(4) = 0
I1 = tr[A] = Σ[Eigenvalues] = λ1 + λ2 + λ3 + λ4

I2 = ( tr[A]2 - tr[A2] )/2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

I3 = [ (tr A)3 - 3 tr(A2)(tr A) + 2 tr(A3) ]/6 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

I4 = ((tr A)4 - 6 tr(A2)(tr A)2 + 3(tr(A2))2 + 8 tr(A3) tr A - 6 tr(A4))/24 = Det4D[A] = Π[Eigenvalues] = λ1λ2λ3λ4

I1 = Σ[Unique Eigenvalue Singles] = λ1 + λ2 + λ3 + λ4 
I2 = Σ[Unique Eigenvalue Doubles] = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 
I3 = Σ[Unique Eigenvalue Triples] = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

I4 = Σ[Unique Eigenvalue Quadruples] = λ1λ2λ3λ4



  

SRQM Study: SR 4-Tensors
SR Tensor Invariants

Cayley-Hamilton Theorem
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General Cayley-Hamilton Theorem 
Ad+cd-1Ad-1+...+c0A0= 0(d), with A = square matrix,
d = dimension, A0 = Identity(d) = I(d) 
I0 A4 - I1 A3 + I2 A2 - I3 A1 + I4 A0 = 0 : for 4D
Characteristic Polynomial: p(λ) = Det[A – λI(d)]

Tensor Invariants In

Dim=1

A=[ a ]

= Aj
k : j,k={1}

Dim=2

A=[ a b ]
  [ c d ]

= Aj
k : j,k={1,2}

Dim=3              Euclidean
                            3-Space
A=[ a b c ]
  [ d e f ]
  [ g h i ]

= Aj
k : j,k={1,2,3}

Dim=4                          Minkowski
                                     SpaceTime
A=[ a b c d ]
  [ e f g h ]
  [ i j k l ]
  [ m n o p ]
= Aμ

ν : μ,ν={0,1,2,3}

I0 = 1/0! = 1 (1)
= 1

(1)
= 1

(1)
= 1

(1)
= 1

I1 = tr[A]/1!

   = Aα
α

   = Σ[Unique Eigenvalue Singles]

(1)
= λ1

= (a)
= Σ[Eigenvalues]
= Det1D[A]
= Π[Eigenvalues]

(2)
= λ1 + λ2

= (a + d)
= Σ[Eigenvalues]

(3)
= λ1 + λ2 + λ3

= (a + e + i)
= Σ[Eigenvalues]

(4)
= λ1 + λ2 + λ3 + λ4

= (a + f + k + p)
= Σ[Eigenvalues]

I2 = ( tr[A]2 - tr[A2] )/2!

   = Aα
[ α Aβ

β ] / 2 

   = Σ[Unique Eigenvalue Doubles]

=0 (1)
= λ1λ2

= (ad - bc)
= Det2D[A]
= Π[Eigenvalues]

(3)
= λ1λ2 + λ1λ3 + λ2λ3

= (ae - bd)+(ai - cg)+(ei - fg)

(6)
= λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

= (af - be) + (ak - ci) + (ap - dm)
 +(fk - gi) + (fp - hn) + (kp - lo)

I3 = [ (tr A)3 - 3 tr(A2)(tr A) + 2 tr(A3) ]/3!

   = Aα
[ α Aβ

β Aγ
γ ] / 6

   = Σ[Unique Eigenvalue Triples]

=0 =0 (1)
= λ1λ2λ3

= a(ei-fh)-b(di-fg)+c(dh-eg)
= Det3D[A]
= Π[Eigenvalues]

(4)
= λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

= ...

I4 = ((tr A)4 - 6 tr(A2)(tr A)2 + 3(tr(A2))2 + 8 tr(A3) tr A - 6 tr(A4))/4!

   = Aα
[ α Aβ

β  Aγ
γ Aδ

δ ] / 24

   = Σ[Unique Eigenvalue Quadruples]

=0 =0 =0 (1)
= λ1λ2λ3λ4

=a( f( kp-lo ) ) + ...
= Det4D[A]
= Π[Eigenvalues]



  

Faraday EM
Tensor

Fαβ = ∂αAβ - ∂βAα = ∂ ^ A
→

[ Ftt Ftx Fty Ftz ]
[Fxt Fxx Fxy Fxz]
[Fyt Fyx Fyy Fyz]
[Fzt Fzx Fzy Fzz]

=
[     0        ∂0a1-∂1a0   ∂0a2-∂2a0   ∂0a3-∂3a0]
[∂1a0-∂0a1         0       ∂1a2-∂2a1   ∂1a3-∂3a1 ]
[∂2a0-∂0a2   ∂2a1-∂1a2        0        ∂2a3-∂3a2 ]
[∂3a0-∂0a3   ∂3a1-∂1a3   ∂3a2-∂2a3       0      ]

=
[     0     (∂tax+∇xφ)/c   (∂tay+∇yφ)/c   (∂taz+∇zφ)/c]
[(-∇xφ-∂tax/c)        0       -∇xay+∇yax   -∇xaz+∇zax ]
[(-∇yφ-∂tay/c)  -∇yax+∇xay        0        -∇yaz+∇zay ]
[(-∇zφ-∂taz/c)  -∇zax+∇xaz   -∇zay+∇yaz       0       ]

=
[0       -ex/c  -ey/c  -ez/c]
[+ex/c   0      -bz      +by ]
[+ey/c  +bz     0        -bx ]
[+ez/c  -by    +bx        0  ]

= 
[   0   , -ej/c ]
[+ei/c, -εij

k
bk ]

= 
[    0   , -e/c    ]
[+eT/c, -∇ ^ a ]

SRQM Study: SR 4-Tensors
SR Tensor Invariants

for Faraday EM Tensor

 Tr[Fμν]= Fν
ν  

=0

FμνFμν

=2{(b∙b)-(e∙e/c2)}

Det[Fμν]
={(e∙b)/c}2

Inner Product
Tensor Invariant

AsymmTri[Fμν]
=0

Asymm Tri-Product
Tensor Invariant

Determinant
Tensor Invariant

Trace
Tensor Invariant

4-(EM)VectorPotential
A=Aμ=(φ/c,a)

4-Gradient
∂=∂μ=(∂

t
/c,-∇)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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John B. Wilson

The Faraday EM Tensor Fαβ = ∂αAβ - ∂βAα = ∂ ^ A is an anti-symmetric tensor 
that contains the Electric and Magnetic Fields, defined by the Exterior Product (^). 
The 3-electric components (e = ei) are in the temporal-spatial sections. 
The 3-magnetic components (b = bk) are in the only-spatial section. 
 
(2,0)-Tensor = 4-Tensor Tμν: Has (4+) Tensor Invariants (though not all independent) 
a) Tα

α = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) 
b) Tα

[αTβ
β] = Asymm Bi-Product → Inner Product 

c) Tα
[αTβ

βTγ
γ] = Asymm Tri-Product → ?Name? 

d) Tα
[αTβ

βTγ
γTδ

δ] = Asymm Quad-Product → 4D Determinant = Product of EigenValues for (1,1)-Tensors 
 
a): Faraday Trace[Fμν] = Fν

ν = (F00-F11-F22-F33)= (0 -0 -0 -0) = 0 
b): Faraday Inner Product FμνFμν = Σμ=ν[Fμν]2 - 2Σi[Fi0]2 + 2Σi>j[Fij]2 = (0) - 2(e∙e/c2)+ 2(b∙b) = 2{(b∙b)-(e∙e/c2)} 
c): Faraday AsymmTri[Fμν] = Tr[Fμν]3 - 3(Tr[Fμν])(Fα

βFβ
α) + Fα

βFβ
γFγ

α + Fα
γFβ

αFγ
β = 0-3(0)+Fα

βFβ
γFγ

α+(-Fα
β)(-Fβ

γ)(-Fγ
α) = 0 

d): Faraday Det[anti-symmetric Fμν] = Pfaffian[Fμν]2 = [(-ex/c)(-bx) - (-ey/c)(by) + (-ez/c)(-bz)]2 = [(exbx/c) + (eyby/c) + (ezbz/c)]2 = {(e∙b)/c}2 

 
Importantly, the Faraday EM Tensor has only (2) linearly-independent invariants: 
b) 2{(b∙b)-(e∙e/c2)} 
d) {(b∙e)/c}2 
a) & c) give 0=0, and do not provide additional constraints 
 
The 4-Gradient and 4-EMVectorPotential have (4) independent components each, for total of (8). 
Subtract the (2) invariants which provide constraints to get a total of (6) independent components 
= (6) independent components of a 4x4 anti-symmetric tensor 
= (3) 3-electric e + (3) 3-magnetic b = (6) independent EM field components 
 
Note: It is possible to have non-zero e and b, yet still have zeroes in the Tensor Invariants. 
If e is orthogonal to b, then Det[Fαβ] = {(b∙e)/c}2 = 0. 
If (b∙b)=(e∙e/c2), then InnerProd[Fαβ] = 2{(b∙b)-(e∙e/c2)} = 0. 
This condition leads to the properties of EM waves = photons = null 4-vectors, 
which have fields |b| = |e|/c and b orthogonal to e, travelling at velocity c.



  

SRQM Study: SR 4-Tensors
SR Tensor Invariants

for 4-AngularMomentum Tensor
The 4-AngularMomentum Tensor Mαβ = XαPβ - XβPα = X^P is an anti-symmetric tensor
The 3-mass-moment components (n = ni) are in the temporal-spatial sections.
The 3-angular-momentum components (l = lk) are in the only-spatial section.

(2,0)-Tensor = 4-Tensor Tμν: Has (4+) Tensor Invariants (though not all independent)
a) Tα

α = Trace = Sum of EigenValues for (1,1)-Tensors (mixed)
b) Tα

[αTβ
β] = Asymm Bi-Product → Inner Product

c) Tα
[αTβ

βTγ
γ] = Asymm Tri-Product → ?Name?

d) Tα
[αTβ

βTγ
γTδ

δ] = Asymm Quad-Product → 4D Determinant = Product of EigenValues for (1,1)-Tensors

a): 4-AngMom Trace[Mμν] = Mν
ν = (M00-M11-M22-M33)= (0 -0 -0 -0) = 0

b): 4-AngMom Inner Product MμνMμν = Σμ=ν[Mμν]2 - 2Σi[Mi0]2 + 2Σi>j[Mij]2 = (0) - 2(c2n∙n)+ 2(l∙l) = 2{(l∙l)-(c2n∙n)}
c): 4-AngMom AsymmTri[Mμν] = Tr[Mμν]3 - 3(Tr[Mμν])(Mα

βMβ
α) + Mα

βMβ
γMγ

α + Mα
γMβ

αMγ
β = 0

d): 4-AngMom Det[anti-symmetric Mμν] = Pfaffian[Mμν]2 = [(-cnx)(+lx) - (-cny)(-ly) + (-cnz)(+lz)]2 = [-(cnxlx) - (cnyly) - (cnzlz)]2 = {c(n∙l)}2

Importantly, the 4-AngularMomentum Tensor has only (2) linearly-independent invariants:
b) 2{(l∙l)-(c2n∙n)}:  see Wikipedia Laplace–Runge–Lenz_vector, sec. Casimir Invariants
d) {c(l∙n)}2

a) & c) give 0=0, and do not provide additional constraints

The 4-Position and 4-Momentum have (4) independent components each, for total of (8).
Subtract the (2) invariants which provide constraints to get a total of (6) independent components
= (6) independent components of a 4x4 anti-symmetric tensor
= (3) 3-mass-moment n + (3) 3-angular-momentum l = (6) independent 4-AngularMomentum components

3-massmoment n = xm - tp = m(x - tu) = m(r - tu) = m(r - t(ω x r)) :  Tangential velocity uT = (ω x r)

(-k/r)n = -mk(r̂ - t(ω x r̂)) = mkt(ω x r̂) - mkr̂ = t * d/dt(p) x L - mkr̂  : d/dt(p) x L = mk(ω x r̂)
n is related to the LRL = Laplace-Runge-Lenz 3-vector: A = p x L – mkr̂
which is another classical conserved vector.  The invariance is shown here to be relativistic in origin.
Wikipedia article: Laplace-Runge-Lenz vector shows these as Casimir Invariants.
See Also: Relativistic Angular Momentum.

4-AngularMomentum
Tensor

Mαβ = XαPβ - XβPα = X ^ P
→

[ Mtt Mtx Mty Mtz ] 
[Mxt Mxx Mxy Mxz] 
[Myt Myx Myy Myz] 
[Mzt Mzx Mzy Mzz] 

=
[     0        x0p1-x1p0   x0p2-x2p0   x0p3-x3p0] 
[x1p0-x0p1         0       x1p2-x2p1   x1p3-x3p1 ] 
[x2p0-x0p2   x2p1-x1p2        0        x2p3-x3p2 ] 
[x3p0-x0p3   x3p1-x1p3   x3p2-x2p3       0      ]

=
[     0     ctpx-xE/c   ctpy-yE/c   ctpz-zE/c] 
[xE/c-ctpx        0           xpy-ypx   xpz-zpx ] 
[yE/c-ctpy  ypx-xpy        0            ypz-zpy ] 
[zE/c-ctpz  zpx-xpz   zpy-ypz          0       ]

= 
[     0     c(tpx-xm)   c(tpy-ym)   c(tpz-zm)] 
[c(xm-tpx)        0           xpy-ypx   xpz-zpx ] 
[c(ym-tpy)  ypx-xpy        0            ypz-zpy ] 
[c(zm-tpz)  zpx-xpz   zpy-ypz           0       ]  

=
[0       -cnx  -cny  -cnz]
[+cnx   0      +lz      -ly ]
[+cny  -lz      0       +lx ]
[+cnz  +ly     -lx       0  ]

= 
[  0   , -cnj ]
[ +cni, εij

k
lk ]

= 
[   0   , -cn   ]
[+cnT, x ^ p ]

 Tr[Mμν]= Mν
ν  

=0

MμνMμν

=2{(l∙l)-(c2n∙n)}

Det[Mμν]
={c(n∙l)}2

Determinant
Tensor Invariant

AsymmTri[Mμν]
=0

Asymm Tri-Product
Tensor Invariant

Trace
Tensor Invariant

Inner Product
Tensor Invariant

4-Momentum
P=Pμ=(mc,p)=(E/c,p)

4-Position
X=Xμ=(ct,x)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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John B. Wilson



  

SRQM Study: SR 4-Tensors
SR Tensor Invariants

for Minkowski Metric Tensor
The Minkowksi Metric Tensor ημν is the tensor all SR 4-Vectors are measured by.

(2,0)-Tensor = 4-Tensor Tμν: Has (4+) Tensor Invariants (though not all independent)
a) Tα

α = Trace = Sum of EigenValues for (1,1)-Tensors (mixed)
b) Tα

[αTβ
β] = Asymm Bi-Product → Inner Product

c) Tα
[αTβ

βTγ
γ] = Asymm Tri-Product → ?Name?

d) Tα
[αTβ

βTγ
γTδ

δ] = Asymm Quad-Product → 4D Determinant = Product of EigenValues for (1,1)-Tensors

a): Minkowksi Trace[ημν] = 4
b): Minkowksi Inner Product ημνημν = 4
c): Minkowksi AsymmTri[ημν] = 24 = 4!  , if I did the math right...
d): Minkowksi Det[ημν] = -1

Λα

μ
Λβ

ν
η

αβ
 = η

μν

Det(Exp[A])=Exp(Tr[A])

Det4D(A)=((tr A)4 - 6 tr(A2)(tr A)2 + 3(tr(A2))2 + 8 tr(A3) tr A - 6 tr(A4))/24

Determinant
Tensor Invariant

Asymm Tri-Product
Tensor Invariant

Inner Product
Tensor Invariant

∂[R] = ∂μRν = ημν 
→

Diag[1,-1,-1,-1]
Diag[1,-I(3)]
Diag[1,-δjk]

=
[ +1 0 0 0 ]
[ 0 -1 0 0 ]
[ 0 0 -1 0 ]
[ 0 0 0 -1 ]

{in Cartesian form}

 [ημμ] = 1/[ημμ] : ημ
ν = δμ

ν

SR:Minkowski Metric
”Particle Physics” Convention

Signature Tensor 
Invariant

 Signature[ημν] = (+,-,-,-)
= {1,3,0} = (1-3)= -2

EigenValues not defined for the standard Minkowski Metric Tensor since it is a type (2,0)-Tensor, all upper indices. However, they are defined for the mixed form (1,1)-Tensor
EigenValues are defined for the Lorentz Transforms since they are type (1,1)-Tensors, mixed indices

ημνημν = 4

AsymmTri[ημν]=24

Det[ημν] = -1
Det[ημ

ν] = +1

EigenValues[ημ'
ν]

=Set{1,1,1,1}

Eigenvalues Tensor 
Invariants

Trace Tensor Invariant

Tr[ημν] = (1) -(-1) -(-1) -(-1) = 4
ημνημν = ημ

μ = δμ
μ = 1+1+1+1

4-Gradient
∂=∂μ=(∂

t
/c,-∇)

4-Position
R=Rμ=(ct,r)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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Det[Tα
α] = Πk[λk]; with {λk} = Eigenvalues

Characteristic Eqns: Det[Tα
α - λkI(4)]=0

In GR
Tr[gμν] = gμνgμν = gμ

μ = δμ
μ

= 1+1+1+1 = 4

GR Trace Tensor Invariant
4D SpaceTime



  

SRQM Study: SR 4-Tensors
SR Tensor Invariants

for Perfect Fluid Stress-Energy Tensor
● The Perfect Fluid Stress-EnergyTensor Tμν is the tensor of a relativistic fluid.

(2,0)-Tensor = 4-Tensor Tμν: Has (4+) Tensor Invariants (though not all independent)
a) Tα

α = Trace = Sum of EigenValues for (1,1)-Tensors (mixed)
b) Tα

[αTβ
β] = Asymm Bi-Product → Inner Product

c) Tα
[αTβ

βTγ
γ] = Asymm Tri-Product → ?Name?

d) Tα
[αTβ

βTγ
γTδ

δ] = Asymm Quad-Product → 4D Determinant = Product of EigenValues for (1,1)-Tensors

a): PerfectFluid Trace[Tμν] = ρeo-3po

b): PerfectFluid Inner Product TμνTμν = (ρeo)2+3(po)2

c): PerfectFluid AsymmTri[Tμν] =
d): PerfectFluid Det[Tμν] = ρeo(po)3

Λα

μ
Λβ

ν
η

αβ
 = η

μν

Det(Exp[A])=Exp(Tr[A])

Det4D(A)=((tr A)4 - 6 tr(A2)(tr A)2 + 3(tr(A2))2 + 8 tr(A3) tr A - 6 tr(A4))/24

Determinant
Tensor Invariant

Asymm Tri-Product
Tensor Invariant

Inner Product
Tensor Invariant

Tperfectfluid
μν 

→
Diag[ρe,p,p,p]
Diag[ρe,pI(3)]
Diag[ρe,pδjk]

=
[ ρe 0 0 0 ]
[ 0 p 0 0 ]
[ 0 0 p 0 ]
[ 0 0 0 p ]

{in Cartesian form}

Signature Tensor 
Invariant

 Signature[Tμν] = (+,+,+,+)
= {4,0,0} = (4-0)= 4

EigenValues not defined for the standard Perfect Fluid Tensor since it is a type (2,0)-Tensor, all upper indices. However, they are defined for the mixed form (1,1)-Tensor
EigenValues are defined for the Lorentz Transforms since they are type (1,1)-Tensors, mixed indices

TμνTμν =
(ρeo)2+3(po)2

AsymmTri[Tμν]=
not yet calc’d

Det[Tμν] = ρeo(po)3

Det[Tμ
ν] = -ρeo(po)3

EigenValues[Tμ
ν]

=Set{ρeo,-po,-po,-po}

Eigenvalues Tensor 
Invariants

Trace Tensor Invariant

Tr[Tμν] = (ρe) -(p) -(p) -(p) =
ημνTμν = Tμ

μ = ρeo-3po

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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Det[Tα
α] = Πk[λk]; with {λk} = Eigenvalues

Characteristic Eqns: Det[Tα
α - λkI(4)]=0

SR Perfect Fluid 4-Tensor
Tperfectfluid

μν = (ρeo)Vμν + (-po)Hμν →

Units of             Symmetric                     
[EnergyDensity=Pressure]                    

       t          x     y     z 
t  [ ρe=ρmc2  0    0     0 ]
x [    0         p     0     0 ]
y [    0         0     p     0 ]
z [    0         0     0     p ]

  ρe=ρmc2  0j  
    0i     pδij 

Tr[Tμν]=ρeo-3po 



  

Lorentz SR
Boost

Tensor Λμ'
ν→Bμ'

ν 
=

[  γ   -βγ  0   0 ]
[ -βγ   γ   0   0 ]
[  0    0   1   0 ]
[  0    0   0   1 ]

SRQM Study: SR 4-Tensors
SR Tensor Invariants for

Continuous Lorentz Transform Tensors
The Lorentz Transform Tensor { Λμ'

ν
 = ∂xμ′/∂xν = ∂

ν
[Xμ′] } is the tensor all SR 4-Vectors must transform by.

(2,0)-Tensor = 4-Tensor Tμν: Has (4+) Tensor Invariants (though not all independent)
a) Tα

α = Trace = Sum of EigenValues for (1,1)-Tensors (mixed)
b) Tα

[αTβ
β] = Asymm Bi-Product → Inner Product

c) Tα
[αTβ

βTγ
γ] = Asymm Tri-Product → ?Name?

d) Tα
[αTβ

βTγ
γTδ

δ] = Asymm Quad-Product → 4D Determinant = Product of EigenValues for (1,1)-Tensors

a): Lorentz Trace[Λμν] = {0..4..Infinitiy} Lorentz Boost meets Rotation at Identity of 4
b): Lorentz Inner Product ΛμνΛμν = 4  from {ημνΛμ

αΛν
β = ηαβ} and {ημνημν = 4}

c): Lorentz AsymmTri[Λμν] =
d): Lorentz Det[Λμν] = +1 for Proper Transforms, Continuous Transforms Proper

An even more general version would be
with a & b as arbitrary complex values:

could be 2 boosts, 2 rotations,
or a boost:rotation combo

Trace Tensor Invariant

Tr[Cont. Λμ'
ν]={0..4..Infinity}

Depends on “rotation”
amount

Det[Proper Λμ'
ν]=+1

Proper Transform
always +1

Inner Product
Tensor Invariant

Determinant Tensor Invariant

AsymmTri[Λμ'
ν]=?

Not yet calc...

Asymm Tri-Product
Tensor Invariant

Lorentz SR
Rotation

Tensor Λμ'
ν→Rμ'

ν

=
[ 1     0        0        0 ]
[ 0  cos[θ]  -sin[θ]  0 ]
[ 0  sin[θ]   cos[θ]  0 ]
[ 0      0        0       1 ]

EigenValues[Rμ'
ν]

=Set{1,eiθ,e-iθ,1}
EigenValues[Bμ'

ν]
=Set{eθ,e-θ,1,1}

Lorentz SR
Identity

Tensor Λμ'
ν→ημ'

ν 
=Rμ'

ν[0] = Bμ'
ν[0]

= δμ'
ν =

[  1    0   0   0 ]
[  0    1   0   0 ]
[  0    0   1   0 ]
[  0    0   0   1 ]
= Minkowski

Delta

EigenValues[ημ'
ν]

=Set{1,1,1,1}EigenValues[Λμ'
ν]

=Set{ea,e-a,eb,e-b}

Sum of
EigenValues[Λμ'

ν]
=Tr[Λμ'

ν]=Λμ'
μ

={ea+e-a+eb+e-b}
=2(cosh[a]+cosh[b])

={-4..Infinity}

Product of
EigenValues[Λμ'

ν]
=Det[Λμ'

ν]
={ea∙e-a∙eb∙e-b}

=+1

ΛμνΛμν=4

Product of
EigenValues[Rμ'

ν]
=Det[Rμ'

ν]
=1∙eiθ∙e-iθ∙1

= +1

Sum of
EigenValues[Rμ'

ν]
=Tr[Rμ'

ν]=Rμ'
μ

=1+eiθ+e-iθ+1
=2+2cos[θ]

={0..4}

Product of
EigenValues[Bμ'

ν]
=Det[Bμ'

ν]
=eθ∙e-θ∙1∙1

= +1

Sum of
EigenValues[Bμ'

ν]
=Tr[Bμ'

ν]=Bμ'
μ

=eθ+e-θ+1+1
=2+2cosh[θ]=2+2γ

={4..Infinity}

Sum of
EigenValues[ημ'

ν]
=Tr[ημ'

ν]=ημ'
μ

=1+1+1+1
=4

={4}

Product of
EigenValues[ημ'

ν]
=Det[ημ'

ν]
=1∙1∙1∙1

= +1

Proper Proper Proper

Rotation(0) =  Identity =  Boost(0)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1

Det[Tα
α] = Πk[λk]; with {λk} = Eigenvalues

Characteristic Eqns: Det[Tα
α - λkI(4)]=0



  

SRQM Study: SR 4-Tensors
SR Tensor Invariants for

Discrete Lorentz Transform Tensors

Trace Tensor Invariant

Tr[Discrete Λμ'
ν]={-4,-2,0,2,4}

Depends on transform

Det[Λμ'
ν]=±1

Proper Transform = +1
Improper Transform = -1

Inner Product
Tensor Invariant

Determinant Tensor Invariant

AsymmTri[Λμ'
ν]=?

Not yet calc...

Asymm Tri-Product
Tensor Invariant

ΛμνΛμν=4

Proper Improper Proper Improper Proper

Lorentz SR
Flip-xy-Combo

Tensor Λμ'
ν→Fxyμ'

ν 
= -ημ'

ν = -δμ'
ν =

[  1    0   0   0 ]
[  0   -1   0   0 ]
[  0    0  -1   0 ]
[  0   0   0   1 ]

= Rotation-z (π)

EigenValues[Fxyμ'
ν]

=Set{1,-1,-1,1}

Product of
EigenValues[Fxyμ'

ν]
=Det[Fxyμ'

ν]
= -1∙-1∙-1∙1

= +1

Sum of
EigenValues[Fxyμ'

ν]
=Tr[Fxyμ'

ν]=Fxyμ'
μ

= 1-1-1+1
= 0

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

The Trace of 
various discrete 
Lorentz transforms 
varies in steps from 
{-4,-2,0,2,4}

This includes Mirror 
Flips, Time 
Reversal, and 
Parity Inverse – 
essentially taking all 
combinations of ±1 
on the diagonal of 
the transform.

Lorentz SR
TPcombo

Tensor Λμ'
ν→TPμ'

ν 
= -ημ'

ν = -δμ'
ν =

[ -1    0   0   0 ] 
[  0   -1   0   0 ] 
[  0    0  -1   0 ] 
[  0   0   0   -1 ]

= Negative
Identity

EigenValues[TPμ'
ν]

=Set{-1,-1,-1,-1}

Product of
EigenValues[TPμ'

ν]
=Det[TPμ'

ν]
= -1∙-1∙-1∙-1

= +1

Sum of
EigenValues[TPμ'

ν]
=Tr[TPμ'

ν]=TPμ'
μ

= -1-1-1-1
= -4

Lorentz SR
Parity-Inversion
Tensor Λμ'

ν→Pμ'
ν

=
[  1    0   0   0 ] 
[  0   -1   0   0 ] 
[  0    0  -1   0 ] 
[  0    0   0  -1 ]

= Flip-xyz

EigenValues[Pμ'
ν]

=Set{1,-1,-1,-1}

Product of
EigenValues[Pμ'

ν]
=Det[Pμ'

ν]
= 1∙-1∙-1∙-1

= -1

Sum of
EigenValues[Pμ'

ν]
=Tr[Pμ'

ν]=Pμ'
μ

= 1-1-1-1
= -2

Lorentz SR
Time-Reversal

Tensor Λμ'
ν→Tμ'

ν

=
[ -1    0   0   0 ] 
[  0    1   0   0 ] 
[  0    0   1   0 ] 
[  0    0   0   1 ]

= Flip-t

EigenValues[Tμ'
ν]

=Set{-1,1,1,1}

Product of
EigenValues[Tμ'

ν]
=Det[Tμ'

ν]
= -1∙1∙1∙1

= -1

Sum of
EigenValues[Tμ'

ν]
=Tr[Tμ'

ν]=Tμ'
μ

= -1+1+1+1
= 2

Lorentz SR
Identity

Tensor Λμ'
ν→ημ'

ν 
= δμ'

ν =
[  1    0   0   0 ]
[  0    1   0   0 ]
[  0    0   1   0 ]
[  0    0   0   1 ]
= Minkowski

Delta

EigenValues[ημ'
ν]

=Set{1,1,1,1}

Sum of
EigenValues[ημ'

ν]
=Tr[ημ'

ν]=ημ'
μ

= 1+1+1+1
= 4

Product of
EigenValues[ημ'

ν]
=Det[ημ'

ν]
= 1∙1∙1∙1

= +1

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1

Det[Tα
α] = Πk[λk]; with {λk} = Eigenvalues

Characteristic Eqns: Det[Tα
α - λkI(4)]=0



  

Lorentz SR
Flip-xy-Combo

Tensor Λμ'
ν→Fxyμ'

ν 
= -ημ'

ν = -δμ'
ν =

[  1    0   0   0 ]
[  0   -1   0   0 ]
[  0    0  -1   0 ]
[  0   0   0   1 ]

= Rotation-z (π)

SRQM Study: SR 4-Tensors
More SR Tensor Invariants for

Discrete Lorentz Transform Tensors
Lorentz SR

Flip-x
Tensor Λμ'

ν→Fxμ'
ν

=
[  1    0   0   0 ]
[  0   -1   0   0 ]
[  0    0   1   0 ]
[  0   0   0    1 ]

EigenValues[Fxμ'
ν]

=Set{1,-1,1,1}
EigenValues[Fxyμ'

ν]
=Set{1,-1,-1,1}

Lorentz SR
Identity

Tensor Λμ'
ν→ημ'

ν 
= δμ'

ν =
[  1    0   0   0 ]
[  0    1   0   0 ]
[  0    0   1   0 ]
[  0    0   0   1 ]
= Minkowski

Delta

EigenValues[ημ'
ν]

=Set{1,1,1,1}

Product of
EigenValues[Fxμ'

ν]
=Det[Fxμ'

ν]
= 1∙-1∙1∙1

= -1

Sum of
EigenValues[Fxμ'

ν]
=Tr[Fxμ'

ν]=Fxμ'
μ

= 1-1+1+1
= 2

Product of
EigenValues[Fxyμ'

ν]
=Det[Fxyμ'

ν]
= -1∙-1∙-1∙1

= +1

Sum of
EigenValues[Fxyμ'

ν]
=Tr[Fxyμ'

ν]=Fxyμ'
μ

= 1-1-1+1
=2+2cos[π]

= 0

Sum of
EigenValues[ημ'

ν]
=Tr[ημ'

ν]=ημ'
μ

= 1+1+1+1
=2+2cos[0]

= 4

Product of
EigenValues[ημ'

ν]
=Det[ημ'

ν]
= 1∙1∙1∙1

= +1

Lorentz SR
Flip-y

Tensor Λμ'
ν→Fyμ'

ν

=
[  1    0   0   0 ]
[  0    1   0   0 ]
[  0    0  -1   0 ]
[  0   0   0    1 ]

EigenValues[Fyμ'
ν]

=Set{1,1,-1,1}

Product of
EigenValues[Fyμ'

ν]
=Det[Fyμ'

ν]
= 1∙1∙-1∙1

= -1

Sum of
EigenValues[Fyμ'

ν]
=Tr[Fyμ'

ν]=Fyμ'
μ

= 1+1-1+1
= 2

Proper Proper Improper Improper Proper Proper

Lorentz SR
π-Rotation-z

Tensor Λμ'
ν→Rμ'

ν

=
[ 1     0        0        0 ]
[ 0  cos[π]  -sin[π]  0 ]
[ 0  sin[π]   cos[π]  0 ]
[ 0      0        0       1 ]

EigenValues[Rμ'
ν]

=Set{1,eiπ,e-iπ,1}

Product of
EigenValues[Rμ'

ν]
=Det[Rμ'

ν]
=1∙eiπ∙e-iπ∙1

= +1

Sum of
EigenValues[Rμ'

ν]
=Tr[Rμ'

ν]=Rμ'
μ

=1+eiπ+e-iπ+1
=2+2cos[π]

=0

Note:

The Flip-xy-Combo is the 
equivalent of a π-Rotation-z.

I suspect that this may be 
related to exchange symmetry
and the Spin-Statistics idea
that a particle-exchange
is the equivalent of
a spin-rotation.

A single Flip would not be an 
exchange because it leaves a 
mirror-inversion of <right-|-left>.

But the extra Flip along an 
orthogonal axis corrects the 
mirror-inversion, and would be 
an overall exchange because 
the particle is in a different 
location.

Lorentz SR
0-Rotation-z

Tensor Λμ'
ν→Rμ'

ν

=
[ 1     0        0        0 ]
[ 0  cos[0]  -sin[0]  0 ]
[ 0  sin[0]   cos[0]  0 ]
[ 0      0        0       1 ]

EigenValues[Rμ'
ν]

=Set{1,ei0,e-i0,1}

Product of
EigenValues[Rμ'

ν]
=Det[Rμ'

ν]
=1∙ei0∙e-i0∙1

= +1

Sum of
EigenValues[Rμ'

ν]
=Tr[Rμ'

ν]=Rμ'
μ

=1+ei0+e-i0+1
=2+2cos[0]

=4

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1

Det[Tα
α] = Πk[λk]; with {λk} = Eigenvalues

Characteristic Eqns: Det[Tα
α - λkI(4)]=0



  

SR 4-Scalars, 4-Vectors, 4-Tensors
Elegantly join many dual physical

properties and relations
SR 4-Scalars, 4-Vectors, and 4-Tensors beautifully and elegantly display the relations between lots of different physical properties and relations.  
Their notation makes navigation through the physics very simple.

They also devolve very nicely into the limiting/approximate Newtonian cases of { |v| << c }
by letting { γ → 1 and γ’ = dγ/dt → 0 }.

SR tells us that several different physical properties are actually dual aspects of the same thing,
with the only real difference being one's point of view, or reference frame.

Examples of 4-Vectors = (1,0)-Tensors include:
(Time , Space), (Energy , Momentum), (Power , Force), (Frequency , WaveNumber),
(Time Differential , Spatial Gradient),
(ChargeDensity , CurrentDensity), (EM-ScalarPotential , EM-VectorPotential), etc.

One can also examine 4-Tensors, which are type (2,0)-Tensors.  
The Faraday EM Tensor similarly combines EM fields:
Electric { e = ei = (ex,ey,ez) } and Magnetic { b = bk = (bx,by,bz) }
 
Fαβ   = 

Also, things are even more related than that.
The 4-Momentum is just a constant times 4-Velocity.
The 4-WaveVector is just a constant times 4-Velocity.

In addition, the very important conservation/continuity equations seem to just fall out of the notation.
The universe apparently has some simple laws which can be easy to write down by using a little math and a super notation. 

Faraday EM
Tensor Fαβ   

=
[0       -ex/c  -ey/c  -ez/c]
[+ex/c   0      -bz      +by ]
[+ey/c  +bz     0        -bx ]
[+ez/c  -by    +bx       0   ]

=
[   0   , -ej/c ]
[+ei/c, -εij

k
bk ]

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)ωo/c2

SR 4-Vector V = Vα

=(vt,v)=(vt,vx,vy,vz)
=(temporal * c±1,spatial)

4-Tensor Tαβ   

=
[Ttt Ttx Tty Ttz]
[Txt Txx Txy Txz]
[Tyt Tyx Tyy Tyz]
[Tzt Tzx Tzy Tzz]

=
[temporal,mixed]
[  mixed  ,spatial]

4-Scalar
S

0        -e j/c
+e i/c   -( εij

k bk )

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SRQM Diagram: SR 4-Vectors and 
Lorentz Scalars / Physical Constants

4-Velocity
U=γ(c,u)
=dR/dτ

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)ωo/c2

4-UnitTemporal
T=γ(1,β)

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

ρo

4-NumberFlux
N=(nc,n)=n(c,u) q

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

4-Acceleration
A=γ(cγ’,γ’u+γa)

=dU/dτ

4-Force
F=γ(Ė/c,f)

=dP/dτ

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=P+Q=P+qA

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

=-∂[Saction]

+

q

U∙Ε=0

4-UnitSpatial
S=γβn(n̂·β,n̂)

┴

T∙S=0
Eo/ωo

{mo=0} ↔ {P∙U=0} ↔ {P is null}

{φo=0} ↔ {A∙U=0} ↔ {A is null}

{ωo=0} ↔ {K∙U=0} ↔ {K is null}

4-Polarization
Ε=(ε0,ε)=(ε·β,ε)

E=mc2

Rest Energy:Mass

Minimal
Coupling
P + Q

EM

Conservation of
4-TotalMomentum
Sum of Momenta

..[K
T
∙R]

..∫[K
T
∙dR]

..[-Φ
phase

]
 Hamilton-

  Jacobi
P

T
 = -∂[S]

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

∂∙R=4
SpaceTime
Dimension

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

no

Wave Velocity
v

group
*v

phase
=c2

Rest AngFrequency

ProperTime
Derivative

∑
n
[..]

∑
n
[..]

Conservation of
4-TotalWaveVector

Sum of Plane-Waves

Speed
of Light

c

Rest Number
Density

Rest Charge
Density

Rest Scalar
Potential

EM Charge EM Charge

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

ProperTime
Derivative

Polarization
is Rest Spatial

Time:Space
Orthogonal

..[P
T
∙R]

..∫[P
T
∙dR]

..[-S
action

]

Soul of SR

4-TotalWaveVector
K

T
=(ω

T
/c,k

T
)

=-∂[Φphase]

E
To/ωTo

Heart of SR

U∙A=U∙U’=0

U∙U=c2

T∙T= 1

S∙S= -1

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Complex
Plane-Waves

K
T
 = -∂[Φ] 

Minkowski
∂[R]=∂μ[Rν]=ημν

Metric

Lorentz
∂ν[Rμ’]=Λμ’

ν

Transform
SpaceTime Dim

Tr[ημν] = 4 = ΛμνΛμν

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

 SRQM Diagram 

4-Position
R=(ct,r)=<Event>

Invariant Interval
R∙R=(ct)2-r∙r = (cτ)2

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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Complex
Plane-Waves

K
T
 = -∂[Φ],K = i∂ 

SRQM Diagram: SRQM 4-Vectors and 
Lorentz Scalars / Physical Constants

4-Velocity
U=γ(c,u)
=dR/dτ

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)ωo/c2

4-UnitTemporal
T=γ(1,β)

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

ρo

4-NumberFlux
N=(nc,n)=n(c,u)

q

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

4-Acceleration
A=γ(cγ’,γ’u+γa)

=dU/dτ

4-Force
F=γ(E’/c,f)

=dP/dτ

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=P+Q=P+qA

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

=-∂[Saction]

+

q

U∙Ε=0
U∙S=0

4-UnitSpatial
S=γβn(n̂·β,n̂)

┴

T∙S=0

Eo/ωo

( ћ )

{mo=0} ↔ {P∙U=0} ↔ {P is null}

{φo=0} ↔ {A∙U=0} ↔ {A is null}

{ωo=0} ↔ {K∙U=0} ↔ {K is null}

4-Polarization
Ε=(ε0,ε)=(ε·β,ε)

4-Spin
S=(s0,s)=(s·β,s)

E=mc2

Rest Energy:Mass

Born
Probability Rule

Rest Prob Density
Minimal
Coupling
P + Q

EM

Conservation of
4-TotalMomentum
Sum of Momenta

..[K
T
∙R]

..∫[K
T
∙dR]

..[-Φ
phase

]

( i ) Hamilton-
  Jacobi
P

T
 = -∂[S]

Spin is 
actually
an outcome of
Poincaré Invariance,
not QM

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position

R=(ct,r)=<Event>

∂∙R=4
SpaceTime
Dimension

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

no

 

Wave Velocity
v

group
*v

phase
=c2

Rest AngFrequency

ProperTime
Derivative

∑
n
[..]

∑
n
[..]

Conservation of
4-TotalWaveVector

Sum of Plane-Waves

Speed
of Light

c

Rest Number
Density

Rest Charge
Density

Rest Scalar
Potential

EM Charge EM Charge

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

ProperTime
Derivative

Polarization:Spin
is Rest Spatial

Time:Space
Orthogonal

..[P
T
∙R]

..∫[P
T
∙dR]

..[-S
action

]

Soul of SR

4-TotalWaveVector
K

T
=(ω

T
/c,k

T
)

=-∂[Φphase]

Einstein
de Broglie
P =ћK 

E
To/ωTo

( ћ )
Einstein
de Broglie
P

T 
=ћK

T 
 

Heart of SR

U∙A=U∙U’=0

U∙U=c2

T∙T= 1

S∙S= -1

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Invariant Interval
R∙R=(ct)2-r∙r = (cτ)2

Minkowski
∂[R]=∂μ[Rν]=ημν

Metric

Lorentz
∂ν[Rμ’]=Λμ’

ν

Transform
SpaceTime Dim

Tr[ημν] = 4 = ΛμνΛμν

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-ProbCurrDensity
4-ProbabilityFlux
J

prob
=(ρ

prob
c, j

prob
)

ρ
probo = χ*ψ

=|⟨χ|ψ⟩|2

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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John B. Wilson

Existing SR Rules
 Quantum Principles 

 SRQM Diagram 
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SR Gradient 4-Vectors = (1,0)-Tensors
SR Gradient One-Forms = (0,1)-Tensors

4-Vector = Type (1,0)-Tensor [Temporal : Spatial] components

4-Position R = Rμ = (ct,r) [Time (t) : Space (r)]

4-Gradient ∂R = ∂ = ∂μ = ∂/∂Rμ = (∂t/c,-∇) [Time Differential (∂t 
) : Spatial Gradient(∇)]

 

Standard 4-Vector Related Gradient 4-Vector (from index-raised Gradient One-Form) 

4-Position R = Rμ = (ct,r) 4-PositionGradient ∂R = ∂R
μ = ∂/∂Rμ = (∂

Rt/c,-∇
R
) = ∂ = ∂μ = 4-Gradient

4-Velocity U = Uμ = γ(c,u) 4-VelocityGradient ∂U = ∂U
μ = ∂/∂Uμ = (∂

Ut/c,-∇
U
)

4-Momentum P = Pμ = (E/c,p) 4-MomentumGradient ∂P = ∂P
μ = ∂/∂Pμ = (∂

Pt/c,-∇
P
)

4-WaveVector K = Kμ = (ω/c,k) 4-WaveGradient ∂K = ∂K
μ = ∂/∂Kμ = (∂

Kt/c,-∇
K
)

4-Tensors can be constructed from the Tensor Outer Product of 4-Vectors

In each case, the (Whichever)Gradient 4-Vector is derived from an SR One-Form or 4-CoVector,
which is a type (0,1)-Tensor
ex. One-Form PositionGradient ∂

Rν = ∂/∂Rν = (∂
Rt/c,∇

R
)

The (Whichever)Gradient 4-Vector is the index-raised version of the SR One-Form (Whichever)Gradient
ex. 4-PositionGradient ∂

R
μ = ∂/∂Rμ = (∂

Rt/c,-∇
R
) = ημν∂

Rν = ημν∂/∂Rν = ημν(∂
Rt/c,∇

R
)ν = ημν(One-Form PositionGradient)ν

This is why the 4-Gradient is commonly seen with a minus sign in the spatial component,
unlike the other regular 4-Vectors, which have all positive components.

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

Some Basic 4-Vectors
Minkowski SpaceTime Diagram

Events & Dimensions

past

future

elsewhere

c

-c

Special
Relativity

Classical
Mechanics

past

future Δt   time-like interval

Δr  space-like interval

*
   Event

now ∙ here

*  Event

Δt   time-like interval (+)

c    light-like interval (0)  = null

Δr  space-like interval (-)
now ∙ here

Note the matching dimensional units: (4D SpaceTime)
(cΔt) is [length/time]*[time] = [length],   |Δr| is [length], |ΔR| is [length]
τ is the Proper Time = “rest-time”, time as measured by something not moving spatially
The Minkowski Diagram provides a great visual representation of SpaceTime

Note the separate dimensional units: (time + 3D space)
Δt is [time],   |Δr| is [length]

LightCone

“Stack of Motion Picture Photos”

(cΔτ)2 Time-Like  (+)
ΔR∙ΔR = [(cΔt)2 – Δr∙Δr] = 0 Light-like:Null (0)

-(Δro)2 Space-like   (-)

4-Displacement
CM

ΔR
CM

=(cΔt  ;  Δr)

1/c

3-displacement
Δr = Δr i→(Δx,Δy,Δz)

time displacement 
Δt

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Classical (scalar  ;  3-vector)
 Galilean Not Lorentz
Invariant    Invariant

4-Displacement
ΔR=(cΔt,Δr)

4-Position
R=(ct,r)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

Some Basic 4-Vectors
Minkowski SpaceTime Diagram, WorldLines, 

LightSpeed to the Future!

(cΔτ)2 for time-like (+)
ΔR∙ΔR = [(cΔt)2 - Δr∙Δr] = 0 for light-like (0)

-(Δro)2 for space-like (‒)elsewhere

c

-c

time-like interval (+)

space-like interval (-)

light-like interval (0) = null
4-Displacement

ΔR=(cΔt,Δr)
Δt

Δr

inertial motion
WorldLine (0<u<c)

4-Position
R=(ct,r)=<Event>

4-Velocity
(rest-frame)

U
o
=(c,0)

U∙U = γ(c,u)∙γ(c,u) = γ2(c2-u∙u) = (c2)
γ = 1/√[1-(u/c)2] = 1/√[1-(β)2]

Massive particles move temporally into future
at the speed-of-light (c) in their own rest-frame.

Massless particles (photonic) move nully into the future
at the speed-of-light (c), and have no rest-frame.

at-rest
WorldLine (u=0)

An Event (*) is a point in SpaceTime
The 4-Position points to an Event.

A WorldLine is a series of connected
Events which trace out a path in
SpaceTime, such as the track of a
moving particle.

LightCone

past

4-Velocity
U=γ(c,u)=dR/dτ

*

x

y
t

The 4-Position is a particular 
type of 4-Displacement, for 
which the vector base is at the 
origin (0,0,0,0) = 4-Zero.

4-Position is Lorentz Invariant, 
but not Poincaré Invariant.
A standard 4-Displacement is 
both.

now ∙ here 4-Velocity
(photonic)

U
c
=γ

c
(c,cn̂)

U∙U=c2 Uo∙Uo=c2 Uc∙Uc=c2

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

future

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SR Invariant Intervals
Minkowski Diagram:Lorentz Transform

The Minkowski Diagram provides a great visual representation of SpaceTime

U∙U = γ(c,u)∙γ(c,u) = γ2(c2-u∙u) = (c2)

Since the SpaceTime magnitude of U is a constant (c),
changes in the components of U are like rotating the 4-Vector
without changing its length. It keeps the same magnitude.
Rotations, purely spatial changes, {eg. along x,y} result in circular displacements.
Boosts, or temporal-spatial changes, {eg. along x,t} result in hyperbolic displacements.
The interval between the origin and a given topograph-line is a Lorentz Invariant Constant.

x

y

t

Rotation (x,y): Purely Spatial Boost (x,t): Spatial-Temporal

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SR:Minkowski Metric
∂[R] = ∂μRν = ημν = Vμν + Hμν →

Diag[1,-1,-1,-1] = Diag[1,-I(3)] = Diag[1,-δjk]
{in Cartesian form}  ”Particle Physics” Convention

{ημμ} = 1/{ημμ} : ημ
ν = δμ

ν              Tr[ημν]=4

SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1



  

SR Invariant Intervals
Minkowski Diagram

The Minkowski Diagram provides a great visual representation of SpaceTime

Since the SpaceTime magnitude of U is a constant (c), changes in the components of U are 
like rotating the 4-Vector without changing its length.  It keeps the same magnitude.
Rotations, purely spatial changes, {eg. along x,y} result in circular displacements.
Boosts, or temporal-spatial changes, {eg. along x,t} result in hyperbolic displacements.
The interval between the origin and a given topograph-line is a Lorentz Invariant Constant.

x

y

t

Space-Like (-) Light-Like:Null (0)     Time-Like (+)

Connected     Disconnected

Future

Past

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SR:Minkowski Metric
∂[R] = ∂μRν = ημν = Vμν + Hμν →

Diag[1,-1,-1,-1] = Diag[1,-I(3)] = Diag[1,-δjk]
{in Cartesian form}  ”Particle Physics” Convention

{ημμ} = 1/{ημμ} : ημ
ν = δμ

ν              Tr[ημν]=4

   (cΔτ)2  Time-like:Temporal (+) {causal = 1D temporally-ordered, non-topological}
ΔR∙ΔR = [(cΔt)2 - Δr∙Δr] = (0)  Light-like:Null:Photonic (0) {causal & topological, maximum signal speed (|Δr/Δt|=c)}

   -(Δro)2  Space-like:Spatial (‒) {non-causal, topological = 3D spatially-ordered}



  

SRQM: Some Basic 4-Vectors
4-Position, 4-Velocity, 4-Acceleration

SpaceTime Kinematics

4-Velocity
U=γ(c,u)

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

4-Acceleration
A=γ(cγ’,γ’u+γa)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

Special
Relativity
|v| = |u| = {0 ↔ c}
γ = 1/√[1-(v/c)2]

4-Velocity
CM

U
CM

=(c  ;  u)

4-Position
CM

R
CM

=(ct  ;  r)

4-Acceleration
CM

A
CM

=(0  ;  a)

Classical
Mechanics
|v| = |u| << c
γ→1+O[(v/c)2]
γ’→0

For historical reasons, velocity can be represented by either (v) or (u)

4-Vectors:
R = <Event>
U = dR/dτ
A = dU/dτ

scalar:
time
3-vectors:
r = <location>
u = dr/dt
a = du/dt

↓      Newtonian/Classical Limit      ↓

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t 
+ u∙∇)=γd/dt

= d/dτ

The relativistic Gamma factor γ = 1/√[1-(v/c)2]
The 1st order Newtonian Limit gives γ ~ 1 + O[(v/c)2]
The 2nd order Newtonian Limit gives γ ~ 1 + (v/c)2/2 + O[(v/c)4]

 ProperTime
R∙U/U∙U=(ct,r)∙γ(c,u)/c2=γ(c2t - r∙u)/c2=(c2to)/c2

= to = τ

     Since time:space don’t mix in CM, Since temporal velocity (c) always constant in CM Since temporal acceleration (0) always constant in CM,
Typically use time t & 3-position r separately Typically use just 3-velocity u Typically use just 3-acceleration a

4-Gradient
∂=(∂

t 
/c,-∇)→(∂

t 
/c,-∂

x
,-∂

y
,-∂

z
)

3-position
r = r i→(x,y,z)

time 
t

3-velocity
u→(ux,uy,uz)

3-acceleration
a→(ax,ay,az)

 d/dt[..]  d/dt[..]

 d/dt[..]  d/dt[..]

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Classical (scalar  ;  3-vector)
 Galilean Not Lorentz
Invariant    Invariant

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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SRQM: Some Basic 4-Vectors
4-Position, 4-Velocity, 4-Acceleration, 4-Momentum, 4-Force

SpaceTime Dynamics

4-Vectors:
R = <Event>
U = dR/dτ
A = dU/dτ

P = moU
F = dP/dτ

4-Momentum
P=(E/c,p)=(mc,p)

 Eo/c2 = mo

4-Force
F=γ(Ė/c,f)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

This group of 4-Vectors are the main ones that are 
connected by the ProperTime Derivative.
U∙∂ = d/dτ = γd/dt = γ(c∂

t
/c+u∙∇) = γ(∂

t
 + u∙∇)

The classical part of it, the convective derivative,
(∂

t
 + u∙∇), is known by many different names:

The convective derivative is a derivative taken with 
respect to a moving coordinate system. It is also called 
the advective derivative, derivative following the motion, 
hydrodynamic derivative, Lagrangian derivative, material 
derivative, particle derivative, substantial derivative, 
substantive derivative, Stokes derivative, or total 
derivative

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Velocity
U=γ(c,u)

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

4-Acceleration
A=γ(cγ’,γ’u+γa)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

Special
Relativity
|v| = |u| = {0 ↔ c}
γ = 1/√[1-(v/c)2]

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t 
+ u∙∇)=γd/dt

= d/dτ
4-Gradient

∂=(∂
t 
/c,-∇)→(∂

t 
/c,-∂

x
,-∂

y
,-∂

z
)

 ProperTime
R∙U/U∙U=(ct,r)∙γ(c,u)/c2=γ(c2t - r∙u)/c2=(c2to)/c2

= to = τ

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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SRQM: Some Basic 4-Vectors
4-Position, 4-Velocity, 4-Differential

SpaceTime Calculus

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Velocity
U=γ(c,u)

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t 
+ u∙∇)=γd/dt

= d/dτ
4-Gradient

∂=(∂
t 
/c,-∇)→(∂

t 
/c,-∂

x
,-∂

y
,-∂

z
)

 ProperTime
R∙U/U∙U=(ct,r)∙γ(c,u)/c2=γ(c2t - r∙u)/c2=(c2to)/c2

= to = τ

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
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4-Differential
dR=(cdt,dr)

dτ
dt/γ

d

Invariant LightSpeed
U∙U=c2

Invariant Interval
R∙R=(ct)2-r∙r = (cτ)2

Invariant Interval
dR∙dR=(cdt)2-dr∙dr = (cdτ)2



  

SRQM: Some Basic 4-Vectors
4-Velocity, 4-Momentum, E=mc2

4-Velocity
U=γ(c,u)

4-Momentum
P=(E/c,p)=(mc,p)

 Eo/c2 = mo
Special
Relativity
|v| = |u| = {0 ↔ c}

4-Velocity
CM

U
CM

=(1+(v/c)2)(c  ;  u)
4-Momentum

CM

P
CM

=(E/c  ;  p)=(mc  ;  p)

For historical reasons, velocity can be represented by either (v) or (u)

U = γ(c,u)
P = (E/c,p) = moU = γmo(c,u) = m(c,u)

Temporal part: E = γmoc2 = mc2 
{energy}      E = moc2 + (γ-1)moc2

     E =  Eo    + (γ-1)Eo

     (rest) + (kinetic)
Spatial part:
{momentum} p = γmou = mu

u → (u
x
,u

y
,u

z
) 

P = (E/c,p) ~ (1+(v/c)2/2)mo(c,u) 
 
Temporal part: E ~ (1+(v/c)2/2)moc2 = moc2 + mov2/2 
{energy}      Eo    + |p|2/2mo 

   (rest) + (kinetic) 
 
Spatial part:
{momentum} p ~ (1)mou = mou → mu

↓    Newtonian/Classical Limit    ↓

 mo

Classical
Mechanics
|v| = |u| << c

RestEnergy
RestMass

Classical
Mass

The relativistic Gamma factor γ = 1/√[1-(v/c)2]
The 1st order Newtonian Limit gives γ ~ 1 + O[(v/c)2]
The 2nd order Newtonian Limit gives γ ~ 1 + (v/c)2/2 + O[(v/c)4]

U∙U = (c)2 P∙P = (Eo/c)2 = (moc)2

 

P∙U = γ(E - p∙u) = Eo = moc2

Since time:space don’t mix in CM,
Typically use energy E & 3-momentum p separately

3-momentum
p→(px,py,pz)

energy 
E

c

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Classical (scalar  ;  3-vector)
 Galilean Not Lorentz
Invariant    Invariant

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SRQM: Some Basic 4-Vectors
4-Velocity, 4-Acceleration,
SpaceTime Orthogonality

4-Velocity
U=γ(c,u)

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

4-Acceleration
A=γ(cγ’,γ’u+γa)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

4-Gradient
∂=(∂

t 
/c,-∇)→(∂

t 
/c,-∂

x
,-∂

y
,-∂

z
)

4-Vectors
R = (ct,r)
U = dR/dτ = R’
A = dU/dτ = U’

U∙A=U∙U’=0

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t 
+ u∙∇)=γd/dt

= d/dτ

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

∂∙R=4
SpaceTime
Dimension

U∙U=c2

The Lorentz Scalar Product can be used to show
SpaceTime orthogonality when the result is zero.

U∙U = c2

d/dτ[U∙U] = d/dτ[c2] = 0

d/dτ[U∙U] = d/dτ[U]∙U + U∙d/dτ[U] = A∙U + U∙A = 2(U∙A) = 0
U∙A = U∙U’ = 0: The 4-Velocity is SpaceTime orthogonal to it’s 4-Acceleration.

4-Velocity is the direction along a WorldLine.
4-Acceleration is the thing which causes a WorldLine to bend/curve.

U = R’ is tangent
to WorldLine

(U is Temporal)

A = U’ = R’’ is normal
to WorldLine
(A is Spatial)

WorldLine

R moves along
Worldline

τ

SpaceTime Orthogonality

4-Velocity U (a Temporal 4-Vector)
is orthogonal to its own 
4-Acceleration A = U’ (a Spatial 4-Vector)

ProperTime
Derivative

ProperTime
Derivative

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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SRQM: Some Basic 4-Vectors 
4-Displacement, 4-Velocity,
Relativity of Simultaneity

4-Velocity
U=γ(c,u)

4-Gradient
∂=(∂

t
/c,-∇)

4-Acceleration
A=γ(cγ’,γ’u+γa)

4-Displacement
ΔX=(cΔt,Δx)
dX=(cdt,dx)
4-Position
X=(ct,x)

∂∙X=4
SpaceTime
Dimension

∂[X]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]ProperTime

Derivative
ProperTime
Derivative

If Lorentz Scalar (U·ΔX = 0 = c2Δτ), then the ProperTime displacement (Δτ) is zero,
and the event separation (ΔX = X

2
 - X

1
) is orthogonal to the worldline U.

X
1
 and X

2
 are therefore simultaneous for the observer on this worldline U.

Examining the equation we get γ(c2Δt  - u·Δx) = 0. The coordinate time difference between the events is (Δt = u·Δx/c2)
The condition for simultaneity in an alternate frame (moving at 3-velocity u wrt. the worldline U) is Δt = 0, which implies (u·Δx) = 0.

This can be met by:
(|u| = 0), the alternate observer is not moving wrt. the events, i.e. is on worldline U or on a worldline parallel to U.
(|Δx| = 0), the events are at the same spatial location (co-local).
(u·Δx = 0), the alternate observer's motion is perpendicular (orthogonal) to the spatial separation Δx of the events in that frame.

If none of these conditions is met, then the events will not be simultaneous in the alternate reference frame.
This is the mathematics behind the concept of Relativity of Simultaneity.

 

U∙ΔX = γ(c,u)∙(cΔt,Δx) = γ(c2Δt - u∙Δx)
= c2Δto = c2Δτ

Rest-Frame
ProperTime

t’ = τ c

x’

Lorentz
Boost-Frame
t

x

ΔX
X

1
   X

2

U

Δτ = 0
Simultaneous in {t’,x’}

Δt ≠ 0
Not Simultaneous in {t,x}

∂ν[Xμ’]=∂Xμ’/∂Xν=Λμ’
ν

Lorentz Transform

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)
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SR Diagram:
SR Motion * Lorentz Scalar

= Interesting Physical 4-Vector

4-Velocity
U=γ(c,u)

4-Momentum
P=m(c,u)=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

ωo/c2

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

ρo

4-NumberFlux
N=(nc,n)=n(c,u) q

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂

t
/c,-∇)

4-Acceleration
A=γ(cγ’,γ’u+γa)

{φo=0} ↔ {A∙U=0} ↔ {A is null} {ωo=0} ↔ {K∙U=0} ↔ {K is null}

E=mc2

EM

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

no
 

Wave Velocity
v

group
*v

phase
=c2

ProperTime
Derivative

Rest Number Density

Rest Charge
Density

Rest Scalar
Potential

Rest
Mass:Energy

Rest Angular
Frequency

(∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

 Eo/ωo

εoc2  

1/μo 

Electric:Magnetic
1/(εoμo )=c2

EM
Charge

Interesting note:

Most 4-Vectors have
4 independent components.
(1 temporal, 3 spatial) 

The 4-Velocity has only the 3 
spatial however, due to its 
invariant magnitude U∙U=c2.

This fact allows one to multiply 
it by a Lorentz Scalar to make 
a new 4-Vector with 4 
independent components, as 
shown in the diagram.

Proof of non-varying (c).

P∙P=(moc)2=(Eo/c)2
J∙J=(ρoc)2

N∙N=(noc)2
A∙A=(φo/c)2

 K∙K=(ωo/c)2

{mo=0} ↔ {P∙U=0} ↔ {P is null}

U∙U=c2 ProperTime
Derivative

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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SRQM Diagram:
SRQM Motion * Lorentz Scalar
= Interesting Physical 4-Vector

4-Velocity
U=γ(c,u)

4-Momentum
P=m(c,u)=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

ωo/c2

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

ρo

4-NumberFlux
N=(nc,n)=n(c,u)

q
4-EMVectorPotential

A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂

t
/c,-∇)

4-Acceleration
A=γ(cγ’,γ’u+γa)

{φo=0} ↔ {A∙U=0} ↔ {A is null} {ωo=0} ↔ {K∙U=0} ↔ {K is null}

E=mc2Born
Rule EM

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Wave Velocity
v

group
*v

phase
=c2

ProperTime
Derivative

Rest Number Density
Rest Probabilty Density

Rest Charge
Density

Rest Scalar
Potential

Rest
Mass:Energy

Rest Angular
Frequency

(∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

 Eo/ωo

( ћ )

εoc2  

1/μo 

Electric:Magnetic
1/(εoμo )=c2

EM
Charge

Interesting note:

Most 4-Vectors have
4 independent components.
(1 temporal, 3 spatial) 

The 4-Velocity has only the 3 
spatial however, due to its 
invariant magnitude U∙U=c2.

This fact allows one to multiply 
it by a Lorentz Scalar to make 
a new 4-Vector with 4 
independent components, as 
shown in the diagram.

Proof of non-varying (c)

P∙P=(moc)2=(Eo/c)2
J∙J=(ρoc)2

N∙N=(noc)2

Jprob∙Jprob=(ρ
proboc)2

A∙A=(φo/c)2

 

K∙K=(ωo/c)2

=(moc/ћ)2

{mo=0} ↔ {P∙U=0} ↔ {P is null}

Einstein
de Broglie
P =ћK 

U∙U=c2 ProperTime
Derivative

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-ProbCurrDensity
4-ProbabilityFlux
J

prob
=(ρ

prob
c, j

prob
)

no

 

 ρ
probo = χ*ψ 

=|⟨χ|ψ⟩|2

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SRQM Diagram:
ProperTime Derivative

Very Fundamental Results

4-Velocity
U=γ(c,u)

4-Gradient
∂=(∂

t
/c,-∇)

4-Acceleration
A=γ(cγ’,γ’u+γa)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]    U∙∂[..]

 γd/dt[..]
 d/dτ[..]

ProperTime
Derivative ProperTime

Derivative

U∙U=c2

Continuity of
4-Velocity Flow: ∂∙U=0

∂∙R = 4: SpaceTime Dimension is 4

d/dτ(∂∙R) = d/dτ(4) = 0
(U∙∂)(∂∙R) = (U∙∂)(4) = 0

d/dτ(∂∙R) = d/dτ(∂)∙R + ∂∙d/dτ(R) = 0
d/dτ(∂∙R) = d/dτ[∂]∙R + ∂∙U = 0
∂∙U = -d/dτ[∂]∙R
∂∙U = -(U∙∂)[∂]∙R
∂∙U = -(Uν∂ν)[∂μ]Rμ

∂∙U = -Uν∂ν∂μRμ

∂∙U = -Uν∂μ∂νRμ

∂∙U = -Uν∂μηνμ

∂∙U = -Uν(0ν)
∂∙U = 0: Conservation of the 4-Velocity Flow (4-Velocity Flow-Field)

 

Acceleration of Event
is perpendicular to
Event WorldLine

U∙A=U∙U’=0

U∙U = c2: Tensor Invariant of 4-Velocity

d/dτ[U∙U] = d/dτ[c2] = 0
(U∙∂)[U∙U] = (U∙∂)[c2] = 0

d/dτ[U∙U] = d/dτ[U]∙U + U∙d/dτ[U] = A∙U + U∙A = 2(U∙A) = 0
U∙A = U∙U’ = 0: The 4-Velocity is SpaceTime orthogonal to it’s 4-Acceleration.

4-Velocity is the direction of an Event along a WorldLine.
4-Acceleration of an Event is the thing which causes a WorldLine to bend.

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t 
+ u∙∇)

=γd/dt=d/dτ

4-Vectors:
R = <Event>
U = dR/dτ
A = dU/dτ

P = moU
F = dP/dτ

4-Momentum
P=(E/c,p)=(mc,p)

Eo/c2

mo 4-Force
F=γ(Ė/c,f)

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

ProperTime
Derivative

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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John B. Wilson

  4



  

SRQM Diagram:
Local Continuity of 4-Velocity leads to

all the Conservation Laws

Conservation Laws:

All of the Physical 
Conservation Laws are in the 
form of a 4-Divergence, which 
is a Lorentz Invariant Scalar 
equation.

These are local continuity 
equations which basically say 
that the temporal change in a 
quantity is balanced by the 
flow of that quantity into or out 
of a local spatial region.

Conservation of Charge:
∂∙J = (∂

t 
ρ + ∙∇ j) = 0

∂∙R = 4
d/dτ(∂∙R) = d/dτ(4) = 0

d/dτ(∂∙R) = d/dτ(∂)∙R + ∂∙d/dτ(R) = 0
d/dτ(∂∙R) = d/dτ[∂]∙R + ∂∙U = 0
∂∙U = -d/dτ[∂]∙R
∂∙U = -(U∙∂)[∂]∙R
∂∙U = -(Uν∂ν)[∂μ]Rμ

∂∙U = -Uν∂ν∂μRμ

∂∙U = -Uν∂μ∂νRμ: I believe this is legit, partials commute
∂∙U = -Uν∂μηνμ

∂∙U = -Uν(0ν)
∂∙U = 0
Conservation of the 4-Velocity Flow
(4-Velocity Flow-Field)

∂∙U = 0
∂∙(Lorentz Scalar)U = 0(Lorentz Scalar)
∂∙(Lorentz Scalar)U = 0
∂∙(Interesting 4-Vector) = 0

Example:
∂∙(ρo)U = 0
∂∙J = 0
(∂

t
/c ρc + ∙j∇ ) = 0

(∂
t
ρ + ∙j∇ ) = 0

= Conservation of Charge
= A Continuity Equation

4-Velocity
U=γ(c,u)

4-Gradient
∂=(∂

t
/c,-∇)

4-Acceleration
A=γ(cγ’,γ’u+γa)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]    U∙∂[..]

 γd/dt[..]
 d/dτ[..]

ProperTime
Derivative

ProperTime
Derivative

Continuity of
4-Velocity Flow: ∂∙U=0

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t 
+ u∙∇)

=γd/dt=d/dτ

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors
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of QM
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SRQM Diagram:
SRQM Motion * Lorentz Scalar

Conservation Laws, Continuity Eqns

4-Velocity
U=γ(c,u)

4-Momentum
P=m(c,u)=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

ωo/c2

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

ρo

4-NumberFlux
N=(nc,n)=n(c,u)

q

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂

t
/c,-∇)

4-Acceleration
A=γ(cγ’,γ’u+γa)

{φo=0} ↔ {A∙U=0} ↔ {A is null}

E=mc2Born
Rule

EM

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Wave Velocity
v

group
*v

phase
=c2

ProperTime
Derivative

ProperTime
Derivative

Rest Number Density
Rest Probabilty Density Rest Charge

Density Rest Scalar
Potential

Rest
Mass:Energy

Rest Angular
Frequency

 Eo/ωo

( ћ )

Lorenz Gauge
Conservation of

EM Potential: ∂∙A=0

EM
Charge

Conservation Laws:

All of the Physical 
Conservation Laws are in the 
form of a 4-Divergence, which 
is a Lorentz Invariant Scalar 
equation.

These are local continuity 
equations which basically say 
that the temporal change in a 
quantity is balanced by the 
flow of that quantity into or out 
of a local spatial region.

Conservation of Charge:
∂∙J = (∂

t 
ρ + ∙∇ j) = 0

U∙U=c2

P∙P=(moc)2=(Eo/c)2

J∙J=(ρoc)2

N∙N=(noc)2

Jprob∙Jprob=(ρ
proboc)2

A∙A=(φo/c)2

 

K∙K=(ωo/c)2

=(moc/ћ)2

{mo=0} ↔ {P∙U=0} ↔ {P is null}

Einstein
de Broglie
P =ћK 

Conservation of
Charge: ∂∙J=0

Conservation of
Particle #: ∂∙N=0

Probability: ∂∙J
prob

=0
Conservation of

4-Momentum: ∂∙P=0
Conservation of

4-WaveVector: ∂∙K=0

4-MassFlux
4-MomentumDensity
G=(ρ

m
c,g)=ρ

m
(c,u)

mo

Rest
Mass:Energy

Conservation of
Mass: ∂∙G=0

G∙G=(ρ
moc)2

{ωo=0} ↔ {K∙U=0} ↔ {K is null}

These are Fluid or Density -type Conservation/Continuity Laws These are Individual Particle/Wave/Delta-function Conservation/Continuity Laws

Continuity
of 4-Velocity Flow:

 ∂∙U=0

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

no

 

 ρ
probo = χ*ψ 

=|⟨χ|ψ⟩|2

4-ProbCurrDensity
4-ProbabilityFlux
J

prob
=(ρ

prob
c, j

prob
)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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SRQM: Some Basic 4-Vectors
4-Velocity, 4-Gradient, Time Dilation

The Minkowski Diagram provides
a great visual representation
of SpaceTime

const inertial motion
worldline U
(0<u<c)
trades some time for space

4-Velocity
U=γ(c,u)

U∙U = γ(c,u)∙γ(c,u) = γ2(c2-u∙u) = (c2)

γ = 1/√[1-(u/c)2] = 1/√[1-β2]

Everything moves into future (+t) 
at the speed-of-light (c)
in its own spatial rest-frame

at-rest
worldline Uo

(u=0)
fully temporal

Since the SpaceTime magnitude of U is a constant, 
changes in the components of U are like “rotating” 
the 4-Vector without changing its length.  However, 
as U gains some spatial velocity, it loses some 
“relative” temporal velocity.  Objects that move in 
some reference frame “age” more slowly relative to 
those at rest in the same reference frame.

Time Dilation!   Δt = γΔτ = γΔto

  dt  = γdτ
d/dτ = γd/dt

Each observer will see the other as aging more 
slowly; similarly to two people moving oppositely 
along a train track, seeing the other as appearing 
smaller in the distance.

x

y

t

4-Velocity
(at-rest)

Uo=(c,0)

4-Gradient
∂=(∂

t
/c,-∇)

ProperTime

U∙∂=d/dτ=γd/dt
Derivative

ProperTime

dτ=(1/γ)dt
Differential

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

There are multiple ways of writing out the components of the 4-WaveVector,
with each one giving an interesting take on what the 4-WaveVector means.

An SR wave Ψ is actually composed of two tensors:
(1) 4-Vector propagation part = Kα, (the engine)
(2) Variable amplitude part = A (the load), depends on what is waving...

4-Scalar A: Ψ = A e^(-iKαXα)
  ex. KG Quantum Wave

4-Vector Aμ: Ψμ = Aμ e^(-iKαXα)
  ex. Maxwell Photon Wave

4-Tensor Aμν: Ψμν = Aμν e^(-iKαXα)
  ex.  Gravitational Wave Approx.

The Ψ tensor-type will match the
A tensor-type, as the propagation
part e^(-iKαXα) is overall dimensionless.

One comparison I find very interesting is: 
R∙R = (cto)2 = (cτ)2 
K∙K = (1/cTo)2 
∂∙∂ = (∂/c∂to)2 = (∂/c∂τ)2

I believe the last one is correct: (∂∙∂)[R] = 0 = (∂/c∂τ)2[R] = Ao/c2 = 0: The 4-Acceleration seen in the ProperTime Frame = RestFrame = 0
Normally (d/dτ)2[R] = A, which could be non-zero. But that is for the total derivative, not the partial derivative.

SRQM: Some Basic 4-Vectors
SR 4-WaveVector K

RestAngularFrequency

 K∙U = γ(ω - k∙u) = ωo

4-Velocity U
=γ(c,u)
=γc(1,β)

4-WaveVector K
=(ω/c,k)

=(ω/c,ωn̂/v
phase

)

=(ω/c,ωu/c2)
=(ω/c2)(c,u)
=(ω/c)(1,β)
=(1/cT,n̂/λ)

K=-∂[Φ
phase,plane

]

ωo/c2

U∙U
=c2

=λ2(ω2-ωo
2)

= λ2ω2
(for photon)

= λ2ν2
(for photon)

=|vphase*vgroup|
= λ

C

2ωo
2

K∙K
=(ω/c)2-k∙k

=(ωo/c)2

=(1/cTo)2

=(1/λ
C
)2

4-Position
R=(ct,r)    U∙∂[..]

 γd/dt[..]
 d/dτ[..]

Invariant Phase
 K∙R

= (ω/c,k)∙(ct,r)
=(ωt - k∙r)

=(t/T – n̂∙r/λ)
= -Φphase,plane 

4-Gradient
∂=(∂

t
/c,-∇)

..[K
T
∙R]

..∫[K
T
∙dR]

..[-Φ
phase

]
d’Alembertian

∂∙∂=
=(∂

t 
/c)2- ∙∇ ∇

=(∂
to
/c)2

=(∂/c∂to)2

=(∂/c∂τ)2

Invariant Interval
R∙R=(ct)2-r∙r 

=(cτ)2

=(cto)2

ψn(X) = An e^-i(Kn·X): Explicit form of an SR plane wave
ψ(X) = Σn[ ψn(X) ]: Complete wave is a 
superposition of multiple plane waves.
∂[ ψ(X) ] = ∂[ Ae^-i(K·X) ] = -iK [ Ae^-i(K·X) ] = -iK[ ψ(X) ]
∂ = -iK as the condition for a complex-valued plane wave.

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-WaveVector,  aka. Wave 4-Vector, solution of d’Alembertian Wave Eqn.
K = (ω/c,k) = (ω/c,ωn ̂/v

phase
) = (ω/c,ωu/c2) = (ω/c2)(c,u) = (ω/c)(1,β) = (1/cT,n̂/λ) = -∂[Φ

phase,plane
]

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SRQM: Some Basic 4-Vectors
4-Velocity, 4-WaveVector

Wave Properties, Relativistic Doppler Effect

4-Velocity
U=γ(c,u)

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)ωo/c2

RestAngularFrequency

K = (ω/c,k) = (ω/c,ωn̂/v
phase

) = (ωo/c2)U 

    = (ωo/c2)γ(c,u) = (ω/c2)(c,u) = (ω/c,(ω/c2)u)

(ω/c,ωn̂/v
phase

) = (ω/c,(ω/c2)u)

Taking just the spatial components of the 4-WaveVector:
ωn/v

phase
 = (ω/c2)u

n̂/v
phase

 = (u/c2)

u * v
phase

 = c2 

v
group

 * v
phase

 = c2, with u = v
group

Wave Group velocity (v
group

) is mathematically the same as Particle velocity (u).

Wave Phase velocity (v
phase

) is the speed of an individual plane-wave.

The Phase Velocity of a Photon {v
phase

 = c} equals the Particle Velocity of a Photon {u = c}

The Phase Velocity of a Massive Particle {v
phase

 > c} is greater than the Velocity of a Massive Particle {u < c}

Relativistic SR Doppler Effect
( n̂ ) here is the unit-directional 3-vector of the photon

Choose an observer frame for which:
K = (ω/c,k), with k,n̂ pointing toward observer
Uobs = (c,0) K∙Uobs = (ω/c,k)∙(c,0) = ω = ω

obso

Uemit = γ(c,u) K∙Uemit = (ω/c,k)∙γ(c,u) = γ(ω - k∙u) = ω
emito

K∙Uobs /K∙Uemit =  ω
obso/ωemito

 = ω/[γ(ω - k∙u)]
For photons, K is null → K∙K = 0 → k = (ω/c)n̂ 
ω

obso/ωemito
 = ω/[γ(ω - (ω/c)n̂∙u)] = 1/[γ(1 - n̂∙β)] = 1/[γ(1 - |β|cos[θ

obs
])]

ω
obs

/ω
emit

 = γω
obso/(γω

emito
) = ω

obso/ωemito

ω
obs

 = ω
emit

/[γ(1 - n̂∙β)] = ω
emit

*√[1+|β|]*√[1-|β|]/(1 - n̂∙β)
with γ = 1/√[1-β2] = 1/(√[1+|β|]*√[1-|β|])

For motion of emitter β: (in observer frame of reference)
Away from obs, (n̂∙β) = -β,  ω

obs
 = ω

emit
*√[1-|β|]/√(1 + |β|) = Red Shift

Toward obs,     (n̂∙β) = +β, ω
obs

 = ω
emit

*√[1+|β|]/√(1 - |β|) = Blue Shift
Transverse,     (n̂∙β) = 0,   ω

obs
 = ω

emit
/γ = Transverse Doppler Shift

U∙U = (c)2 K∙K = (ωo/c)2

 K∙U = γ(ω - k∙u) = ωo

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
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SRQM: Some Basic 4-Vectors
4-Velocity, 4-WaveVector

Wave Properties, Relativistic Aberration

K = (ω/c,k) = (ω/c,ωn̂/v
phase

) = (ωo/c2)U 

    = (ωo/c2)γ(c,u) = (ω/c2)(c,u) = (ω/c,(ω/c2)u)

(ω/c,ωn̂/v
phase

) = (ω/c,(ω/c2)u)

Taking just the spatial components of the 4-WaveVector:
ωn/v

phase
 = (ω/c2)u

n̂/v
phase

 = (u/c2)

u * v
phase

 = c2 

v
group

 * v
phase

 = c2, with u = v
group

Wave Group velocity (v
group

) is mathematically the same as Particle velocity (u).

Wave Phase velocity (v
phase

) is the speed of an individual plane-wave.

The Phase Velocity of a Photon {v
phase

 = c} equals the Particle Velocity of a Photon {u = c}

The Phase Velocity of a Massive Particle {v
phase

 > c} is greater than the Velocity of a Massive Particle {u < c}

Relativistic SR Doppler Effect
( n̂ ) here is the unit-directional 3-vector of the photon

ω
obs

 = ω
emit

/[γ(1 - n̂∙β)] = ω
emit

/[γ(1 - |β|cos[θ
obs

])]

Change reference frames with {obs→emit} &{ β → -β }

ω
emit

 = ω
obs

/[γ(1 + n̂∙β)] = ω
obs

/[γ(1 + |β|cos[θ
emit

])]

(ω
obs

)*(ω
emit

) =(ω
emit

/[γ(1 - |β|cos[θ
obs

])])*(ω
obs

/[γ(1 + |β|cos[θ
emit

])]) 

1 = (1/[γ(1 - |β|cos[θ
obs

])])*(1/[γ(1 + |β|cos[θ
emit

])])
1 = (γ(1 - |β|cos[θ

obs
]))*(γ(1 + |β|cos[θ

emit
]))

1 = γ2(1 - |β|cos[θ
obs

])*(1 + |β|cos[θ
emit

])

Solve for |β|cos[θ
obs

] and use {(γ2-1) = β2γ2}

Relativistic SR Aberration Effect
cos[θ

obs
] = (cos[θ

emit
] + |β|) / (1 + |β|cos[θ

emit
])

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Velocity
U=γ(c,u)

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)ωo/c2

RestAngularFrequencyU∙U = (c)2 K∙K = (ωo/c)2

 K∙U = γ(ω - k∙u) = ωo

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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John B. Wilson



  

SRQM: Some Basic 4-Vectors
4-Momentum, 4-WaveVector,

4-Position, 4-Velocity, 4-Gradient, Wave-Particle

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

P=-∂[S
action,free

]

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

K=-∂[Φ
phase,plane

]

Treating motion like a particle
Moving particles have a 4-Velocity
4-Momentum is the negative 4-Gradient of the SR Action (S)

Treating motion like a wave
Moving waves have a 4-Velocity
4-WaveVector is the negative 4-Gradient of the SR Phase (Φ)

↓ ωo/Eo = ( 1/ћ )
or

↑ Eo/ωo = ( ћ )

4-Gradient
∂=(∂

t
/c,-∇)→(∂

t
/c,-∂

x
,-∂

y
,-∂

z
)

See Hamilton-Jacobi Formulation of Mechanics 
for info on the Lorentz Scalar Invariant SR Action.
{ P = (E/c,p) = -∂[S] = (-∂/c∂t[S],∇[S]) }
{temporal component} E = -∂/∂t[S] = -∂

t
[S]

{spatial component} p = ∇[S]
**Note** This is the Action (Saction) for a free particle.
Generally Action is for the 4-TotalMomentum PT of a system.

..[-S
action,free

]

..[-Φ
phase,plane

]

4-Position
R=(ct,r)

∫P∙dR = -S
action,free

∫K∙dR = -Φ
phase,plane

mo

 Eo/c2

ωo/c2

U∙U = (c)2

P∙P = (moc)2= (Eo/c)2

K∙K = (ωo/c)2

d’Alembertian 
∂∙∂ = (∂

t 
/c)2 -∇∙∇ = (∂

τ 
/c)2

Rest Mass:Energy
E=mc2

RestAngFrequency
Wave Velocity
v

group
*v

phase
=c2

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

SpaceTime

∂∙R=4
Dimension

ProperTime

U∙∂=d/dτ=γd/dt
Derivative

P=-∂[S
action,free

]

K=-∂[Φ
phase,plane

]

See SR Wave Definition 
for info on the Lorentz Scalar Invariant SR WavePhase.
{ K = (ω/c,k) = -∂[Φ] = (-∂/c∂t[Φ],∇[Φ]) }
{temporal component} ω = -∂/∂t[Φ] = -∂

t
[Φ]

{spatial component} k = ∇[Φ]
**Note** This is the Phase (Φ) for a single plane-wave.
Generally WavePhase is for the 4-TotalWaveVector KT of a system.

P∙U = Eo

 K∙U = ωo

Einstein
de Broglie
P = ћK 

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM
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4-Vector SRQM Interpretation
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Some Cool Minkowski Metric Tensor Tricks
4-Gradient, 4-Position, 4-Velocity

SpaceTime is 4D

4-Velocity
U=γ(c,u)

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

ηαβ(ηγβ) = ηα
γ = Diag[1,-1,-1,-1]*Diag[1,-1,-1,-1] = Diag[1,1,1,1]

thus
Single Index-Lowering the Minkowski Metric (ηγβ) gives the Kronecker Delta

(∂∙R) = (∂α∙Rβ) = (∂αηαβRβ) = ηαβ(∂αRβ) = ηαβ(ηαβ) = ηα
α = δα

α = 4
Trace[Minkowski Metric] = Tr[ηαβ] = ηαβ[ηαβ] = ηα

α = δα
α = 4

thus
The Divergence of 4-Position (∂∙R) = “Magnitude” of the Minkowski Metric Tr[ηαβ] = the Dimension of SpaceTime (4)

(U∙∂)[R] = (Uα∙∂β)[Rγ] = (Uαηαβ∂β)[Rγ] = (Uβ∂β)[Rγ] = (Uβ)∂β[Rγ] = (Uβ)ηβγ = Uγ = U = (d/dτ)[R]
thus
Lorentz Scalar Product (U∙∂) = Derivative wrt. ProperTime (d/dτ) = Relativistic Factor * Derivative wrt. CoordinateTime γ(d/dt): 

∂∙R=4
SpaceTime
Dimension

∂[R] = ημν

→Diag[1,-1,-1,-1]
Minkowski Metric

 ProperTime Derivative
U∙∂=γ(c,u)∙(∂

t 
/c,-∇)=γ(∂

t 
+ u∙∇)

= d/dτ = γd/dt

δμ
ν

=Diag[1,1,1,1]
Kronecker Delta

∂[R] = ημν

→Diag[1,-1,-1,-1]
Index-Raised

Minkowski Metric

η
μν

→Diag[1,-1,-1,-1]
Index-Lowered

Minkowski Metric

ημ
ν

→Diag[1,1,1,1]
Index-Mixed

Minkowski Metric

Tr[ημν]=ημ
μ=4

SpaceTime
Dimension

{ημμ}
=

1/{η
μμ

}

4-Gradient
∂=(∂

t
/c,-∇)→(∂

t
/c,-∂

x
,-∂

y
,-∂

z
)

=

Index
Raise

Index
Lower

=

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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4-NumberFlux 
N=(nc,n)=n(c,u) 

=(iћ/2mo)(ψ*∂[ψ]-∂[ψ*]ψ)+ (q/mo)(ψ*ψ)A 
Complex

SRQM+EM Diagram: 4-Vectors

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
        K=(ω/c,k)

4-UnitTemporal
T=γ(1,β)

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

4-EMVectorPotential
A=(φ/c,a)

4-Gradient
∂=(∂t/c,-∇)

4-Acceleration
A=γ(cγ’,γ’u+γa )

4-Force
F=γ(E’/c,f)

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

4-UnitSpatial
S=γβn(n̂·β,n̂)

┴

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

4-ForceDensity
Fden=γ(Eden’/c,fden) 4-MomentumField

P
f
=(E

f
/c,p

f
)

=P+Q=P+qA

4-TotalWaveVector
K

T
=(ω

T
/c,k

T
)

4-MassFlux
4-MomentumDensity
G=(ρmc,g)=(ρe/c,g)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-ProbCurrDensity
4-ProbabilityFlux
Jprob=(ρprobc, jprob)

4-Polarization:Spin
Ε=(ε0,ε)=(ε·β,ε)
S=(s0,s)=(s·β,s)

Complex              

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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4-NumberFlux 
N=(nc,n)=n(c,u) 

=(iћ/2mo)(ψ*∂[ψ]-∂[ψ*]ψ)+ (q/mo)(ψ*ψ)A 
Complex

SRQM+EM Diagram: 4-Vectors, 4-Tensors

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
        K=(ω/c,k)

4-UnitTemporal
T=γ(1,β)

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

4-EMVectorPotential
A=(φ/c,a)

4-Gradient
∂=(∂t/c,-∇)

4-Acceleration
A=γ(cγ’,γ’u+γa )

4-Force
F=γ(E’/c,f)

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

4-UnitSpatial
S=γβn(n̂·β,n̂)

┴

 EM Faraday
Fαβ=∂αAβ-∂βAα

=[   0  , -ej/c]
  [+ei/c,-εij

kbk]
4-Tensor

 ημν 
∙

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric                   

        SR Perfect Fluid
Tμν=((ρeo+po)/c2)UμUν-(po)ημν

Tμν=(ρeo)Vμν+(-po)Hμν

StressEnergy 4-Tensor

Einstein GR
Gμν=Rμν-gμνR/2

4-Tensor  

4-Position
R=(ct,r)

4-ForceDensity
Fden=γ(Eden’/c,fden)

 ημν 
∙

4-MomentumField
P

f
=(E

f
/c,p

f
)

=P+Q=P+qA

4-TotalWaveVector
K

T
=(ω

T
/c,k

T
)

4-MassFlux
4-MomentumDensity
G=(ρmc,g)=(ρe/c,g)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-ProbCurrDensity
4-ProbabilityFlux
Jprob=(ρprobc, jprob)

4-Polarization:Spin
Ε=(ε0,ε)=(ε·β,ε)
S=(s0,s)=(s·β,s)

Complex              

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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John B. Wilson
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4-NumberFlux 
N=(nc,n)=n(c,u) 

=(iћ/2mo)(ψ*∂[ψ]-∂[ψ*]ψ)+ (q/mo)(ψ*ψ)A 
Complex

SRQM+EM Diagram: 4-Vectors, 4-Tensors
Lorentz Scalars / Physical Constants

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
        K=(ω/c,k)

4-UnitTemporal
T=γ(1,β)

c

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

ρo

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂t/c,-∇)..[K

T
∙R]

..[-Φ
Tphase

]

( i )

4-Acceleration
A=γ(cγ’,γ’u+γa )

4-Force
F=γ(E’/c,f)

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

..[P
T
∙R] 

..[-S
action

]

q

U∙Ε=0
U∙S=0

4-UnitSpatial
S=γβn(n̂·β,n̂)

┴

T∙S=0

 EM Faraday
Fαβ=∂αAβ-∂βAα

=[   0  , -ej/c]
  [+ei/c,-εij

kbk]
4-Tensor

q

∂∙A=0
Conservation of EM Field

= Lorenz Gauge

∂∙N=0 : ∂∙Jprob=0
Conservation of

Particle # : Probabilty

 ημν 
∙

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric                   

        SR Perfect Fluid
Tμν=((ρeo+po)/c2)UμUν-(po)ημν

Tμν=(ρeo)Vμν+(-po)Hμν

StressEnergy 4-Tensor
(ρeo+po)/c2

-po

εoc2  

1/μo 

∂∙J=0
Conservation of

Charge

Einstein GR
Gμν=Rμν-gμνR/2

4-Tensor  8πG/c4 

-∂∙Tμν=Fden 
SR Conservation of 

StressEnergy if Fden=0μ

4-Position
R=(ct,r)

K∙R= -Φ
phase

P
T
∙R

=∫P
T
∙dR

= -S
action

(∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

4-ForceDensity
Fden=γ(Eden’/c,fden)

 U∙∂[..]
 d/dτ[..]

 U∙∂[..]
 d/dτ[..]

 ημν 
∙

εoc2  

1/μo 

no

mo

 Eo/c2

U∙A=U∙U’=0

no

∂∙Gμν=0μ

SR Conservation 
of Einstein Tensor

4-MomentumField
P

f
=(E

f
/c,p

f
)

=P+Q=P+qA

U∙∂[..]

 d/dτ[..]=γd/dt[..]

T∙ΔR/c=Δτ
ProperTime

4-TotalWaveVector
K

T
=(ω

T
/c,k

T
)

q

4-MassFlux
4-MomentumDensity
G=(ρmc,g)=(ρe/c,g)

ProperTime 
U∙∂=d/dτ=γd/dt

Derivativeωo/c2

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-ProbCurrDensity
4-ProbabilityFlux
Jprob=(ρprobc, jprob)

 Eo/ωo

( ћ )

 E
To/ωTo

( ћ )

no

 

=|⟨χ|ψ⟩|2
ρ

probo = χ*ψ

4-Polarization:Spin
Ε=(ε0,ε)=(ε·β,ε)
S=(s0,s)=(s·β,s)

Complex              

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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SRQM+EM Diagram: 4-Vectors, 4-Tensors
Lorentz Scalars / Physical Constants

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
        K=(ω/c,k)

ωo/c2

4-UnitTemporal
T=γ(1,β)

c

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

ρo

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂t/c,-∇)..[K

T
∙R]

..[-Φ
Tphase

]

( i )

4-Acceleration
A=γ(cγ’,γ’u+γa)

4-Force
F=γ(Ė/c,f)

4-EMPotentialMomentum
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SRQM+EM Diagram: 4-Vectors, 4-Tensors
Lorentz Scalars / Physical Constants

with Tensor Invariants
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4-Momentum
P=(mc,p)=(E/c,p)
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Ε=(ε0,ε)=(ε·β,ε)
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 EM Faraday
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SRQM Diagram:
Physical Constants Emphasized
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Charge
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8πG/c4 

Notice that all the main “Universal” or “Fundamental” 
Physical Constants are here: G,c,ћ,εo,μo.

Some depend on the actual particle type: q,mo,ωo

Some depend on regional conditions: τ,ρeo,po,ρo,φo,ψ*ψ
Some depend on interaction:Φ

phase
,S

action

Some are mathematical: 0,4,π,i,Diag[1,-1,-1,-1],d/dτ
Conservation Laws are also a type of “zero” constant in 
this regard.

The majority of the constants are Lorentz Scalars, but 
some are 4-Vector or 4-Tensor, and all are valid for all 
inertial observers.

Fundamental Physical Constants are SR Lorentz Scalars

The fact that these “tie together” a network of 4-Vectors is 
a good argument for why their values are constant. 
Changing even one would change the relationship 
properties among all of the 4-Vectors.
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SRQM Diagram: Projection Tensors
Temporal, Spatial, Null, SpaceTime

4-Velocity
U=γ(c,u)

4-UnitTemporal
T=γ(1,β) c

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν

→Diag[1,-1,-1,-1] 
Minkowski Metric

SpaceTime Tensor

 Vμν-(1/3)Hμν=Nμν 
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Light-like
Interval (0)
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Projection Tensors act as follows:
Generic 4-Vector:
Aν = (a0,a) = (a0,a1,a2,a3)

Temporal Projection:
Vμ
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ν Aν = (a0,0,0,0) = (a0,0)
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Hμ

ν Aν = (0,a1,a2,a3) = (0,a)
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ν Aν + Hμ
ν Aν = ημ

ν Aν

= δμ
ν Aν = Aμ = (a0,a)

Vμ
ν + Hμ

ν = ημ
ν = δμ

ν

Vμν + Hμν = ημν

The Minkowski Metric Tensor is 
the Sum of Temporal & Spatial
Projection Tensors, all of which 
are dimensionless.
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Perfect-Fluid      rest-energy-density      rest-pressure

StressEnergy 4-Tensor:

Tμν = ((ρeo+po)/c2)UμUν - (po)ημν

can be written in much
simpler form using
Projection Tensors:

Tμν = (ρeo)Vμν - (po)Hμν

SRQM Diagram: Projection Tensors & 
Perfect-Fluid Stress-Energy Tensor

4-Velocity
U=γ(c,u)

4-UnitTemporal
T=γ(1,β) c

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν

→Diag[1,-1,-1,-1] 
Minkowski Metric

SpaceTime Tensor

 Perfect-Fluid
StressEnergy 4-Tensor
Tμν

rest→Diag[ρeo,po,po,po]
Tμν=(ρeo)Vμν+(-po)Hμν

 U∙∂[..]
d/dτ[..]

TμTν=Vμν

→Diag[1,0,0,0]rest 
Temporal “Vertical”
Projection Tensor

ημν-Vμν=Hμν

→Diag[0,-1,-1,-1]rest 
 Spatial “Horizontal”
Projection Tensor

ρeo -po
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U∙∂=d/dτ=γd/dt
Derivative
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+
The rest-energy-density (ρeo)
is the Temporal Projection.

The neg rest-pressure (-po)
is the Spatial Projection.

Tμν
MCRF → Diag[ρeo,po,po,po]

Projection Tensors act as follows:
Aν = (a0,a) = (a0,a1,a2,a3)

Vμ
ν = ηωνVμω → Diag[1,0,0,0]

Vμ
ν Aν = (a0,0,0,0) = (a0,0)

Hμ
ν = ηωνHμω → Diag[0,1,1,1] 

Hμ
ν Aν = (0,a1,a2,a3) = (0,a)
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ν Aν + Hμ

ν Aν = ημ
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= δμ
ν Aν = Aμ = (a0,a)

Vμ
ν + Hμ

ν = ημ
ν

Vμν + Hμν = ημν

The Minkowski Metric Tensor is 
the Sum of Temporal & Spatial
Projection Tensors, all of which 
are dimensionless.
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o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
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SRQM+EM Diagram: Projection Tensors & 
Stress-Energy Tensors: Special Cases

4-Velocity
U=γ(c,u)

c

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν=Vμν+Hμν

→Diag[1,-1,-1,-1] 
Minkowski Metric

SpaceTime Tensor

 Perfect-Fluid
StressEnergy 4-Tensor
Tμν

rest→Diag[ρe,p,p,p]
Tμν=(ρeo)Vμν+(-po)Hμν

 U∙∂[..]
d/dτ[..]

Vμν=TμTν

→Diag[1,0,0,0] 
Temporal “Vertical”
Projection Tensor

Hμν=ημν-Vμν

→Diag[0,-1,-1,-1] 
 Spatial “Horizontal”
Projection Tensor

ρeo -po

 ProperTime

U∙∂=d/dτ=γd/dt
Derivative

+

A few interesting special cases:

{for Perfect Fluid (no viscosity)}
Tμν

PerfectFluid = (ρeo) Vμν - (po) Hμν

Tμν
PerfectFluid = ((ρeo+po)/c2)UμUν - (po)ημν

Tr[Tμν] = 1(ρeo) - 3(po)

If (po) = (ρeo)/3:
then {NullDust = PhotonGas = Radiation}
Tμν

PhotonGas = (ρeo) Vμν - (ρeo/3) Hμν = (ρeo) Nμν

Tμν
PhotonGas = (po)(4Vμν - ημν)

Tr[Tμν
PhotonGas] = 0: Null (Light-Like) Projection 

If (po) = 0:
then {Cold Matter Dust (pressureless) }
Tμν

MatterDust = PμNν =  (ρmo)UμUν  = (ρeo) Vμν

Tr[Tμν
MatterDust] = (ρeo): Temporal Projection

If (po) = -(ρeo):
then {LambdaVacuum Energy}
Tμν

VaccEnergy = (ρeo) Vμν + (ρeo) Hμν= (ρeo) ημν

Tr[Tμν
VaccEnergy] = 4(ρeo): SpaceTime Projection

If (po) = (ρeo) = 0: 
then {ZeroVacuum Energy} 
Tμν

VaccEnergy = 0μν

Tr[Tμν
VaccEnergy] = 0: Zero Projection

4-NumberFlux
N=(nc,n)

 Cold Matter-Dust
StressEnergy 4-Tensor
Tμν

rest→Diag[ρe,0,0,0]
Tμν=PμNν=(ρeo)Vμν

Eo/c2

no

⊗

Lambda-Vacuum
StressEnergy 4-Tensor

Tμν
rest→Diag[ρe,-ρe,-ρe,-ρe]

Tμν=(ρeo)ημν

-po=ρeo

Null-Dust=Photon-Gas
StressEnergy 4-Tensor

Tμν
rest→Diag[ρe,ρe/3,ρe/3,ρe/3]

Tμν=(ρeo)Vμν+(-ρeo/3)Hμν=(ρeo)Nμν

-po=-ρeo/3+ +

(po) = 0 (po) = (ρeo)/3

(po) 
= -(ρ

eo)

Zero-Vacuum
StressEnergy 4-Tensor

Tμν=0μν

-∂∙Tμν=Fden
SR Conservation of 

StressEnergy
if Fden=0μ

Tr[ ] = Trace Function = ημν

Nμν = Vμν - (1/3) Hμν = Null Projection Tensor
Nμν → Diag[1,1/3,1/3,1/3] with Tr[Nμν] = 0

φo/c2

ElectroMagnetic
StressEnergy 4-Tensor

Tμν=(1/μo)[FμαFν
α - (1/4)ημνFαβFαβ]

 EM
Faraday

Fαβ

=∂αAβ-∂βAα

=[   0  , -ej/c]
  [+ei/c,-εij

kbk]
4-Tensor

4-UnitTemporal
T=γ(1,β)

4-VecPotential
A=(φ/c,a)

⊗

1/μo

-1/4
+
⊗

⊗

⊗

4-Momentum
P=(E/c,p)

4-Momentum
P=(E/c,p)

mo 4-Force
F=γ(Ė/c,f)

4-ForceDensity
Fden=γ(Ėden/c,fden)

no

 U∙∂[..]
d/dτ[..]

Tr[ημν]=4

Tr[Vμν]=1 Tr[Hμν]=3

Tr[Tμν]=ρeo-3poTr[Tμν]=ρeo

Tr[Tμν]=4ρeo

Tr[Tμν]=0

Tr[Tμν]=0Tr[Tμν]=0

Tr[Fαβ]=0

Special cases of 
a Perfect Fluid

(po) = (ρeo) = 0

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SRQM Diagram:
4-Tensors and 4-Scalars

generated from 4-Vectors

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

All 4-Tensors can be generated from 4-Vectors:

Fμν  = ∂^A = ∂μAν - ∂νAμ

Mμν  = X^P = XμPν - XνPμ

ημν = ∂μ[Rν]
Vμν = TμTν

Hμν = ημν - Vμν

Tcold_dust
μν = PμNν

(ρ
eo

) = TCold_Dust
μν Vμν

TLambda_Vacuum
μν = (ρ

eo
)ημν

(p
o
) = (k)(1/3)TLambda_Vacuum

μν Hμν

 with the pressure initially set to the EnergyDensity

 and (k) an arbitrary constant which sets pressure level

TPerfect_Fluid
μν = (ρ

eo
)Vμν+(-p

o
)Hμν



  

SRQM Study:
4D Gauss’ Theorem

Gauss' Theorem in SR:
∫Ωd4X (∂μVμ) = ∮∂ΩdS (VμNμ)
∫Ωd4X (∂·V) = ∮∂ΩdS (V·N)

where:
V = Vμ is a 4-Vector field defined in Ω
(∂·V) = (∂μVμ) is the 4-Divergence of V
(V·N) = (VμNμ) si the component of V along the N-direction
Ω is a 4D simply-connected region of Minkowski SpaceTime
∂Ω = S is its 3D boundary with its own 3D Volume element dS and outward pointing normal N.
N = Nμ is the outward-pointing normal
d4X = (c dt)(d3x) = (c dt)(dx dy dz) is the 4D differential volume element

In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem,
is a result that relates the flow (that is, flux) of a vector field through a surface to the behavior of the vector field inside the surface.
More precisely, the divergence theorem states that the outward flux of a vector field through a closed surface
is equal to the volume integral of the divergence over the region inside the surface.
Intuitively, it states that the sum of all sources minus the sum of all sinks gives the net flow out of a region.
In vector calculus, and more generally in differential geometry,
the generalized Stokes' theorem is a statement about the integration of differential forms on manifolds,
which both simplifies and generalizes several theorems from vector calculus.

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SRQM Diagram:
Minimal Coupling = Potential Interaction

Conservation of 4-TotalMomentum

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂

t
/c,-∇)

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=P+Q=P+qA

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

∑
n
[..]

q

{mo=0} ↔ {P∙U=0} ↔ {P is null}

{φo=0} ↔ {A∙U=0} ↔ {A is null}

E=mc2

Minimal
Coupling
P

f
=P+qA

Conservation of
4-TotalMomentum
P

T
 = Σ

n
 [P

f
 ]

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

P = (E/c,p): 4-Momentum
Q = (V/c,q): 4-PotentialMomentum
A = (φ/c,a): 4-VectorPotential
Pf = (E

f
/c,p

f
): 4-MomentumIncPotentialField

P
T
 = (E

T
/c,p

T
) = (H/c,p

T
): 4-TotalMomentum

P = P
f
 - qA = (E

f
/c-qφ/c,p

f
-qa): Minimal Coupling Relation

Pf = P + Q = P + qA: Conservation of 4-MomentumIncPotentialField

P
f
 = P + Q

P
f
 = P + qA

P
f
 = (mo)U + (qφo/c2)U

P
f
 = (Eo/c2)U + (qφo/c2)U

P
f
 = ((Eo+qφo)/c2)U

P
f
 = ((E+qφ)/c2)(c,u)

P
f
 = ((E+qφ)/c,p+qa)

4-MomentumIncPotentialField has a contribution from
a Mass “charge” (mo) 
an EM charge (q) interacting with a potential (φo)

P
T
 = Σ

n
 [ P

f
 ]: Conservation of 4-TotalMomentum

4-TotalMomentum is the Sum over all such 4-Momenta

4-Position
R=(ct,r) ..[P

T
∙R] 

..∫[PT∙dR] 
..∫[P

T
∙U]dτ 

..∫[-Lo]dτ 
..[-S

action
]

Hamilton-Jacobi
    PT = -∂[S]
H = -∂t[S], pT=∇[S]

+

 U∙∂[..]
d/dτ[..]
γd/dt[..]

EM Charge

Rest
Mass:Energy

Rest Scalar
Potential

ProperTime
Derivative

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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SRQM Hamiltonian:Lagrangian Connection
H + L = (pT·u) =  γ(PT·U) + -(PT·U)/γ

4-Momentum P = moU = (Eo/c2)U ; 4-VectorPotential A = (φo/c2)U
4-TotalMomentum PT = ( P + qA ) = (H/c,pT)
 

P·U = γ(E - p·u ) = Eo = moc2 ; A·U = γ(φ - a·u ) = φo

PT·U = ( P·U + qA·U ) = Eo+ qφo = moc2 + qφo
 

γ = 1/Sqrt[1-β·β]: Relativistic Gamma Identity
( γ - 1/γ ) = ( γβ·β ): Manipulate into this form… still an identity
( γ - 1/γ )(PT·U) = ( γβ·β )(PT·U): Still covariant with Lorentz Scalar
γ(PT·U) + -(PT·U)/γ = ( γβ·β )(PT·U)
γ(PT·U) + -(PT·U)/γ = ( γβ·β )(Eo + qφo)
γ(PT·U) + -(PT·U)/γ = ( γu·u )(Eo + qφo)/c2

γ(PT·U) + -(PT·U)/γ = (γ(Eo/c2+ qφo/c2)u·u)
γ(PT·U) + -(PT·U)/γ = ((γEou/c2+ γqφou/c2)·u)
γ(PT·U) + -(PT·U)/γ = ((Eu/c2+ qφu/c2)·u)
γ(PT·U) + -(PT·U)/γ = ((p+qa)·u)
γ(PT·U) + -(PT·U)/γ = (pT·u)
{    H   } + {    L     } = (pT·u): The Hamiltonian/Lagrangian connection Ho + Lo = 0   Calculating the Rest Values

H = γ(PT·U)   = γ((P+qA)·U)   = The Hamiltonian with minimal coupling Ho = (PT·U) H = γHo

L = -(PT·U)/γ = -((P+qA)·U)/γ = The Lagrangian with minimal coupling Lo = -(PT·U) L = Lo/γ

4-Vector notation gives a very nice way to find the Hamiltonian/Lagrangian connection:
( H ) + ( L )= (pT·u), where H = γ(PT·U) & L = -(PT·U)/γ 

H:L Connection in Density Format
H + L = (pT·u)
nH + nL = n(pT·u), with number density n = γno

H + L = (gT·u), with
momentum density {gT = npT}
Hamiltonian density {H = nH}
Lagrangian Density {L = nL = (γno)(Lo/γ) = noLo}
Lagrangian Density is Lorentz Scalar

for an EM field (photonic):
H = (1/2){εoe·e + b·b/μo}
L  = (1/2){εoe·e - b·b/μo} = (-1/4μo)FμνFμν

H + L = εoe·e = (gT·u)
|u| = c
|gT| = εoe·e/c
Poynting Vector |s| = |g|c2 → cεoe·e

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SRQM Study:
SR Lagrangian, Lagrangian Density,

and Relativistic Action (S)
Relativistic Action (S) is Lorentz Scalar Invariant
S = ∫Ldt = ∫(Lo/γ)(γdτ) = ∫(Lo)(dτ)
S = ∫Ldt = ∫(L/n)dt = ∫L/(n)dt = ∫L(d3x)dt = ∫(L/c)(d3x)(cdt) = ∫(L/c)(d4x)

Explicitly-Covariant Relativistic Action (S)
Particle Form Density Form {= no*Particle}
S = ∫Lodτ = -∫Hodτ S = (1/c)∫(noLo)(d4x) = -(1/c)∫(noHo)(d4x)
S = -∫(P

T
∙U)dτ S = (1/c)∫(L)(d4x)

S = -∫(P
T
∙dR/dτ)dτ

S = -∫(P
T
∙dR) S = ∫(L/c)(d4x)

S = -∫(P
T
∙U)dτ S = -(1/c)∫no(PT

∙U)(d4x)
S = -∫((P + qA)∙U)dτ` S = -(1/c)∫no((P + qA)∙U)(d4x)
S = -∫(P∙U + qA∙U)dτ S = -(1/c)∫(noP∙U + noqA∙U)(d4x)
S = -∫(Eo + qU∙A)dτ S = -(1/c)∫(noEo + noqU∙A)(d4x)
S = -∫(Eo + qφo)dτ S = -(1/c)∫(ρ

Eo + J∙A)(d4x)
S = -∫(Eo + V)dτ
S = -∫(moc2 + V)dτ S = (1/c)∫(L)(d4x)

S = (1/c)∫((1/2){εoe·e – b·b/μo})(d4x)
with V = qφo S = (1/c)∫((-1/4μo)FμνFμν)(d4x)

for an EM field = no rest frame

Lagrangian {L = (pT·u) - H} is *not* Lorentz Scalar Invariant 

Rest Lagrangian {Lo = γL = -(P
T
∙U)} is Lorentz Scalar Invariant

Lagrangian Density {L = nL = (γno)(Lo/γ) = noLo} is Lorentz Scalar Invariant

n = γno = #/d3x = #/(dx)(dy)(dz) = number density
dt = γdτ
cdτ = no(cdt)(dx)(dy)(dz) = no(d4x)
dτ = (no/c)(d4x)

H:L Connection in Density Format for Photonic System (no rest-frame)
H + L = (pT·u)
nH + nL = n(pT·u), with number density n = γno

H + L = (gT·u), with
momentum density {gT = npT}
Hamiltonian density {H = nH}
Lagrangian Density {L = nL = (γno)(Lo/γ) = noLo}
Lagrangian Density is Lorentz Scalar

for an EM field (photonic):
H = (1/2){εoe·e + b·b/μo} = noEo = ρ

Eo = EM Field Energy Density 
L  = (1/2){εoe·e - b·b/μo} = (-1/4μo)FμνFμν = (-1/4μo)*Faraday EM Tensor Inner Product
H + L = εoe·e = (gT·u)
|u| = c
|gT| = εoe·e/c
Poynting Vector |s| = |g|c2 → cεoe·e

εoμo= 1/c2 :Electric:Magnetic Constant Eqn

The Relativistic Action Equation is seen in many different formats

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

Lagrangian {L = (pT·u) - H} is *not* a Lorentz Scalar
Rest Lagrangian {Lo = γL = -(P

T
∙U)} is a Lorentz Scalar

Relativistic Action (S) is Lorentz Scalar
S = ∫Ldt
S = ∫(Lo/γ)(γdτ)
S = ∫(Lo)(dτ)

Explicitly Covariant
Relativistic Action (S)
S = ∫Lodτ = -∫Hodτ
S = -∫(P

T
∙U)dτ

S = -∫(P
T
∙dR/dτ)dτ

S = -∫(P
T
∙dR)

S = -∫(P
T
∙U)dτ

S = -∫((P + qA)∙U)dτ
S = -∫(P∙U + qA∙U)dτ
S = -∫(Eo + qφo)dτ
S = -∫(Eo + V)dτ with V = qφo

S = -∫(moc2 + V)dτ
S = -∫(Ho)dτ

SRQM Study:
SR Hamilton-Jacobi Equation

and Relativistic Action (S)

The Hamilton-Jacobi Equation is incredibly simple in 4-Vector form

Hamilton-Jacobi Equation
∂[-S] = -∂[S] = P

T

S = -∫(Eo + qφo)dτ
S = -(Eo + qφo)∫dτ
S = -(Eo + qφo)(τ + const)

-S = (Eo + qφo)(τ + const)
∂[-S] =(Eo + qφo)∂[(τ + const)]
∂[-S] =(Eo + qφo)∂[τ]
∂[-S] =(Eo + qφo)∂[R∙U/c2]
∂[-S] =((Eo + qφo)/c2)∂[R∙U]
∂[-S] =(Eo/c2+ qφo/c2)U
∂[-S] =(mo + qφo/c2)U
∂[-S] =moU + q(φo/c2)U
∂[-S] =P + qA
∂[-S] =P

T

Verified!

R∙U = c2τ : τ = R∙U/c2

4-TotalMomentum
P

T
 = (E

T
/c,p

T
)=(H/c,p

T
)

P
T
 = -∂[Saction]

(H/c,p
T
)=(-∂

t
/c[Saction],∇[Saction])

S
action

 =-∫[P
T
∙dR]

=-∫[P
T
∙U]dτ

=-∫[(H/c,p
T
)∙γ(c,u)]dτ

=-∫[γ(H-p
T
∙u]dτ

4-Vectors
Relativistic Hamilton-Jacobi Eqn

Differential Format

4-Scalars 
Relativistic Action Eqn

Integral Format

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Inverse

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SRQM Diagram:
Relativistic Hamilton-Jacobi Equation

(PT = -∂[S]) Differential Format : 4-Vectors

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

q 4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-PositionGradient
4-Gradient

∂R=∂=(∂
t
/c,-∇)

→(∂/∂ct,-∂/∂x,-∂/∂y,-∂/∂z)

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=((E+U)/c,p+qa)

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

∑
n
[..]

q

E=mc2

Minimal Coupling

EM

       Conservation
4-TotalMomentum

..[PT∙R]
..∫[P

T
∙dR]

..∫[P
T
∙U]dτ

..∫[-Lo]dτ

..[-Saction]PT = -∂[S]
H = -∂t[S], pT=∇[S]
Hamilton-Jacobi Equation

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

4-NumberFlux
N=(nc,n)=n(c,u)

no

P
T
∙U

=γ(H-p
T
∙u)= Ho= -Lo   

Relativistic Action (S) is Lorentz Scalar Invariant
S = ∫Ldt = ∫(Lo/γ)(γdτ) = ∫(Lo)(dτ) = ∫Lodτ

 Explicitly-Covariant Relativistic Action (S):  dτ =(1/c)√[dR∙dR]
S = ∫Lodτ = -∫Hodτ 
S = -∫(P

T
∙U)dτ 

S = -∫(P
T
∙dR/dτ)dτ 

S = -∫(P
T
∙dR) 

S = -∫(P
T
∙U)dτ 

S = -∫((P + qA)∙U)dτ 
S = -∫(P∙U + qA∙U)dτ 
S = -∫(Eo + qφo)dτ 
S = -∫(Eo + V)dτ   with V = qφo 
S = -∫(moc2 + V)dτ

ρo

    Invariant Rest Hamiltonian
= -Invariant Rest Lagrangian

4-Force
F=γ(Ė/c,f)

 U∙∂[..]
d/dτ[..]

+

Proper Time

dτ
Differential

x

P
T
∙dR

=-LodτProper Time

U∙∂=d/dτ=γd/dt
Derivative

∫

dR∙dR=(cdt)2-dr∙dr
=(cdτ)2

Invariant Interval

Proper Time 

dτ =(1/c)√[dR∙dR]
Differential

 (1/c)√[..]

ProperTime
Derivative U∙∂R[..]

d/dτ[..]
γd/dt[..]

U∙R=c2τ
S = -∫(P

T
∙dR)

S = ∫Lodτ
SR Action

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
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SRQM Diagram:
Relativistic Action Equation

(S = -∫(P
T
∙dR)) Integral Format : 4-Scalars

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

q 4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-PositionGradient
4-Gradient

∂R=∂=(∂
t
/c,-∇)

→(∂/∂ct,-∂/∂x,-∂/∂y,-∂/∂z)

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=((E+U)/c,p+qa)

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

∑
n
[..]

q

E=mc2

Minimal Coupling

EM

       Conservation
4-TotalMomentum

..[P
T
∙R] 

..∫[PT∙dR] 
..∫[P

T
∙U]dτ 

..∫[-Lo]dτ 
..[-S

action
]

Hamilton-Jacobi
    PT = -∂[S]
H = -∂t[S], pT=∇[S]

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

 
SR Relativistic

γ=dt/dτ=1/√[1-β·β]
Gamma Factor

 

{temporal}
{scalar}/c 

n=γno

t=γτ=γto

4-NumberFlux
N=(nc,n)=n(c,u)

SR Relativistic Scalar
(not Lorentz Invariant)

no

 U∙∂[..]
d/dτ[..]

 Hamiltonian
H=γ(P

T
∙U)=γHo

P
T
∙U

=γ(H-p
T
∙u)=Ho=-Lo   

Lagrangian
L=-(P

T
∙U)/γ=Lo/γ

Lagrangian Density
 L=nL=(γno)(Lo/γ)=noLo

x SR
Legendre Factor

(p
T
∙u)

+

H + L = (p
T
∙u)

Ho + Lo = 0

dt=γdτ=γdto

γ

-1/γ
Relativistic Action (S)
S = ∫Ldt
S = ∫(Lo/γ)(γdτ)
S = ∫Lodτ = ∫-Hodτ
S = ∫(-P

T
∙U)dτ

S = ∫(-P
T
∙dR/dτ)dτ

S = ∫(-P
T
∙dR)γ = 1/√[1-β·β]: Relativistic Identity 

( γ - 1/γ ) = ( γβ·β ): Alternate Form 
( γ - 1/γ )(PT·U) = ( γβ·β )(PT·U))
( γ + -1/γ )(PT·U) = (pT·u)
  H +   L = (pT·u)

ρo

-1

{temporal}
{scalar}*c 

Proper Time

U∙∂=d/dτ=γd/dt
Derivative

-∫

γ

Relativistic
Number density

Relativistic
Coordinate Time

4-Force
F=γ(E’/c,f) U∙∂[..]

d/dτ[..]

+

ProperTime
Derivative

ProperTime
Derivative

Invariant Rest Hamiltonian

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SRQM Diagram: Relativistic Factors
Hamiltonian & Lagrangian

Relativistic Euler-Lagrange Equation

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

q 4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-PositionGradient
4-Gradient

∂R=∂=(∂
t
/c,-∇)

→(∂/∂ct,-∂/∂x,-∂/∂y,-∂/∂z)

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=((E+U)/c,p+qa)

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

∑
n
[..]

q

E=mc2

Minimal Coupling

EM

       Conservation
4-TotalMomentum

..[P
T
∙R]

..∫[P
T
∙dR]

..[-S
action

]
Hamilton-Jacobi
    PT = -∂[S]
H = -∂t[S], pT=∇[S]

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

 
SR Relativistic

γ=dt/dτ=1/√[1-β·β]
Gamma Factor

 

{temporal}
{scalar}/c 

n=γno

t=γτ=γto

4-NumberFlux
N=(nc,n)=n(c,u)

no

 U∙∂[..]
d/dτ[..]

 Hamiltonian
H=γ(P

T
∙U)=γHo

P
T
∙U

=γ(H-p
T
∙u)=Ho=-Lo   

Lagrangian
L=-(P

T
∙U)/γ=Lo/γ

Lagrangian Density
 L=nL=(γno)(Lo/γ)=noLo

x SR
Legendre Factor

(p
T
∙u)

+

dt=γdτ=γdto

γ

-1/γ
    Lagrangian
Action S = ∫Ldt

γ = 1/√[1-β·β]: Relativistic Identity 
( γ - 1/γ ) = ( γβ·β ): Alternate Form 
( γ - 1/γ )(PT·U) = ( γβ·β )(PT·U))
( γ + -1/γ )(PT·U) = (pT·u)
  H +   L = (pT·u)

ρo

-1

{temporal}
{scalar}*c 

4-VelocityGradient
∂U=(∂Ut

/c,-∇U)
→(∂/∂γc,-∂/∂γux,-∂/∂γuy,-∂/∂γuz)

Proper Time

U∙∂=d/dτ=γd/dt
Derivative

 U∙∂[..]
d/dτ[..]

        Relativistic
Euler-Lagrange Eqn
        ∂R = (d/dτ)∂U

-∫

∂U[U]=ηαβ→Diag[1,-1,-1,-1]
Minkowski Metric

γ

Relativistic
Number density

Relativistic
Coordinate Time

Invariant Rest Hamiltonian

Note Similarity:
4-Velocity is ProperTime
Derivative of 4-Position
U = (d/dτ)R   [m/s] = [1/s]*[m]

Relativistic Euler-Lagrange Eqn
∂R = (d/dτ)∂U   [1/m] = [1/s]*[s/m]

The differential form just inverses
the dimensional units

4-Force
F=γ(E’/c,f) U∙∂[..]

d/dτ[..]

+

H + L = (p
T
∙u)

Ho + Lo = 0

ProperTime
Derivative

ProperTime
Derivative

Particle Dynamics
U = (d/dτ)R

SR Relativistic Scalar
(not Lorentz Invariant)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
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4-Vector SRQM Interpretation
of QM
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SRQM Diagram:
Relativistic Euler-Lagrange Equation

The Easy Derivation (U=(d/dτ)R)→(∂R=(d/dτ)∂U)

4-Velocity
U=γ(c,u)

4-PositionGradient:4-Gradient
∂

R
β=∂R=∂/∂R=∂=(∂

t
/c,-∇)

→(∂/∂ct,-∂/∂x,-∂/∂y,-∂/∂z)

4-Position
R=(ct,r)

4-VelocityGradient
∂

U
β=∂U=∂/∂U=(∂Ut

/c,-∇U)
→(∂/∂γc,-∂/∂γux,-∂/∂γuy,-∂/∂γuz)

Relativistic Euler-Lagrange Eqn
∂R = (d/dτ)∂U

∂/∂R = (d/dτ)∂/∂U
∂[L]/∂R = (d/dτ)∂[L]/∂U

 

Classical limit, spatial component
∂[L]/∂r = (d/dt)∂[L]/∂u
∂[L]/∂x = (d/dt)∂[L]/∂u

Note Similarity:

4-Velocity is ProperTime
Derivative of 4-Position
U = (d/dτ)R   [m/s] = [1/s]*[m]

Relativistic Euler-Lagrange Eqn
∂R = (d/dτ)∂U   [1/m] = [1/s]*[s/m]

The differential form just inverses
the dimensional units, so the
placement of the R and U switch.

That is it: so simple!
Much, much easier than how
I was taught in Grad School.

To complete the process and 
create the Equations of Motion,
one just applies the base form
to a Lagrangian.

This can be:
a classical Lagrangian
a relativistic Lagrangian
a Lorentz scalar Lagrangian
a quantum Lagrangian

U∙∂R[..]
d/dτ[..]
γd/dt[..]

Proper Time

U∙∂R=d/dτ=γd/dt
Derivative

∂R[R]=ηαβ→Diag[1,-1,-1,-1]
Minkowski Metric

∂R∙R=4
SpaceTime
Dimension

∂U[U]=ηαβ→Diag[1,-1,-1,-1]
Minkowski Metric

∂U∙U=4
SpaceTime
Dimension

Natural
4-Vector
(1,0)-Tensor

Index-raised One-
Form
4-Vector
(1,0)-Tensor

VelocityGradient One-Form
∂

Uα=(∂Ut
/c,∇U)

→(∂/∂γc,∂/∂γux,∂/∂γuy,∂/∂γuz)

PositionGradient One-Form
Gradient One-Form

∂
Rα=(∂

t
/c,∇)

→(∂/∂ct,∂/∂x,∂/∂y,∂/∂z)

One-Form
(0,1)-Tensor

ηαβ

Raise index
ηαβ

Raise index

Relativistic Dynamics Eqn (4-Vector)
U = (d/dτ)R

 

Classical limit, spatial component (3-vector)
u = (d/dt)r

U∙∂R[..]
d/dτ[..]
γd/dt[..]

U∙∂R = d/dτ = γd/dt
Interestingly, this has it’s own
similar inverse relations.
d/dτ = γd/dt
    dt = γdτ

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SRQM Diagram:
Relativistic Euler-Lagrange Equation
Alternate Forms: Particle vs. Density

4-Velocity
U=γ(c,u)

4-PositionGradient:4-Gradient
∂

R
β=∂R=∂/∂R=∂=(∂

t
/c,-∇)

→(∂/∂ct,-∂/∂x,-∂/∂y,-∂/∂z)

4-Position
R=(ct,r)

4-VelocityGradient
∂

U
β=∂U=∂/∂U=(∂Ut

/c,-∇U)
→(∂/∂γc,-∂/∂γux,-∂/∂γuy,-∂/∂γuz)

4-Velocity U is ProperTime Derivative
of 4-Position R. The Euler-Lagrange Eqn
can be generated by taking the
differential form of the same equation.

Relativistic 4-Vector Kinematical Eqn
U = (d/dτ)R
U∙K = (d/dτ)R∙K

Relativistic Euler-Lagrange Eqns
{uses gradient-type 4-Vectors}
∂R = (d/dτ)∂U: {particle format}
∂

R∙K
 = (d/dτ) ∂

U∙K

∂(-Φ) = (d/dτ) ∂
U∙K

∂(-Φ) = (U∙∂R) ∂
U∙K

∂/∂(-Φ) = (U∙∂R) ∂/∂[U∙K]
∂/∂(-Φ) = (∂R) ∂/∂[K]
∂/∂(-Φ) = (∂R) ∂/∂[∂R(-Φ)]
∂/∂(Φ) = (∂R) ∂/∂[∂R(Φ)]
∂[Φ] = (∂R) ∂[∂R(Φ)]: {density format}

U∙∂R[..]
d/dτ[..]
γd/dt[..]

Proper Time

U∙∂R=d/dτ=γd/dt
Derivative

∂R[R]=ηαβ→Diag[1,-1,-1,-1]
Minkowski Metric

∂R∙R=4
SpaceTime
Dimension

∂U[U]=ηαβ→Diag[1,-1,-1,-1]
Minkowski Metric

∂U∙U=4
SpaceTime
Dimension

U∙∂R[..]
d/dτ[..]
γd/dt[..]

4-WaveVector
K=(ω/c,k)

K∙R=-Φ
phase

K=∂
R
[-Φ

phase
]

L = (1/2){ ∂
R
[Φ]∙∂

R
[Φ] - (moc/ћ)2 Φ2 }: KG Lagrangian Density

∂[Φ] L = (∂
R
) ∂[∂R(Φ)] L: Euler-Lagrange Eqn {density format}

-(moc/ћ)2 Φ = (∂
R
)∙∂

R
[Φ] 

(∂
R
∙∂

R
)[Φ] = - (moc/ћ)2 Φ

(∂∙∂) = - (moc/ћ)2: KG Eqn of Motion

Klein-Gordon Relativistic Quantum Wave Eqn

Particle Dynamics
 

U = (d/dτ)R

Relativistic
Euler-Lagrange Eqn

 

∂R = (d/dτ)∂U

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SRQM Diagram:
Relativistic Euler-Lagrange Equation

Equation of Motion (EoM) for EM particle

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2
4-ChargeFlux

4-CurrentDensity
J=(ρc,j)=ρ(c,u)

q

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-PositionGradient
4-Gradient

∂R=∂=(∂
t
/c,-∇)

→(∂/∂ct,-∂/∂x,-∂/∂y,-∂/∂z)

4-EMPotentialMomentum
Q=(U/c,q)=qA

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=((E+U)/c,p+qa)

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

∑
n
[..]

q

E=mc2

Minimal
Coupling

EM

       Conservation
4-TotalMomentum

Hamilton-Jacobi
    PT = -∂[S]
H = -∂t[S], pT=∇[S]

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

∂R∙R=4
SpaceTime
Dimension

∂R[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

4-NumberFlux
N=(nc,n)=n(c,u)

no

 U∙∂[..]
d/dτ[..]

PT∙U = (P+qA)∙U
=γ(H-p

T
∙u)=Ho=-Lo   

ρo

4-VelocityGradient
∂U=(∂Ut

/c,-∇U)
→(∂/∂γc,-∂/∂γux,-∂/∂γuy,-∂/∂γuz)

Proper Time

U∙∂R=d/dτ=γd/dt
Derivative

 U∙∂[..]
d/dτ[..]

        Relativistic
Euler-Lagrange Eqn
        ∂R = (d/dτ)∂U

∂U[U]=ηαβ→Diag[1,-1,-1,-1]
Minkowski Metric

Invariant Rest Hamiltonian

Note Similarity:
4-Velocity is ProperTime
Derivative of 4-Position
U = (d/dτ)R   [m/s] = [1/s]*[m]

Relativistic Euler-Lagrange Eqn
∂R = (d/dτ)∂U   [1/m] = [1/s]*[s/m]

The differential form just inverses
the dimensional units

4-Force
F=γ(Ė/c,f)

 U∙∂[..]
d/dτ[..]

Lo = -PT∙U 
= -(P+qA)∙U

Lo = -(PT·U)
∂U[Lo] = -PT = -(P+qA)
(d/dτ)[∂U[Lo]] = (d/dτ)[-PT] = -(d/dτ)[P+qA] = -(F+q(d/dτ)[A]) = -(F+qU·∂[A]) = -(F+qUν∂ν[A])
∂R[Lo] = ∂R[-PT·U] = -∂R[(P+qA)·U] = (0) + -q∂R[A·U] = -q∂R[UνAν] = -qUν∂R[Aν]
assuming the 4-Gradient ∂R of the 4-Velocity U is zero.

Euler-Lagrange Eqn: (d/dτ)∂U = ∂R

-(F+qUν∂ν[A]) = -qUν∂R[Aν]
F = qUν∂R[Aν] - qUν∂ν[A]
F = qUν(∂R[Aν] - ∂ν[A])
Fμ = qUν(∂μ[Aν] - ∂ν[Aμ])
Fμ = qUν(Fμν) = (dPμ/dτ): EoM for EM particle
Lorentz Force Equation

-1

 EM Faraday
Fαβ=∂αAβ-∂βAα

=[   0  , -ej/c]
  [+ei/c,-εij

kbk]
4-Tensor

4-Velocity
U=γ(c,u)

qx

+

(dPμ/dτ) = Fμ = qUν(Fμν)
Equation of motion
for charged particle

∂U∙U=4
SpaceTime
Dimension

index lower

..[PT∙R]

..∫[P
T
∙dR]

..[-Saction]

H + L = (p
T
∙u)

Ho + Lo = 0

ProperTime
Derivative

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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γ = 1/Sqrt[1-β·β]: Relativistic Gamma Identity
( γ - 1/γ ) = ( γβ·β ): Manipulate into this form… still an identity
γ(PT·U) + -(PT·U)/γ = ( γβ·β )(PT·U)
γ(PT·U) + -(PT·U)/γ = (pT·u) 
{    H   } + {    L     } = (pT·u): The Hamiltonian/Lagrangian connection

H = γHo = γ(PT·U)   = γ((P+qA)·U)   = The Hamiltonian with minimal coupling 
L = Lo/γ = -(PT·U)/γ = -((P+qA)·U)/γ = The Lagrangian with minimal coupling 
 
Ho = (PT·U) = -Lo = (U·PT): Rest Hamiltonian = Total RestEnergy 
Lo = -(PT·U) = -Ho

(d/dτ)∂U[Lo] = ∂R[Lo]

4-Velocity is ProperTime 
Derivative of 4-Position 
U = (d/dτ)R   [m/s] = [1/s]*[m] 
 
Relativistic Euler-Lagrange Eqn 
∂R = (d/dτ)∂U   [1/m] = [1/s]*[s/m]

∂/∂R = (d/dτ)∂/∂U 
∂[L]/∂R = (d/dτ)∂[L]/∂U 
 
Classical limit, spatial component 
∂[L]/∂r = (d/dt)∂[L]/∂u 
∂[L]/∂x = (d/dt)∂[L]/∂u

FEM = γq{ (u·e)/c, (e) + (u⨯b) }
e = (-∇φ - ∂ta) and b = [∇  ⨯ a]

If a~0, then f = -q∇φ = -∇U, the force is neg grad of a potential

Relativistic Rest Lagrangian 
Euler-Lagrange 

Equations of Motion

SRQM Diagram:
Relativistic Euler-Lagrange Equation 

Equation of Motion (EoM) for EM particle

(d/dτ)∂U[Lo] = ∂R[Lo]

Rest
Lagrangian Lo

= -(PT·U)
= -(P+qA)·U
= -P·U-qA·U

(d/dτ)∂U[Lo]
= (d/dτ)[-PT]

= -(d/dτ)[P+qA]
= -(F+q(d/dτ)[A])
= -(F+qU·∂[A])

= -(Fα+qUβ∂β[Aα])

∂R[Lo]
= ∂R[-PT·U]

= -∂R[(P+qA)·U]
= (0) + -q∂R[A·U]

= -q∂R[UβAβ]
= -qUβ∂α[Aβ]

-(Fα+qUβ∂β[Aα]) = -qUβ∂α[Aβ] 
(Fα+qUβ∂β[Aα]) = qUβ∂α[Aβ]
Fα = qUβ∂α[Aβ] - qUβ∂β[Aα]
Fα = qUβ(∂α[Aβ] - ∂β[Aα])

Fα = qUβ(Fαβ)
Lorentz Force Equation

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

4-Velocity
U=γ(c,u)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

ProperTime 
U∙∂=d/dτ=γd/dt

Derivativex

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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Relativistic Rest Hamiltonian 
Hamilton’s

Equations of Motion

SRQM Diagram:
Relativistic Hamilton’s Equations

Equation of Motion (EoM) for EM particle
γ = 1/Sqrt[1-β·β]: Relativistic Gamma Identity 
( γ - 1/γ ) = ( γβ·β ): Manipulate into this form… still an identity 
γ(PT·U) + -(PT·U)/γ = ( γβ·β )(PT·U) 
γ(PT·U) + -(PT·U)/γ = (pT·u) 
{    H   } + {    L     } = (pT·u): The Hamiltonian/Lagrangian connection 
 
H = γHo = γ(PT·U)   = γ((P+qA)·U)   = The Hamiltonian with minimal coupling 
L = Lo/γ = -(PT·U)/γ = -((P+qA)·U)/γ = The Lagrangian with minimal coupling 
 
Ho = (PT·U) = -Lo = (U·PT): Rest Hamiltonian = Total RestEnergy 
Lo = -(PT·U) = -Ho

 
∂PT

[Ho] = ∂PT
[U·PT] = ∂PT

[U]·PT + U·∂PT
[PT] = 0 + U·∂PT

[PT] = U = d/dτ[X] 
Thus: (d/dτ)[X]  = (∂/∂PT)[Ho] 
∂X[Ho] = ∂X[U·PT] = ∂X[U]·PT + U·∂X[PT] = 0 + U·∂X[PT] = d/dτ[PT] 
Thus: (d/dτ)[PT] = (∂/∂X)[Ho] 

Relativistic Hamilton’s Equations (4-Vector):
(d/dτ)[X]  = (∂/∂PT)[Ho]
(d/dτ)[PT] = (∂/∂X) [Ho]
 
(d/dτ)[X] = γ(d/dt)[X]  = (∂/∂PT)[Ho] = (∂/∂PT)[(PT·U)] = U
(d/dτ)[PT] = γ(d/dt)[PT] = (∂/∂X)[Ho] = (∂/∂X)[(PT·U)] = (∂/∂X)[γ(H-pT·u)] 

Taking just the spatial components: 
γ(d/dt)[x]  = (-∂/∂pT)[Ho] = (-∂/∂pT)[H/γ] {hard}
γ(d/dt)[pT] = (-∂/∂x)[Ho] = (-∂/∂x)[H/γ] {easy because (∂/∂x)[γ]=0}
 
γ2(d/dt)[pT] = (-∂/∂x)[H] 
Take the Classical limit {γ→1} 
 
Classical Hamilton’s Equations (3-vector): 
(d/dt)[x]  = (+∂/∂pT)[H] 
(d/dt)[pT] = (-∂/∂x)[H] 

Sign-flip difference is interaction of (-∂/∂pT) with [1/γ]

(d/dτ)[X] = (∂/∂PT)[Ho]

(d/dτ)[PT] = (∂/∂X)[Ho]

(d/dτ)[X]
= U=γ(c,u)
= 4-Velocity

= P/mo

= (PT-qA)/mo

(∂/∂PT)[Ho]
= (∂/∂PT)[PT·U]

= U=γ(c,u) 
= 4-Velocity

= P/mo

= (PT-qA)/mo

Rest
Hamiltonian Ho

= (PT·U)
= (P+qA)·U
= P·U+qA·U

(d/dτ)[PT]
= (d/dτ)[P+qA]
= [F + q(d/dτ)A]
= [F + q(U·∂)A]

= [Fα + q(Uβ∂β)Aα]

(∂/∂X)[Ho]
= (∂/∂X)[P·U+qA·U]
= [0 + q(∂A/∂X)·U]

= [q∂[A]·U]
= q∂[A]·U

= q∂α[Aβ]Uβ

= q(∂[A]·(PT-qA)/mo

[Fα + q(U
β
∂β)Aα] = q(∂α[Aβ]U

β
 

Fα = q(∂α[Aβ]U
β
 - q(U

β
∂β)Aα 

Fα = q(∂α[Aβ] - ∂βAα)U
β
 

Fα = q(Fαβ)U
β

Lorentz Force Equation

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

4-Position
X=(ct,x)

4-Velocity
U=γ(c,u)

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM
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SRQM Diagram:
EM Lorentz Force Eqn

→ Force = - Grad[Potential]

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂

t
/c,-∇)

4-Force
F=γ(Ė/c,f)

 EM Faraday
Fαβ=∂αAβ-∂βAα

=[   0  , -ej/c]
  [+ei/c,-εij

kbk]
4-Tensor

q

∂∙A=0
Conservation of EM Field

= Lorenz Gauge

 ημν 
∙

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric                   

4-Position
R=(ct,r)

(∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

 U∙∂[..]
 d/dτ[..]

Lorentz EM Force Eqn
{ U∙Fαβ =(1/q)F }

E=mc2

ProperTime 
U∙∂=d/dτ=γd/dt

DerivativeProperTime
Derivative

 U∙∂[..]
 d/dτ[..]

Lorentz EM Force Equation:
Fα = q(Fαβ)U

β

Fα = q(∂αAβ - ∂βAα)U
β

Examine just the spatial components of 4-Force F:
Fi = q(∂iAβ - ∂βAi)U

β

Fi = q(∂iA0 - ∂0Ai)U
0
 + q(∂iAj - ∂jAi)U

j

γf = q(-∇[φ/c] - (∂t/c)a)(γc) + q(-∇[a∙u] - -u∙∇[a])γ
f = q(-∇[φ/c] - (∂t/c)a)(c) + q(u∙∇[a]-∇[a∙u])
f = q(-∇[φ] - ∂ta + u∙∇[a] - ∇[a∙u])
f = q(-∇[φ] - ∂ta + u x b)

Take the limit of {| ∇[φ] |  >> | ∂ta | + | u x b |}
f ~ q(-∇[φ]) = -∇[qφ] = -∇[U]

The Classical Force = -Grad[Potential]
when {| ∇[φ] |  >> | ∂ta | + | u x b |} or when {a = 0}

The majority of non-gravity, non-nuclear potentials dealt with in CM
are those mediated by the EM potential.

ex. Spring Potential { U = kx2/2 }, then { f = -∇[kx2/2] = -kx } Hooke’s Law

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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Speed of all things into the Future

Mass is concentrated Energy, E = mc2

Particle-Wave “Duality” Correlation

Wavelength-Frequency Relation: λf = c for photons

Electric (εo) and Magnetic (μo) EM Field Constants

Relativistic Quantum Wave Equation
Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin 1,mo=0)
Factors to Dirac (spin ½)
Classical-limit (|v|<<c) to Schrödinger
 

Reduced Compton Wavelength: λ
C
= (ћ/moc)

 

GR Black Hole Equation
R

S
 = Schwarzschild Radius

G = GR GravitationalConst, M = BH Mass

GR Einstein Curvature Constant: κ = 8πG/c2

Every Physical 4-Vector has a (c) factor to maintain
equivalent dimensional units across the whole 4-Vector

SRQM: The Speed-of-Light (c)
c2 Invariant Relations (part 1)

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

=(1/cT,n̂/λ)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

Invariant
4-Velocity
Magnitude
U∙U = c2

∂μ[Rν]=ημν 
Minkowski

Metric

 ∂∙R=4
SpaceTime
Dimension

ωo/c2
4-EMVectorPotential

A=(φ/c,a)

Fμν =
∂^A=∂μAν-∂νAμ

EM Faraday
4-Tensor

φo/c2

mo

 Eo/c2

Wave Velocity
v

group
*v

phase
= c2

(∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

εoc2  

1/μo 

ρo

Electric:Magnetic
1/(εoμo ) = c2

U∙U = γ2(c2-u∙u) = c2

(Eo/mo)=(γEo/γmo)=(E/m) = c2

|u * v
phase

|=|v
group

 * v
phase

| = c2

λ2(ω2-ωo
2) = λ2(f2-fo

2) = c2

(1/εoμo) = c2

-(ћ/mo)2(∂∙∂) = c2

(ћ/λ
C
mo)2 = c2

2GM/R
S
 = c2

8πG/κ = c2

(c±1 * scalar, 3-vector)
= 4-Vector

The Speed-of-Light (c) is THE connection
between Time and Space: dR = (cdt,dr)

This physical constant appears in several
seemingly unrelated places. You don’t notice
these cool relations when you set c→1.
Also notice that the set of all these relations
definitely rules out a variable speed-of-light.
(c) is an Invariant Lorentz Scalar constant.

Energy:Mass
E = mc2

Schwarzschild gμν

GR Metric

                M        G
___
R

S

GR Black Hole 
2GM/c2 = R

S

Invariant 4-Gradient
Magnitude

(∂∙∂) = -(moc/ћ)2 = -(1/λ
C
)2

-i

Einstein
de Broglie
P=ћK

Complex
Plane-Waves
K=i∂

EM

 ∂∙A=0
Lorenz
Gauge

Invariant 4-WaveVector
Magnitude K∙K = (ωo/c)2

GR Curvature
κ = 8πG/c2

Lorenz
Gauge
-∂

t
φ/∇∙a = c2

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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SRQM: The Speed-of-Light (c)
c2 Invariant Relations (part 2)

Invariant 4-Velocity
Magnitude U∙U = c2∂μ[Rν]=ημν 

Minkowski
Metric

 Eo/mo = ћωo/mo

= (ћ/λ
C
mo)2

1/εoμo 

Electric:Magnetic
1/(εoμo ) = c2

U∙U = γ2(c2-u∙u) = c2

(Eo/mo)=(γEo/γmo)=(E/m) = c2

|u * v
phase

|=|v
group

 * v
phase

| = c2

λ2(ω2-ωo
2) = λ2(f2-fo

2) = c2

(1/εoμo) = c2

-(ћ/mo)2(∂∙∂) = c2

(ћ/λ
C
mo)2 = c2

2GM/R
S
 = c2

8πG/κ = c2

(c±1 * scalar, 3-vector)
= 4-Vector

Speed of all things into the Future

Mass is concentrated Energy, E = mc2

Particle-Wave “Duality” Correlation

Wavelength-Frequency Relation: λf = c for photons

Electric (εo) and Magnetic (μo) EM Field Constants

Relativistic Quantum Wave Equation
Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin 1,mo=0)
Factors to Dirac (spin ½)
Classical-limit (|v|<<c) to Schrödinger
 

Reduced Compton Wavelength: λ
C
= (ћ/moc)

 

GR Black Hole Equation
R

S
 = Schwarzschild Radius

G = GR GravitationalConst, M = BH Mass

GR Einstein Curvature Constant(mass density form): κ = 8πG/c2

Every Physical 4-Vector has a (c) factor to maintain
equivalent dimensional units across the whole 4-Vector

The Speed-of-Light (c) is THE connection
between Time and Space: dR = (cdt,dr)

This physical constant appears in several
seemingly unrelated places. You don’t notice
these cool relations when you set c→1.
Also notice that the set of all these relations
definitely rules out a variable speed-of-light.
(c) is an Invariant Lorentz Scalar constant.

Energy:Mass
E = mc2

c2

U∙U

P∙P/mo
2

ωo
2/K∙K

Eo
2/P∙P

(ћ/mo)2K∙K

-(ћ/mo)2∂∙∂

 2GM/RS 8πG/κ

 

λ2(ω2-ωo
2)= λ

C

2ωo
2 

= λ2ω2
 (for photon)

|u * v
phase

| =|v
group

 * v
phase

|

-∂
t
φ/∇∙a

in Lorenz Gauge

-S
action,free

/(mo∫dτ)

(e∙b)2/Det[Fμν]

u
photon

2 = u
EMwave

2

R∙R/τ2

dR∙dR/dτ2

 ημν 
∙

GR

SRQM

EM

Waves

ProperTime
Differential

4-Vector
Scalar Product

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM
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The 4-ThermalVector is used in Relativistic Thermodynamics.

My prime motivation for the form of this 4-Vector is
that the probability distributions calculated by
statistical mechanics ought to be covariant functions
since they are based on counting arguments.

F(state) ~ e^-(E/kBT) = e^-(βE), with this β = 1/kBT, (not v/c)

A covariant way to get this is the Lorentz Scalar Product
of the 4-Momentum P with the 4-ThermalVector Θ.
F(state) ~ e^-(P∙Θ) = e^-(Eo/kBTo)

This also gets Boltzmann’s constant (kB) out there with the
other Lorentz Scalars like (c) and (ћ)

see (Relativistic) Maxwell-Jüttner distribution
f [P] = No/(2c(moc)d K[(d+1)/2][mocΘo])*(mocΘo/2π)(d-1)/2 * e-(P∙Θ)

f [P] = No/(2c(moc)3 K[2][mocΘo])*(mocΘo/2π) * e-(P∙Θ)

f [P] = (Θo)No/(4πc(moc)2 K[2][mocΘo]) * e-(P∙Θ)

f [P] = cNo/(4πkBTo(moc)2 K[2][mocΘo] )* e-(P∙Θ)

f [P] = No/(4πkBTomo
2c K[2][moc2/kBTo] )* e-(P∙Θ)

It is possible to find this distribution written in multiple ways because
many authors don’t show constants, which is quite annoying.
Show the damn constants people!
(kB),(c),(ћ) deserve at least that much respect.

SRQM 4-Vector Study:
4-ThermalVector

Relativistic Thermodynamics

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)=moU

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

=(1/cT,n̂/λ)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

∂μ[Rν]=ημν 
Minkowski

Metric

 ∂∙R=4
SpaceTime
Dimension

ωo/c2 4-EMVectorPotential
A=(φ/c,a)

∂μAν-∂νAμ=Fμν 
EM Faraday

4-Tensor

φo/c2

mo

 Eo/c2

(∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

εoc2  

1/μo 

ρo

Electric:Magnetic
1/(εoμo ) = c2

Rest Energy:Mass
E = mc2

Einstein
de Broglie
P=ћK

EM

 ∂∙A=0
Lorenz
Gauge

4-ThermalVector
4-InverseTempMomentum 

Θ=(θ,θ)=(c/kBT,u/kBT)=(θo/c)U

θo/c
1/kBTo

βo

 P∙Θ
=(E/c,p)∙(c/kBT,θ)

=(E/kBT-p∙θ)
=(Eo/kBTo)

Rest Inverse
TemperatureEnergy
β=1/kBT

Rest
AngFrequency

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
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4-Vector SRQM Interpretation
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(1/ћ)

Be careful not to confuse (unfortunate symbol clash):
Thermal β =1/kBT
Relatvisitic β = v/c
These are totally separate uses of (β)
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The 4-ThermalVector is used in Relativistic Thermodynamics.
It can be used in a partial derivation of Unruh-Hawking Radiation (up to a numerical constant).

Let a “Unruh-DeWitt thermal detector” be in the Momentarily-Comoving-Rest-Frame (MCRF)
of a constant spatial acceleration (a), in which |u|→0, γ→1, γ’→0.

4-AccelerationMCRF = AMCRF = AMCRF
μ = (0,a)MCRF

Take the Lorentz Scalar Product with the 4-ThermalVector
AMCRF∙Θ = (0,a)MCRF∙(c/kBT,u/kBT) = (-a∙u/kBT) = Lorentz Scalar Invariant

The (u) here is part of the 4-ThermalVector: the 3-velocity of the thermal radiation. (not from AMCRF)
Let the thermal radiation be photonic:EM in nature, so |u| = c, and in a direction opposing
the acceleration of the “thermal detector”, which removes the minus sign.

(ac/kBT) = Invariant

Use Dimensional Analysis to find appropriate Lorentz Scalar Invariant with same units:
[Invariant Units] = [m/s2]∙[m/s] / [kg∙m2/s2] = [1/kg∙s] ~ c2/ћ

(ac/kBT) = Invariant ~ c2/ћ

Temperature T ~ ћa/kBc, {from EM radiation, only from the dir. of acceleration}

Further methods give the constant of proportionality (1/2π):
TUnruh = ћa/2πkBc {due to constant Minkowski-hyperbolic acceleration}
THawking = ћg/2πkBc {due to gravitational acceleration a=g}

TSR = -ћ(a∙u)/2πkBc2 {correct version from 4-Vector derivation AMCRF∙Θ = 2πc2/ћ}

SRQM 4-Vector Study:
4-ThermalVector

Unruh-Hawking Radiation

4-Momentum
P=(mc,p)=(E/c,p)=moU

4-ThermalVector
4-InverseTempMomentum 

Θ=(θ,θ)=(c/kBT,u/kBT)=(θo/c)U=(1/kBTo)U

 P∙Θ
=(E/c,p)∙(c/kBT,θ)

=(E/kBT-p∙θ)
=(Eo/kBTo)

=Invariant(dimensionless)
Just a number

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM
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4-Vector SRQM Interpretation
of QM
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4-Acceleration
A=Aμ=γ(cγ’,γ’u+γa)

=dU/dτ=d2R/dτ2

 AMCRF∙Θ
=(0,a)MCRF∙(c/kBT,u/kBT)

=(0*c/kBT-a∙u/kBT)
=(-a∙u/kBT)

=Invariant(dim of [1/kg∙s])

~c2/ћ

4-AccelerationMCRF

AMCRF=AMCRF
μ=(0,a)MCRF

4-Velocity
U=γ(c,u)

θo/c
1/kBTo

mo

 Eo/c2

 U∙∂[..]
d/dτ[..]
γd/dt[..]

P∙P=(moc)2=(Eo/c)2

A∙A= -(a)2= -(ao)2

U∙U=(c)2

Θ∙Θ= (c/kBTo)2

Invariant
Distribution Function
Ni = 1/[e^(Ei/kBT) ± 1]

= 1/[e^(Pi∙Θ) ± 1]
(-) → Bose-Einstein
(+) → Fermi-Dirac

Note that the temperature here is relativistically direction-specific, unlike in the 
classical use of temperature.



  

The 4-EntropyVector is used in Relativistic Thermodynamics.

Pure Entropy is a Lorentz Scalar in all frames
   

not finished yet…

Page under construction

SRQM 4-Vector Study:
4-EntropyFlux

Relativistic Thermodynamics

4-Velocity
U=γ(c,u)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]
γd/dt[..]

∂μ[Rν]=ημν 
Minkowski

Metric

 ∂∙R=4
SpaceTime
Dimension

4-EMVectorPotential
A=(φ/c,a)

∂μAν-∂νAμ=Fμν 
EM Faraday

4-Tensor

φo/c2

Eo (∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

4-ChargeFlux
4-CurrentDensity

J=(ρc,j)=ρ(c,u)=qN

εoc2  

1/μo 

ρo

Electric:Magnetic
1/(εoμo ) = c2

EM

 ∂∙A=0
Lorenz
Gauge

Rest Entropy
= Entropy

4-PureEntropyFlux
Sent_pure=S

ent
N

=noS
ent

U

4-HeatEnergyFlux
Q=(ρ

E
c,q)=ρ

E
(c,u)=EoN

noEoU=c2G

S
ent

=kB ln[Ω]
4-HeatEntropyFlux

Sent_heat=(s,s)=S
ent

N+Q/To

Sent_heat=(s,s)=S
ent

N+EoN/To

Sent_heat=(s,s)=no(S
ent

+Eo/To)U

1/To Rest
Energy

Rest Inverse
Temperature

4-NumberFlux
N=(nc,n)=n(c,u)

no
 

Rest Number
Density

qEM
Charge

Rest
Charge
Density

 ∂∙N=0
Conservation
of Particle #

+

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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SRQM Interpretation:
** Transition to QM **

Up to this point, we have basically been exploring the SR aspects of 4-Vectors.

It is now time to show how RQM and QM fit into the works... 

This is SRQM, [ SR → QM ]

RQM & QM are derivable from SR

SRQM: A treatise by John B. Wilson (SciRealm@aol.com)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
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SRQM Basic Idea (part 1)

SR → Relativistic Wave Eqn
The basic idea is to show that Special Relativity plus a few empirical facts lead to Relativistic Wave 
Equations, and thus RQM, without using any assumptions or axioms from Quantum Mechanics.

Start only with the concepts of SR, no concepts from QM
(1) SR provides the ideas of Invariant Intervals and ( c ) as a Physical Constant, as well as:
Poincaré Invariance, Minkowski 4D SpaceTime, ProperTime, and Physical SR 4-Vectors

Note empirical facts which can relate the SR 4-Vectors from the following:
(2a) Elementary matter particles each have RestMass, ( mo ), which can be measured by 
experiment: eg. collision, cyclotrons, Compton Scattering, etc.

(2b) There is a constant, ( ћ ), which can be measured by classical experiment – eg. the 
Photoelectric Effect, the inverse Photoelectric Effect, LED's=Injection Electroluminescence, Duane-
Hunt Law in Bremsstralung, the Watt/Kibble-Balance, etc. All known particles obey this constant.

(2c) The use of complex numbers ( i ) and differential operators { ∂t and ∇ = (∂x,∂y,∂z) } in wave-type 
equations comes from pure mathematics: not necessary to assume any QM Axioms

These few things are enough to derive the RQM Klein-Gordon equation, the most basic of 
the relativistic wave equations.  Taking the low-velocity limit { |v|<<c }(a standard SR technique)
leads to the Schrödinger Equation.

SR → QM

A Tensor Study
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4-Vector SRQM Interpretation
of QM
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SRQM Basic Idea (part 2)

Klein-Gordon RWE implies QM

If one has a Relativistic Wave Equation, such as the Klein-Gordon equation, then 
one has RQM, and thence QM via the low-velocity limit { |v|<<c }.

The physical and mathematical properties of QM, usually regarded as axiomatic, 
are inherent in the Klein-Gordon RWE itself.

QM Principles emerge not from { QM Axioms + SR → RQM },
but from { SR + Empirical Facts → RQM }.

The result is a paradigm shift from the idea of { SR and QM as separate theories } 
to { QM derived from SR } – leading to a new interpretation of QM:
The SRQM or [SR→QM] Interpretation.

GR → (low-mass limit = {curvature ~ 0} limit) → SR
SR → (+ a few empirical facts) → RQM
RQM → (low-velocity limit { |v|<<c }) → QM

The results of this analysis will be facilitated by the use of SR 4-Vectors

SR → QM
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4-Vector SRQM Interpretation
of QM
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SRQM 4-Vector Path to QM

SR 4-Vector Definition
Component Notation

Unites

4-Position R = Rμ = (ct,r) Time, Space
-when & where

4-Velocity U = Uμ = γ(c,u) Lorentz Gamma * (c, Velocity)
-nothing faster than c

4-Momentum P = Pμ = (E/c,p) = (mc,p) Mass:Energy, Momentum
-used in 4-Momenta Conservation
Σ Pfinal = Σ Pinitial

4-WaveVector K = Kμ = (ω/c,k) = (ω/c,ωn̂/v
phase

) Ang. Frequency, WaveNumber
-used in Relativistic Doppler Shift
ωobs=ωemit / [γ(1 - β cos[θ])], k=ω/c for photons

4-Gradient ∂ = ∂μ = (∂t/c,-∇) 
   = (∂t/c,-∂x,-∂y,-∂z)
   = (∂/∂ct,-∂/∂x,-∂/∂y,-∂/∂z)

Temporal Partial, Spatial Partial
-used in SR Continuity Eqns., ProperTime
-eg. ∂∙A = 0 means A is conserved

All of these are standard SR 4-Vectors, which can be found and used in a totally 
relativistic context, with no mention or need of QM.

I want to emphasize that these objects are ALL relativistic in origin. 
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SRQM 4-Vector Invariants

All 4-Vectors have invariant magnitudes, found by taking the scalar product of the 4-Vector with 
itself.  Quite often a simple expression can be found by examining the case when the spatial part is 
zero.  This is usually found when the 3-velocity is zero.  The temporal part is then specified by its 
“rest” value.

For example: P∙P = (E/c)2-p∙p = (Eo/c)2 = (moc)2 
E = Sqrt[ (Eo)2 + p∙p c2 ], from above relation
E = γE

o
                          , using {γ = 1/Sqrt[1-β2] = Sqrt[1+γ2β2]} and {β=v/c}

meaning the relativistic energy E is equal to the relative gamma factor γ * the rest energy E
o

SR 4-Vector Lorentz Invariant What it means in SR...

4-Position R∙R = (ct)2 - r∙r = (cto)2 = (cτ)2 SR Invariant Interval

4-Velocity U∙U = γ2(c2 - u∙u) = c2 Events move into future at magnitude c

4-Momentum P∙P = (E/c)2 - p∙p = (Eo/c)2 Einstein Mass:Energy Relation

4-WaveVector K∙K = (ω/c)2 - k∙k = (ωo/c)2 Dispersion Invariance Relation

4-Gradient ∂∙∂ = (∂t/c)2 - ∙∇ ∇ = (∂τ/c)2 The d'Alembert Operator
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SR + A few empirical facts:
SRQM Overview

SR 4-Vector Empirical Fact SI Dimensional Units

4-Position R = (ct,r); alt. X = (ct,x) R = <Event>; alt. X [m]

4-Velocity U = γ(c,u) U = dR/dτ [m/s]

4-Momentum P = (E/c,p) = (mc,p) P = moU [kg∙m/s]

4-WaveVector K = (ω/c,k) K = P/ħ [{rad}/m]

4-Gradient ∂ = (∂t/c,-∇) ∂ = -iK [1/m]

The Axioms of SR, which are actually GR limiting-cases, lead us to the use of Minkowski Space
and Physical 4-Vectors, which are elements of Minkowski Space (4D SpaceTime).

Empirical Observation leads us to the transformation relations between the components of these
SR 4-Vectors, and to the chain of relations between the 4-Vectors themselves

These relations all turn out to be Lorentz Invariant Constants, whose values are measured empirically.

The combination of these SR objects and their relations is enough to derive RQM.
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SRQM: The [SR→QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Physical Constant lead to SR,
although technically SR is itself the Minkowski-SpaceTime low-curvature:”flat” limiting-case of GR.
{c,τ,mo,ћ,i} = {c:SpeedOfLight, τ:ProperTime, mo:RestMass, ћ:DiracConstant, i:ImaginaryNumber√[-1]}:
are all Empirically Measured SR Lorentz Invariants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants 
4-Position R = (ct,r) = <Event>   (R∙R) = (cτ)2

4-Velocity U = γ(c,u) = (U∙∂)R=(d/dτ)R=dR/dτ   (U∙U) = (c)2

4-Momentum P = (E/c,p) = moU (P∙P) = (moc)2

4-WaveVector K = (ω/c,k) = P/ħ (K∙K) = (moc/ħ)2  |v|<<c

4-Gradient ∂ = (∂
t
/c,-∇) = -iK   (∂∙∂) = -(moc/ħ)2 = KG Eqn:Relation→RQM→QM

SR + Empirically Measured Physical Constants lead to RQM via the Klein-Gordon Quantum Eqn, and thence to QM
via the low-velocity limit { |v| << c }, giving the Schrödinger Eqn. This fundamental KG relation also leads to the other
Quantum Wave Equations: RQM RQM QM

{ |v| = c : mo = 0 } { 0 <= |v| < c : mo > 0 } { 0 <= |v| << c : mo > 0 }
spin=0 field=4-Scalar: Free Scalar Wave Klein-Gordon Schrödinger (regular QM)
spin=1/2 field=4-Spinor: Weyl Dirac (w/ EM) Pauli (w/ EM)
spin=1 field=4-Vector: Maxwell (EM) Proca

SRQM Chart:
SR→QM Interpretation Simplified

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)
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SRQM Diagram:
RoadMap of SR (4-Vectors)

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
K=(ω/c,k)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

=<Event>

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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SRQM Diagram:
RoadMap of SR (Connections)

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
K=(ω/c,k)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

=<Event>∂μ[Rν]=ημν 
Minkowski

Metric

-∂[Φ
phase,free

]=K

-∂[Φ
phase

]=K
T

   -K∙R=Φ
phase,free

 

-K
T
∙R=Φ

phase

SR Phase

    -P∙R=S
action,free

 -PT∙R=S
action

SR Action

 ∂∙R=4
SpaceTime

Dim

-∂[S
action,free

]=P

-∂[S
action

]=P
T

∂ν[Rμ’]=Λμ’
ν 

Lorentz
Transform

Hamilton-
  Jacobi
PT = -∂[S]

Plane-Waves
KT = -∂[Φ]

ProperTime
U∙∂=d/dτ=γd/dt

Derivative

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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4-Gradient=Alteration of SR <Events> 
SR SpaceTime Dimension=4 
SR SpaceTime 4D Metric 
SR Lorentz Transforms 
SR Action → 4-Momentum 
SR Phase → 4-WaveVector 
SR Proper Time 
SR & QM Waves

SRQM Diagram:
RoadMap of SR (Free Particle)

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
K=(ω/c,k)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

=<Event>
  U∙∂[..]
γd/dt[..]
 d/dτ[..]

∂μ[Rν]=ημν 
Minkowski

Metric

-∂[Φ
phase,free

]=K

-∂[Φ
phase

]=K
T

   -K∙R=Φ
phase,free

 

-K
T
∙R=Φ

phase

SR Phase

    -P∙R=S
action,free

 -PT∙R=S
action

SR Action

 ∂∙R=4
SpaceTime

Dim

ωo/c2

-∂[S
action,free

]=P

-∂[S
action

]=P
T

mo

 Eo/c2
Einstein 

E = mc2 = γmoc2

ProperTime
Derivative

∂ν[Rμ’]=Λμ’
ν 

Lorentz
Transform

ωo/Eo

Hamilton-
  Jacobi
PT = -∂[S] Wave Velocity

v
group

*v
phase

=c2Plane-Waves
KT = -∂[Φ]

ProperTime
U∙∂=d/dτ=γd/dt

Derivative

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR Wave <Events> have 
4-WaveVector=Substantiation 
oscillations proportional to 
mass:energy & 3-momentum

SR Particle <Events> have 
4-Momentum=Substantiation 
 mass:energy & 3-momentum

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

<Events> have 4-Velocity=Motion 
in SR SpaceTime as both
particles & waves

SR → QM
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4-Vector SRQM Interpretation
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4-Gradient=Alteration of SR <Events> 
SR SpaceTime Dimension=4 
SR SpaceTime 4D Metric 
SR Lorentz Transforms 
SR Action → 4-Momentum 
SR Phase → 4-WaveVector 
SR Proper Time 
SR & QM Waves

SRQM Diagram:
RoadMap of SR (Free Particle)

with Magnitudes

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
K=(ω/c,k)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

=<Event>
  U∙∂[..]
γd/dt[..]
 d/dτ[..]

∂μ[Rν]=ημν 
Minkowski

Metric

-∂[Φ
phase,free

]=K

-∂[Φ
phase

]=K
T

   -K∙R=Φ
phase,free

 

-K
T
∙R=Φ

phase

SR Phase

    -P∙R=S
action,free

 -PT∙R=S
action

SR Action

 ∂∙R=4
SpaceTime

Dim

ωo/c2

-∂[S
action,free

]=P

-∂[S
action

]=P
T

mo

 Eo/c2
Einstein 

E = mc2 = γmoc2

ProperTime
Derivative

∂ν[Rμ’]=Λμ’
ν 

Lorentz
Transform

 

R∙R = (ct)2-r∙r
= (cτ)2  

U∙U = γ2(c2-u∙u)
= (c)2

P∙P = (E/c)2-p∙p

= (moc)2 = (Eo/c)2 

ωo/Eo

Hamilton-
  Jacobi
PT = -∂[S] Wave Velocity

v
group

*v
phase

=c2Plane-Waves
KT = -∂[Φ]

ProperTime
U∙∂=d/dτ=γd/dt

Derivative

d’Alembertian 
Free Particle 
Wave Equation 

∂∙∂ = (∂t/c)2- ∙∇ ∇
= (∂τ/c)2

K∙K = (ω/c)2-k∙k

= (ωo/c)2

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR Wave <Events> have 
4-WaveVector=Substantiation 
oscillations proportional to 
mass:energy & 3-momentum

SR Particle <Events> have 
4-Momentum=Substantiation 
 mass:energy & 3-momentum

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

<Events> have 4-Velocity=Motion 
in SR SpaceTime as both
particles & waves

SR → QM
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4-Gradient=Alteration of SR <Events> 
SR SpaceTime Dimension=4 
SR SpaceTime 4D Metric 
SR Lorentz Transforms 
SR Action → 4-Momentum 
SR Phase → 4-WaveVector 
SR Proper Time 
SR & QM Waves

SRQM Diagram:
RoadMap of SR (EM Potential)

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
K=(ω/c,k)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

=<Event>
  U∙∂[..]
γd/dt[..]
 d/dτ[..]

∂μ[Rν]=ημν 
Minkowski

Metric

-∂[Φ
phase,free

]=K

-∂[Φ
phase

]=K
T

   -K∙R=Φ
phase,free

 

-K
T
∙R=Φ

phase

SR Phase

    -P∙R=S
action,free

 -PT∙R=S
action

SR Action

 ∂∙R=4
SpaceTime

Dim

ωo/c2

4-EMVectorPotential
A=(φ/c,a)

4-PotentialMomentum
Q=(V/c,q)=q(φ/c,a)

q

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=((E+qφ)/c,p+qa)

+

EM Faraday
∂μAν-∂νAμ=Fμν 

4-Tensor

φo/c2

-∂[S
action,free

]=P

-∂[S
action

]=P
T

mo

 Eo/c2
Einstein 

E = mc2 = γmoc2

EM

EM
Charge

∂ν[Rμ’]=Λμ’
ν 

Lorentz
Transform

 

R∙R = (ct)2-r∙r
= (cτ)2  

U∙U = γ2(c2-u∙u)
= (c)2

P∙P = (E/c)2-p∙p
= (P

T
-qA)∙(P

T
-qA)

= (moc)2 = (Eo/c)2 

ωo/Eo Minimal Coupling
P = (P

T
-qA) = (P

T
-Q)

Hamilton-
  Jacobi
PT = -∂[S] Wave Velocity

v
group

*v
phase

=c2Plane-Waves
KT = -∂[Φ]

4-TotMom Conservation
P

T
 = (P+Q) = (P+qA)

ProperTime
U∙∂=d/dτ=γd/dt

Derivative

d’Alembertian 
Particle 
Wave Equation 
in EM Potential

∂∙∂ = (∂t/c)2- ∙∇ ∇
= (∂τ/c)2

K∙K = (ω/c)2-k∙k
= (K

T
-(qωo/Eo)A)∙(K

T
-(qωo/Eo)A)

= (ωo/c)2

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

ProperTime
Derivative

SR Wave <Events> have 
4-WaveVector=Substantiation 
oscillations proportional to 
mass:energy & 3-momentum

SR Particle <Events> have 
4-Momentum=Substantiation 
 mass:energy & 3-momentum

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

<Events> have 4-Velocity=Motion 
in SR SpaceTime as both
particles & waves
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4-Gradient=Alteration of SR <Events> 
SR SpaceTime Dimension=4 
SR SpaceTime 4D Metric 
SR Lorentz Transforms 
SR Action → 4-Momentum 
SR Phase → 4-WaveVector 
SR Proper Time 
SR & QM Waves

SRQM Diagram: 
Special Relativity → Quantum Mechanics 

RoadMap of SR→QM (EM Potential)

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
K=(ω/c,k)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

=<Event>
  U∙∂[..]
γd/dt[..]
 d/dτ[..]

SR Wave <Events> have 
4-WaveVector=Substantiation 
oscillations proportional to 
mass:energy & 3-momentum

∂μ[Rν]=ημν 
Minkowski

Metric

-∂[Φ
phase,free

]=K

-∂[Φ
phase

]=K
T

   -K∙R=Φ
phase,free

 

-K
T
∙R=Φ

phase

SR Phase

    -P∙R=S
action,free

 -PT∙R=S
action

SR Action

 ∂∙R=4
SpaceTime

Dim

ωo/c2

4-EMVectorPotential
A=(φ/c,a)

4-PotentialMomentum
Q=(V/c,q)=q(φ/c,a)

q

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=((E+qφ)/c,p+qa)

+

SR Particle <Events> have 
4-Momentum=Substantiation 
 mass:energy & 3-momentum

SR → RQM Klein-Gordon
Relativistic Quantum
Particle in EM Potential
d’Alembertian Wave Equation

Limit: { |v|<<c }
(iħ∂tT) ~ [ qφ + (moc2) + (iħ∇T+qa)2/(2mo) ]
(iħ∂tT) ~ [ V + (iħ∇T+qa)2/(2mo) ]
with potential V = qφ + (moc2)
=Schrödinger QM Equation (EM potential) 
**[ SR → QM ]**

EM Faraday
∂μAν-∂νAμ=Fμν 

4-Tensor

φo/c2

-∂[S
action,free

]=P

-∂[S
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]=P
T

mo

 Eo/c2
Einstein    
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Einstein, de Broglie
P = ћK
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ProperTime
Derivative
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Lorentz
Transform

 

R∙R = (ct)2-r∙r
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= (∂T+(iq/ћ)A)∙(∂T+(iq/ћ)A)

= -(ωo/c)2 = -(moc/ћ)2

= (∂τ/c)2
( -i )

ωo/Eo

( 1/ћ )

Existing SR Rules
 Quantum Principles 

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

Minimal Coupling
P = (P

T
-qA) = (P

T
-Q)

<Events> have 4-Velocity=Motion 
in SR SpaceTime as both
particles & waves

Hamilton-
  Jacobi
PT = -∂[S] Wave Velocity

v
group

*v
phase

=c2Complex
Plane-Waves

KT = -∂[Φ]

4-TotMom Conservation
P

T
 = (P+Q) = (P+qA)

ProperTime
U∙∂=d/dτ=γd/dt

Derivative

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
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SRQM: The Empirical 4-Vector Facts

SR 4-Vector Empirical Fact Discoverer Physics

4-Position R = <Event>
Newton+
Einstein

[ t & r]        Time & Space Dimensions
[ R=(ct,r) ]  SpaceTime

4-Velocity U = dR/dτ
Newton
Einstein

[ v=dr/dt ]               Calculus of motion
[ U=γ(c,u)=dR/dτ ]  Gamma & Proper Time

4-Momentum P = moU
Newton
Einstein

[ p=mv ]                Classical Mechanics
[ P=(E/c,p)=moU ]  SR Mechanics

4-WaveVector K = P/ħ
Planck
Einstein
de Broglie

[ h ]              Thermal Distribution
[ E=hν=ħω ] Photoelectric Effect (ħ=h/2π)
[ p=ħk ]        Matter Waves

4-Gradient ∂ = -iK Schrödinger [ ω=i∂t, k=-i∇ ]  (SR) Wave Mechanics

(1) The SR 4-Vectors and their components are related to each other via constants
(2) We have not taken any 4-vector relation as axiomatic, the constants come from experiment.
(3) c, τ, mo, ħ come from physical experiments, (-i) comes from the general mathematics of waves

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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The SRQM 4-Vector Relations Explained

SR 4-Vector Empirical
Fact

What it means in SRQM... Lorentz
Invariant

4-Position R = (ct,r) R = 
<Event>

SpaceTime as Unified Concept c = LightSpeed

4-Velocity U = γ(c,u) U = dR/dτ Velocity is ProperTime Derivative τ = to = ProperTime

4-Momentum P = (E/c,p) P = moU Mass:Energy-Momentum Equivalence mo = RestMass

4-WaveVector K = (ω/c,k) K = P/ħ Wave-Particle Duality ħ = UniversalAction

4-Gradient ∂ = (∂t/c,-∇) ∂ = -iK Unitary Evolution, Operator Formalism i = ComplexSpace

Three old-paradigm QM Axioms:
Particle-Wave Duality [(P)=ħ(K)], Unitary Evolution [∂=(-i)K], Operator Formalism [(∂)=-iK] are actually just empirically-found constant 
relations between known SR 4-Vectors.
Note that these constants are in fact all Lorentz Scalar Invariants.

Minkowski Space and 4-Vectors also lead to idea of Lorentz Invariance. A Lorentz Invariant is a quantity that always has the same value, 
independent of the motion of inertial observers. 
Lorentz Invariants can typically be derived using the scalar product relation. 
U∙U = c2,  U∙∂ = d/dτ ,  P∙U = moc2, etc. 
 
A very important Lorentz invariant is the Proper Time τ, which is defined as the time displacement between two points on a worldline that is 
at rest wrt. an observer.  It is used in the relations between 4-Position R, 4-Velocity U = dR/dτ, and 4-Acceleration A = dU/dτ.

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SRQM: The SR Path to RQM
Follow the Invariants...

SR 4-Vector Lorentz Invariant What it means in SRQM...

4-Position R∙R = (ct)2 - r∙r = (cτ)2 SR Invariant Interval

4-Velocity U∙U = γ2(c2 - u∙u) = c2 Events move into future at magnitude c

4-Momentum P∙P = (moc)2 Einstein Mass:Energy Relation

4-WaveVector K∙K = (moc/ħ)2 = (ωo/c)2 Matter-Wave Dispersion Relation

4-Gradient ∂∙∂ = (-imoc/ħ)2 = -(moc/ħ)2 The Klein-Gordon Equation → RQM!

U = dR/dτ
Remember, everything after 4-Velocity was just a constant times the last 4-vector, 
and the Invariant Magnitude of the 4-Velocity is itself a constant
P = moU, K = P/ħ, ∂ = -iK , so e.g. P∙P = moU∙moU = mo

2U∙U = (moc)2 

The last equation is the Klein-Gordon RQM Equation, which we have just derived without 
invoking any QM axioms, only SR plus a few empirical facts

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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SRQM: Some Basic 4-Vectors
4-Momentum, 4-WaveVector,

4-Position, 4-Velocity, 4-Gradient, Wave-Particle

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

P=-∂[S
action,free

]

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

K=-∂[Φ
phase,plane

]

Treating motion like a particle
Moving particles have a 4-Velocity
4-Momentum is the negative 4-Gradient of the SR Action (S)

Treating motion like a wave
Moving waves have a 4-Velocity
4-WaveVector is the negative 4-Gradient of the SR Phase (Φ)

↓ ωo/Eo = (1/ћ)
or

↑ Eo/ωo = ( ћ) 

4-Gradient
∂=(∂

t
/c,-∇)→(∂

t
/c,-∂

x
,-∂

y
,-∂

z
)

See Hamilton-Jacobi Formulation of Mechanics 
for info on the Lorentz Scalar Invariant SR Action.
{ P = (E/c,p) = -∂[S] = (-∂/c∂t[S],∇[S]) }
{temporal component} E = -∂/∂t[S] = -∂

t
[S]

{spatial component} p = ∇[S]
**Note** This is the Action (Saction) for a free particle.
Generally Action is for the 4-TotalMomentum PT of a system.

..[-S
action,free

]

..[-Φ
phase,plane

]

4-Position
R=(ct,r)

∫P∙dR = -S
action,free

∫K∙dR = -Φ
phase,plane

mo

 Eo/c2

ωo/c2

U∙U = (c)2

P∙P = (moc)2= (Eo/c)2

K∙K = (ωo/c)2

d’Alembertian 
∂∙∂ = (∂

t 
/c)2 -∇∙∇ = (∂

τ 
/c)2

Rest Mass:Energy
E=mc2

RestAngFrequency
Wave Velocity
v

group
*v

phase
=c2

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

SpaceTime

∂∙R=4
Dimension

ProperTime

U∙∂=d/dτ=γd/dt
Derivative

P=-∂[S
action,free

]

K=-∂[Φ
phase,plane

]

See SR Wave Definition 
for info on the Lorentz Scalar Invariant SR WavePhase.
{ K = (ω/c,k) = -∂[Φ] = (-∂/c∂t[Φ],∇[Φ]) }
{temporal component} ω = -∂/∂t[Φ] = -∂

t
[Φ]

{spatial component} k = ∇[Φ]
**Note** This is the Phase (Φ) for a single plane-wave.
Generally WavePhase is for the 4-TotalWaveVector KT of a system.

P∙U = Eo

 K∙U = ωo

Einstein
de Broglie
P = ћK 

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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SRQM: Wave-Particle
Diffraction/Interference Types

The 4-Vector Wave-Particle relation is inherent in all particle types: Einstein-de Broglie P = (E/c,p) = ћK = ћ(ω/c,k).

All waves can diffract: Water waves, gravitational waves, photonic waves of all frequencies, etc.
In all cases: experiments using single particles build the diffraction/interference pattern over the course many iterations.

Photon/light Diffraction: Photonic particles diffracted by matter particles.
Photons of any frequency encounter a “solid” object or grating.
Most often encountered are diffraction gratings and the famous double-slit experiment

Matter Diffraction: Matter particles diffracted by matter particles.
Electrons, neutrons, atoms, small molecules, buckyballs (fullerenes), macromolecules, etc.
have been shown to diffract through crystals.
Crystals may be solid single pieces or in powder form.

Kapitsa-Dirac Diffraction: Matter particles diffracted by photonic standing waves.
Electrons, atoms, super-sonic atom beams have been diffracted from resonant standing waves of light.

Photonic-Photonic Diffraction?: Delbruck scattering
Light-by-light scattering/two-photon physics/gamma-gamma physics.
Normally, photons do not interact, but at high enough relative energy, virtual particles can form which allow interaction.

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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4-Momentum
P=(mc,p)=(E/c,p)

P=-∂[S
action,free

]

4-WaveVector
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

K=-∂[Φ
phase,plane

]

↓ ωo/Eo = (1/ћ)
or

↑ Eo/ωo = ( ћ) 

P∙P = (moc)2= (Eo/c)2

Einstein
de Broglie
P = ћK 

K∙K = (ωo/c)2



  

Hold on, aren't you getting the “ħ” from 
a QM Axiom?

ħ is actually an empirically measurable quantity, just like e or c.  It can be measured classically from the photoelectric effect, the inverse photoelectric 
effect, from LED's (injection electroluminescence), from the Duane-Hunt Law in Bremsstrahlung, Electron Diffraction in crystals, the Watt/Kibble-
Balance, etc.

For the LED experiment, one uses several different LED's, each with its own characteristic wavelength.
One then makes a chart of wavelength (λ) vs threshold voltage (V) needed to make each individual LED emit.
One finds that: {λ = h*c/(eV)}, where e=ElectronCharge and c=LightSpeed. h is found by measuring the slope.
Consider this as a blackbox where no assumption about QM is made. However, we know the SR relations {E = eV}, and {λf = c}.
The data force one to conclude that {E = hf = ћω}.
Applying our 4-Vector knowledge, we recognize this as the temporal components of a 4-Vector relation. (E/c,...) = ћ(ω/c,...)
Due to manifest tensor invariance, this means that 4-Momentum P = (E/c,p) = ћK = ћ(ω/c,k) = ћ*4-WaveVector K.

The spatial component (due to De Broglie) follows naturally from the temporal component (due to Einstein) via to the nature of 4-Vector mathematics.

This is also derivable from pure SR 4-Vector (Tensor) arguments: P = moU = (Eo/c2)U and K = (ωo/c2)U
Since P and K are both Lorentz Scalar proportional to U, then by the rules of tensor mathematics, P must also be Lorentz Scalar proportional to K.  
i.e. Tensors obey certain mathematical structures:
Transitivity{if a~b and b~c, then a~c} & Euclideaness: {if a~c and b~c, then a~b} **Not to be confused with the Euclidean Metric**

This invariant proportional constant is empirically measured to be (ћ) for each known particle type, massive (mo>0) or massless (mo=0):
P = moU = (Eo/c2)U = (Eo/c2)/(ωo/c2)K = (Eo/ωo)K = (γEo/γωo)K = (E/ω)K = (ћ)K

SR 4-Vector SR Empirical Fact What it means...

4-WaveVector K = (ω/c,k) = (ω/c,ωn̂/v
phase

) = (ωo/c2)U Wave-Particle Duality
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Hold on, aren't you getting the “K” from 
a QM Axiom?

K is a standard SR 4-Vector, used in generating the SR formulae:

Relativistic Doppler Effect:
ωobs = ωemit / [γ(1 - β cos[θ])],       k = ω/c for photons

Relativistic Aberration Effect: 
cos[θ

obs
] = (cos[θ

emit
] + |β|) / (1 + |β|cos[θ

emit
]) 

The 4-WaveVector K can be derived in terms of periodic motion, where families of 
surfaces move through space as time increases, or alternately, as families of 
hypersurfaces in SpaceTime, formed by all events passed by the wave surface. The 
4-WaveVector is everywhere in the direction of propagation of the wave surfaces.

K = -∂[Φ
phase

]

From this structure, one obtains relativistic/wave optics without ever mentioning QM.

SR 4-Vector SR Empirical Fact What it means...

4-WaveVector K = (ω/c,k) = (ω/c,ωn̂/v
phase

) = (ωo/c2)U Wave-Particle Duality
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Hold on, aren't you getting the “-i” from 
a QM Axiom? 

SR 4-Vector SR Empirical Fact What it means...

4-Gradient ∂ = (∂t/c,-∇) = -iK Unitary Evolution of States
Operator Formalism

[∂ = -iK] gives the sub-equations [∂t = -iω] and [∇ = ik], and is certainly the main equation that 
relates QM and SR by allowing Operator Formalism.  But, this is a basic equation regarding the 
general mathematics of plane-waves; not just quantum-waves, but anything that can be 
mathematically described by plane-waves and superpositions of plane-waves…
This includes purely SR waves, an example of which would be EM plane-waves (i.e. photons)...

ψ(t,r) = ae^[i(k∙r-ωt)]: Standard mathematical plane-wave equation

∂t[ψ(t,r)] = ∂t[ae^[i(k∙r-ωt)] ] = (-iω)[ae^[i(k∙r-ωt)] ] = (-iω)ψ(t,r), or [∂t = -iω]
∇[ψ(t,r)] = ∇[ae^[i(k∙r-ωt)] ] = (ik)[ae^[i(k∙r-ωt)] ] = (ik)ψ(t,r), or [∇ = ik] 

In the more economical SR notation:
∂[ψ(R)] = ∂[ae^(-iK∙R)] = (-iK)[ae^(-iK∙R)] = (-iK)ψ(R), or [∂ = -iK]

This one is more of a mathematical empirical fact, but regardless, it is not axiomatic.
It can describe purely SR waves, again without any mention of QM.
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4-Vector SRQM Interpretation
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Hold on, aren't you getting the “∂” from 
a QM Axiom? 

SR 4-Vector SR Empirical Fact What it means...

4-Gradient ∂ = (∂t/c,-∇) = -iK 4D Gradient Operator

[∂ = (∂t/c,-∇)] is the SR 4-Vector Gradient Operator.  It occurs in a purely relativistic context 
without ever mentioning QM.

∂∙X = (∂t/c,-∇)∙(ct,x) = (∂t/c[ct] - (-∇∙x)) = (∂t[t] + ∇∙x) (1)+(3) = 4
The 4-Divergence of the 4-Position (∂∙X = ∂μημνX

ν)gives the dimensionality of SpaceTime.

∂[X] = (∂t/c,-∇)(ct,x) = (∂t/c[ct],-∇[x]) = Diag[1,-1] = ημν

The 4-Gradient acting on the 4-Position (∂[X] = ∂μ[Xν]) gives the Minkowski Metric Tensor

∂∙J = (∂t/c,-∇)∙(ρc,j) = (∂t/c[ρc]- (-∇∙j)) = (∂t[ρ] + ∇∙j) = 0
The 4-Divergence of the 4-CurrentDensity is equal to 0 for a conserved current.  It can be 
rewritten as (∂t[ρ] = - ∇∙j), which means that the time change of ChargeDensity is balanced 
by the space change or divergence of CurrentDensity.  It is a Continuity Equation, giving 
local conservation of ChargeDensity.  It is related to Noether's Theorem.

SR → QM
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4-Vector SRQM Interpretation
of QM
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Hold on, doesn’t using “∂” in an
Equation of Motion presume a QM Axiom? 

SR 4-Vector SR Empirical Fact What it means...

4-(Position)Gradient ∂R = ∂ = (∂t/c,-∇) = -iK 4D Gradient Operator

Klein-Gordon Relativistic Quantum Wave Equation
∂∙∂[Ψ] = -(moc/ћ)2[Ψ]= -(ωo/c)2[Ψ]

Relativistic Euler-Lagrange Equations
∂R[L] = (d/dτ)∂U[L]: {particle format} 
∂[Φ][L] = (∂R) ∂[∂R(Φ)][L]: {density format}

[∂ = (∂t/c,-∇)] is the SR 4-Vector (Position)Gradient Operator. 
It occurs in a purely relativistic context without ever mentioning QM.
There is a long history of using the gradient operator on classical physics functions, in this 
case the Lagrangian.  And, in fact, it is another area where the same mathematics is used in 
both classical and quantum contexts.
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The QM Schrödinger Relation
P = iћ∂

This is derived from the 
combination of:

The Einstein-de Broglie Relation 
P = ћK

Complex Plane-Waves 
K = i∂

P = (E/c,p) = iћ∂ = iћ(∂
t
/c,- )∇

{temporal} E = iћ∂
t

{spatial} p = -iћ∇

These are the standard QM
Schrödinger Relations.

It is this Lorentz Scalar Invariant
relation (iћ) which connects the
4-Momentum to the 4-Gradient,
making it into a QM operator.

Note that these 4-Vectors are
already connected in multiple
ways in standard SR.

SRQM Diagram:
RoadMap of SR→QM

QM Schrödinger Relation

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
K=(ω/c,k)

4-Gradient
∂=(∂

t
/c,-∇)

( -i )

4-Position
R=(ct,r)

 U∙∂[..]
d/dτ[..]

ωo/Eo

( 1/ћ )

 U∙∂=d/dτ
Proper Time
Derivative

∂μ[Rν]=ημν 
Minkowski

Metric

-∂[Φ
phase,free

]=K

-∂[Φ
phase

]=K
T

   -K∙R=Φ
phase,free

 

-K
T
∙R=Φ

phase

SR Phase
    -P∙R=S

action,free

 -PT∙R=S
action

SR Action

 ∂∙R=4
SpaceTime
Dimension

ωo/c2 4-EMVectorPotential
A=(φ/c,a)

4-PotentialMomentum
Q=(V/c,q)=q(φ/c,a)

q

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=((E+qφ)/c,p+qa)

+

P
T
 = (P+Q)

P
T
 = (P+qA)

Minimal Coupling
P = (P

T
 - qA)

∂μAν-∂νAμ=Fμν 
EM Faraday

4-Tensor

φo/c2

-∂[S
action,free

]=P

-∂[S
action

]=P
T

mo

 Eo/c2Wave Velocity
v

group
*v

phase
=c2

E=mc2

Einstein
de Broglie
P = ћK
K = P/ћ

Complex
Plane-Waves
K = i∂
∂ = -iK

ProperTime
Derivative

( iћ )

Schrödinger Relation
P = iћ∂

EM
Charge

EM

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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Review of SR 4-Vector Mathematics

4-Gradient ∂ = (∂t/c,-∇)                          ∂∙∂ = (∂t/c)2 - ∙∇ ∇ = -(ωo/c)2

4-Position X = (ct,x)                               X∙X = ((ct)2 - x∙x) = (cto)2 = (cτ)2: Invariant Interval Measure
4-Velocity U = γ(c,u)                              U∙U = γ2(c2 - u∙u) = (c)2

4-Momentum P = (E/c,p) = (Eo/c2)U       P∙P = (E/c)2 - p∙p = (Eo/c)2

4-WaveVector K = (ω/c,k) = (ωo/c2)U     K∙K = (ω/c)2 - k∙k = (ωo/c)2

∂∙X = (∂t/c,-∇)∙(ct,x) = (∂t/c[ct]-(-∇∙x)) = 1-(-3) = 4: Dimensionality of SpaceTime
U∙∂ = γ(c,u)∙(∂t/c,-∇) = γ(∂t+u∙∇) = γ(d/dt) = d/dτ: Derivative wrt. ProperTime is Lorentz Scalar
∂[X] = (∂t/c,-∇)(ct,x) = (∂t/c[ct],-∇[x]) = Diag[1,-1] = ημν: The Minkowski Metric
∂[K] = (∂t/c,-∇)(ω/c,k) = (∂t/c[ω/c],-∇[k]) = [[0]]
K∙X = (ω/c,k)∙(ct,x) = (ωt - k∙x) = φ: Phase of SR Wave
∂[K∙X] = ∂[K]∙X+K∙∂[X] = K = -∂[φ]: Neg 4-Gradient of Phase gives 4-WaveVector

(∂∙∂)[K∙X] = ((∂t/c)2 - ∇∙∇)(ωt - k∙x) = 0
(∂∙∂)[K∙X] = ∂∙(∂[K∙X]) = ∂∙K = 0: Wave Continuity Equation, No sources or sinks

let f = ae^b(K∙X): Standard mathematical plane-waves if { b = -i }
then ∂[f] = (-iK)ae^-i(K∙X) = (-iK)f:  (∂ = -iK): Unitary Evolution, Operator Formalism
and ∂∙∂[f] = (-i)2(K∙K)f = -(ωo/c)2f:
(∂∙∂) = (∂t/c)2 - ∙∇ ∇ = -(ωo/c)2 : The Klein-Gordon Equation → RQM

Note that no QM Axioms are assumed: This is all just pure SR 4-vector (tensor) manipulation
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Review of SR 4-Vector Mathematics

Klein-Gordon Equation: ∂∙∂ = (∂t/c)2 - ∇∙∇ = -(moc/ħ)2 = -(ωo/c)2 = -(1/λC)2

Let XT = (ct+cΔt,x), then ∂[XT] = (∂t/c,-∇)(ct+cΔt,x) = Diag[1,-I(3)] = ∂[X] = ημν 
so ∂[XT] = ∂[X] and ∂[K] = [[0]]
let f = ae^-i(K∙XT), the time translated version
(∂∙∂)[f]
∂∙(∂[f])
∂∙(∂[e^-i(K∙XT)])
∂∙(e^-i(K∙XT)∂[-i(K∙XT)])
-i∂∙(f∂[K∙XT])
-i∂[f]∂[K∙XT])+Ψ(∂∙∂)[K∙XT])
(-i)2f(∂[K∙XT])2 + 0
(-i)2f(∂[K]∙XT + K∙∂[XT])2

(-i)2f(0+K∙∂[X])2

(-i)2f(K)2

-(K∙K)f
-(ωo/c)2f
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What does the Klein-Gordon Equation 
give us?...  A lot of RQM!

Relativistic Quantum Wave Equation: ∂∙∂ = (∂t/c)2 - ∇∙∇ = -(moc/ħ)2 = (imoc/ħ)2 = -(ωo/c)2

The Klein-Gordon Eqn is itself the Relativistic Quantum Equation for spin=0 particles (Scalars)
Factoring the KG Eqn leads to the RQM Dirac Equation for spin=1/2 particles (Spinors)
Applying the KG Eqn to a SR 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)

Taking the low-velocity-limit of the KG leads to the standard QM non-relativistic Schrödinger Eqn, for spin=0
Taking the low-velocity-limit of the Dirac leads to the standard QM non-relativistic Pauli Eqn, for spin=1/2

Setting RestMass {mo → 0} leads to the RQM Free Wave, Weyl, and Free Maxwell Eqns

In all of these cases, the equations can be modified to work with various potentials by using more
SR 4-Vectors, and more empirically found relations between them, e.g. the Minimal Coupling Relations:
4-TotalMomentum P

tot
 = P + qA, where P is the particle 4-Momentum, (q) is a charge, and A is a 4-VectorPotential, 

typically the 4-EMVectorPotential.

Also note that generating QM from RQM (via a low-energy limit) is much more natural than attempting to “relativize or 
generalize” a given NRQM equation.  Facts assumed from a non-relativistic equation may or may not be applicable to 
a relativistic one, whereas the relativistic facts are still true in the low-velocity limiting-cases.  This leads to the idea 
that QM is an approximation only of a more general RQM, just as SR is an approximation only of GR.
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Relativistic Quantum Wave Eqns.

Spin-(Statistics)
Bose-Einstein=n
Fermi-Dirac=n/2

Relativistic Light-like
Mass = 0

Relativistic Matter-like
Mass > 0

Non-Relativistic Limit (|v|<<c)
Mass >0

Field
Representation

0-(Boson) Free Wave
N-G Bosons

(∂·∂)Ψ = 0

Klein-Gordon
Higgs Bosons, maybe Axions

(∂·∂ + (moc/ћ)2 )Ψ = [∂μ+imoc/ћ][∂μ-imoc/ћ]Ψ =0

with minimal coupling
((iħ∂t -qφ)2 -(moc2)2 - c2(-iħ∇ -qa)2)Ψ = 0

?Axions? are KG with EM invariant src term
(∂·∂ + (mao)2 )Ψ = -κe·b = -κcSqrt[Det[Fμν]]

L = (-ћ2/mo)∂μΨ*∂νΨ-moc2Ψ*Ψ

Schrödinger
Common NRQM Systems

( iћ∂t+[ћ2∇2/2mo-V])Ψ = 0

with minimal coupling
(iћ∂t – qφ -[(p-qa)2]/2mo)Ψ = 0

Scalar
(0-Tensor)
Ψ = Ψ[KμXμ]
= Ψ[Φ]

1/2-(Fermion) Weyl
Idealized Matter Neutinos

(σ·∂)Ψ = 0

factored to 
Right & Left Spinors
(σ·∂)ΨR = 0, (σ·∂)ΨL = 0

L = iΨ†
Rσμ∂μΨR , L = iΨ†

Lσμ∂μΨL

Dirac
Matter Leptons/Quarks

(iγ·∂ - moc/ћ)Ψ = 0

(γ·∂ + imoc/ћ)Ψ = 0

with minimal coupling
(iγ·(∂+iqA) - moc/ћ)Ψ = 0

L = iћcΨγμ∂μΨ- moc2ΨΨ

Pauli
Common NRQM Systems w Spin

(iћ∂t – [(σ·p)2]/2mo)Ψ = 0

with minimal coupling
(iћ∂t - qφ – [(σ·(p-qa))2]/2mo)Ψ = 0

Spinor
Ψ = Ψ[KμXμ]
= Ψ[Φ]

1-(Boson) Maxwell
Photons/Gluons

(∂·∂)A = 0   free

(∂·∂)A = μoJ  w current src
where ∂·A = 0

(∂·∂)A = μoeΨγνΨ  QED

Proca
Force Bosons

(∂·∂ + (moc/ћ)2 )A = 0
where ∂·A = 0

∂μ(∂μAν-∂νAμ)+(moc/ћ)2 Aν = 0

4-Vector
(1-Tensor)
A  = Aν = Aν[KμXμ]
= Aν[Φ]

3/2-(Fermion)
Gravitino?

( εμνρσγ5γν∂ρ) ψσ = 0

Rarita-Schwinger

(εμνρσγ5γν∂ρ+moσμσ)ψσ=0

Spinor-Vector
ψμ

2-(Boson) Einstein
Graviton?

Tensor
(2-Tensor)
Gμν
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Factoring the KG Equation → Dirac Eqn

Klein-Gordon Equation: ∂∙∂ = (∂t/c)2 - ∙∇ ∇ = -(moc/ħ)2

Since the 4-vectors are related by constants, we can go back to the 4-Momentum description:

(∂t/c)2- ∙∇ ∇ =  -(moc/ħ)2

(E/c)2- p∙p = (moc)2

E2- c2p∙p - (moc2)2 = 0

Factoring:  [ E - c α·p - β(moc2) ] [ E + c α·p + β(moc2) ] = 0

E & p are quantum operators,
α & β are matrices which must obey α

i
β = -βα

i
, α

i
α

j
 = -α

j
α

i
, α

i

2 = β2 = I

The left hand term can be set to 0 by itself, giving...
[ E - c α·p - β(moc2) ] = 0, which is one form of the Dirac equation

Remember: Pμ = (p0,p) = (E/c,p) and αμ = (α0,α) where α0 = I(2)

[ E - c α·p - β(moc2) ] = [ cα0p0 - c α·p - β(moc2) ] = [ cαμPμ - β(moc2) ] = 0
[ αμPμ - β(moc) ] = [iħ αμ∂μ - β(moc) ] = 0
αμ∂μ = - β(imoc/ħ)

Transforming from Pauli Spinor (2 component) to Dirac Spinor (4 component) form:
Dirac Equation: (γμ∂μ)[ψ] = -(imoc/ħ)ψ

Thus, the Dirac Eqn is guaranteed by construction to be one solution of the KG Eqn

The KG Equation is at the heart of all the various relativistic wave equations, which differ based on mass and spin values,
but all of them respect E2- c2p∙p - (moc2)2 = 0  

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SRQM Study: Lots of Relativistic Quantum 
Wave Equations: A lot of RQM!

Relativistic Quantum Wave Equation: ∂∙∂ = (∂t/c)2 - ∇∙∇ = -(moc/ħ)2 = (imoc/ħ)2 = -(ωo/c)2

∂∙∂ = -(moc/ħ)2

The Klein-Gordon Eqn is itself the Relativistic Quantum Equation for spin=0 particles {Higgs} (4-Scalars)
Factoring the KG Eqn leads to the RQM Dirac Equation for spin=1/2 particles (4-Spinors)
Applying the KG Eqn to a SR 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)
 
Setting RestMass {mo → 0} leads to the:
RQM Free Wave (4-Scalar massless)
RQM Weyl (4-Spinor massless)
Free Maxwell Eqns (4-Vector massless)

So, the same Relativistic Quantum Wave Equation is simply applied to different SR Tensorial Quantum Fields
See Mathematical_formulation_of_the_Standard_Model at Wikipedia:

4-Scalar (massive) Higgs Field φ [∂∙∂ = -(moc/ħ)2]φ Free Field Eqn→Klein-Gordon Eqn ∂∙∂[φ] = -(moc/ħ)2φ
4-Vector (massive) Weak Field Zμ,W±μ [∂∙∂ = -(moc/ħ)2]Zμ Free Field Eqn→Proca Eqn ∂∙∂[Zμ]= -(moc/ħ)2Zμ

4-Vector (massless mo=0) Photon Field Aμ [∂∙∂ = 0]Aμ Free Field Eqn→EM Wave Eqn ∂∙∂[Aμ]= 0μ

4-Spinor (massive) Fermion Field ψ [γ·∂ = -imoc/ћ]Ψ Free Field Eqn→Dirac Eqn γ·∂[Ψ]= -(imoc/ћ)Ψ

*The Fermion field is a special case, the Dirac Gamma Matrices γμ and 4-Spinor field Ψ work together to preserve Lorentz Invariance.
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SRQM Study: Lots of Relativistic Quantum 
Wave Equations: A lot of RQM!

In relativistic quantum mechanics and quantum field theory, the Bargmann–Wigner equations describe free particles of arbitrary spin j, an 
integer for bosons (j = 1, 2, 3 ...) or half-integer for fermions (j =  1⁄2,  3⁄2,  5⁄2 ...). The solutions to the equations are wavefunctions, 
mathematically in the form of multi-component spinor fields. 

Bargmann–Wigner equations: (-γμPμ + mc)
αr α’r

 ψα1...α’r...α2j = 0

In relativistic quantum mechanics and quantum field theory, the Joos–Weinberg equation is a relativistic wave equations applicable to free 
particles of arbitrary spin j, an integer for bosons (j = 1, 2, 3 ...) or half-integer for fermions (j =  1⁄2,  3⁄2,  5⁄2 ...). The solutions to the equations 
are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in 
quantum mechanics, however in this context j is more typical in the literature.

Joos–Weinberg equation: [γμ1μ2...μ2j Pμ1 Pμ2 … Pμ2j  + (mc)2j] Ψ = 0

The primary difference appears to be the expansion in either the wavefunctions for (BW) or the Dirac Gamma’s for (JW)

For both of these: A state or quantum field in such a representation would satisfy no field equation except the Klein-Gordon equation.

Yet another form is the Duffin-Kemmer-Petiau Equation vs Dirac Equation
DKP Eqn {spin 0 or 1}: (iћβα∂α - moc)Ψ = 0, with βα as the DKP matrices
Dirac Eqn (spin 1⁄2}: (iћγα∂α - moc)Ψ = 0, with γα as the Dirac Gamma matrices
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A few more SR 4-Vectors

SR 4-Vector Definition Unites

4-Position R = (ct,r); alt. X = (ct,x) Time, Space

4-Velocity U = γ(c,u) Gamma, Velocity

4-Momentum P = (E/c,p) = (mc,p) Energy:Mass, Momentum

4-WaveVector K = (ω/c,k) = (ω/c,ωn̂/v
phase

) Frequency, WaveNumber

4-Gradient ∂ = (∂t/c,-∇) Temporal Partial, Space Partial

 4-VectorPotential A = (φ/c,a) Scalar Potential, Vector Potential

4-TotalMomentum P
tot

 = (E/c+qφ/c,p+qa) Energy-Momentum inc. EM fields

4-TotalWaveVector K
tot

 = (ω/c+(q/ħ)φ/c,k+(q/ħ)a) Freq-WaveNum inc. EM fields

4-CurrentDensity J = (cρ,j) = qJ
prob

Charge Density, Current Density

4-ProbabiltyCurrentDensity
can have complex values

J
prob

 = (cρ
prob

,j
prob

) QM Probability (Density, Current Density)
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More SR 4-Vectors Explained

SR 4-Vector Empirical Fact What it means...
4-Position R = (ct,r) SpaceTime as Single United Concept

4-Velocity U = dR/dτ Velocity is Proper Time Derivative

4-Momentum P = moU = (Eo/c2)U Mass-Energy-Momentum Equivalence

4-WaveVector K = P/ħ = (ωo/c2)U Wave-Particle Duality

4-Gradient ∂ = -iK Unitary Evolution of States
Operator Formalism, Complex Waves

4-VectorPotential A = (φ/c,a) = (φo/c2)U Potential Fields...

4-TotalMomentum P
tot

 = P + qA Energy-Momentum inc. Potential Fields

4-TotalWaveVector K
tot

 = K + (q/ħ)A Freq-WaveNum inc. Potential Fields

4-CurrentDensity J = ρoU = qJ
prob

∂∙J = 0

ChargeDensity-CurrentDensity Equivalence
CurrentDensity is conserved

4-Probability 
CurrentDensity

J
prob

 = (cρ
prob

,j
prob

)

∂∙J
prob

 = 0

QM Probability from SR
Probability Worldlines are conserved
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Minimal Coupling = Potential Interaction
Klein-Gordon Eqn → Schrödinger Eqn

PT = P + Q = P + qA Minimal Coupling: Total = Dynamic + Charge_Coupled to 4-(EM)VectorPotential
K = i∂ Complex Plane-Waves
P = ħK Einstein-de Broglie QM Relations
P = iħ∂ Schrödinger Relations

P = (E/c,p)  = PT  -   qA     = (ET/c-qφ/c    , p
T
-qa) = ħK = iħ∂ 

∂ = (∂t/c,-∇) = ∂T + (iq/ħ)A = (∂tT/c+(iq/ħ)φ/c, -∇T + (iq/ħ)a) = -iK = (-i/ħ)P

∂∙∂ = (∂t/c)2 - ∇2 = -(moc/ħ)2 : The Klein-Gordon RQM Wave Equation (relativistic QM)
P∙P = (E/c)2 - p2 = (moc)2 : Einstein Mass:Energy:Momentum Equivalence

E2 = (moc2)2  + c2p2 : Relativistic
E ~ [ (moc2) + p2/2mo ] : Low velocity limit { |v| << c } from (1+x)n ~ [1 + nx + O(x2)] for |x|<<1

(ET-qφ)2 = (moc2)2 + c2(pT-qa)2 : Relativistic with Minimal Coupling
(ET-qφ) ~ [ (moc2) + (pT-qa)2/2mo ] : Low velocity with Minimal Coupling

(iħ∂tT-qφ)2 = (moc2)2  + c2(-iħ∇T-qa)2 : Relativistic with Minimal Coupling
(iħ∂tT-qφ) ~ [ (moc2) + (-iħ∇T-qa)2/2mo ] : Low velocity with Minimal Coupling

(iħ∂tT) ~ [ qφ +(moc2) + (iħ∇T+qa)2/2mo ] : Low velocity with Minimal Coupling
(iħ∂tT) ~ [ V + (iħ∇T+qa)2/2mo ] : V = qφ +(moc2)
(iħ∂tT) ~ [ V - (ħ∇T)2/2mo ] : Typically the 3-vector_potential a ~ 0 in many situations

(iħ∂tT)|Ψ> ~ [ V - (ħ∇T)2/2mo ]|Ψ> : The Schrödinger NRQM Wave Equation (non-relativistic QM)

The better statement is that the Schrödinger Eqn is the 
limiting low-velocity case of the more general KG Egn,
not that the KG Eqn is the relativistic generalization of 
the Schrödinger Eqn
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Once one has a Relativistic Wave Eqn...

Klein-Gordon Equation: ∂∙∂ = (∂t/c)2 - ∙∇ ∇ = (-imoc/ħ)2 = -(moc/ħ)2

Once we have derived a RWE, what does it imply?

The KG Eqn. was derived from the physics of SR plus a few empirical facts. It is a 
2nd order, linear, wave PDE that pertains to physical objects of reality from SR.

Just being a linear wave PDE implies all the mathematical techniques that have 
been discovered to solve such equations generally: Hilbert Space, Superpositions, 
<Bra|,|Ket> notation, wavevectors, wavefunctions, etc.  These things are from 
mathematics in general, not only and specifically from an Axiom of QM.

Therefore, if one has a physical RWE, it implies the mathematics of waves, the 
formalism of the mathematics, and thus the mathematical Principles and 
Formalism of QM.  Again, QM Axioms are not required – they emerge from the 
physics and math...
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Once one has a Relativistic Wave Eqn…
Examine Photon Polarization

From the Wikipedia page on [Photon Polarization]

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic 
wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. 
Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the 
two.

The description of photon polarization contains many of the physical concepts and much of the mathematical machinery 
of more involved quantum descriptions and forms a fundamental basis for an understanding of more complicated 
quantum phenomena. Much of the mathematical machinery of quantum mechanics, such as state vectors, probability 
amplitudes, unitary operators, and Hermitian operators, emerge naturally from the classical Maxwell's equations in the 
description. The quantum polarization state vector for the photon, for instance, is identical with the Jones vector, usually 
used to describe the polarization of a classical wave. Unitary operators emerge from the classical requirement of the 
conservation of energy of a classical wave propagating through lossless media that alter the polarization state of the 
wave. Hermitian operators then follow for infinitesimal transformations of a classical polarization state.

Many of the implications of the mathematical machinery are easily verified experimentally. In fact, many of the 
experiments can be performed with two pairs (or one broken pair) of polaroid sunglasses.

The connection with quantum mechanics is made through the identification of a minimum packet size, called a photon, 
for energy in the electromagnetic field. The identification is based on the theories of Planck and the interpretation of 
those theories by Einstein. The correspondence principle then allows the identification of momentum and angular 
momentum (called spin), as well as energy, with the photon.
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Principle of Superposition:
From the mathematics of waves

Klein-Gordon Equation: ∂∙∂ = (∂t/c)2 - ∙∇ ∇ = -(moc/ħ)2 = -(ωo/c)2

 The Extended Superposition Principle for Linear Equations
==============================================
Suppose that the non-homogeneous equation, where L is linear, is solved by some particular up

Suppose that the associated homogeneous problem is solved by a sequence of u i.
L(up) = C ;  L(u0) = 0  ,  L(u1) = 0 ,  L(u2) = 0 ...
Then up plus any linear combination of the un satisfies the original non-homogeneous equation:
L(up + Σ an un) = C,
where an is a sequence of (possibly complex) constants and the sum is arbitrary.
==============================================

Note that there is no mention of partial differentiation. Indeed, it's true for any linear equation, 
algebraic or integro-partial differential-whatever.

QM superposition is not axiomatic, it emerges from the mathematics of the Linear PDE
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Klein-Gordon obeys
Principle of Superposition

Klein-Gordon Equation: ∂∙∂ = (∂t/c)2 - ∙∇ ∇ = -(moc/ħ)2 = -(ωo/c)2

K∙K = (ω/c)2 - k∙k = (ωo/c)2: The particular solution (w rest mass)
Kn∙Kn = (ωn/c)2 - kn∙kn = 0 : The homogenous solution for a (virtual photon?) microstate n
Note that Kn∙Kn = 0 is a null 4-vector (photonic)

Let Ψp = Ae^-i(K∙X), then ∂∙∂[Ψp] = (-i)2(K∙K)Ψp = -(ωo/c)2Ψp

which is the Klein-Gordon Equation, the particular solution...

Let Ψn = Ane^-i(Kn∙X), then  ∂∙∂[Ψn] = (-i)2(Kn∙Kn)Ψn = (0)Ψn

which is the Klein-Gordon Equation homogeneous solution for a microstate n

We may take Ψ = Ψp + Σn Ψn

Hence, the Principle of Superposition is not required as an QM Axiom, it follows from SR and our empirical facts which 
lead to the Klein-Gordon Equation.  The Klein-Gordon equation is a linear wave PDE, which has overall solutions 
which can be the complex linear sums of individual solutions – i.e. it obeys the Principle of Superposition.
This is not an axiom – it is a general mathematical property of linear PDE's.
This property continues over as well to the limiting case { |v|<<c } of the Schrödinger Equation.
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QM Hilbert Space:
From the mathematics of waves

Klein-Gordon Equation: ∂∙∂ = (∂t/c)2 - ∙∇ ∇ = -(moc/ħ)2

Hilbert Space (HS) representation: 
if |Ψ> ε HS, then c|Ψ> ε HS, where c is complex number
if |Ψ1> and |Ψ2> ε HS, then |Ψ1>+|Ψ2> ε HS
if |Ψ> = c1|Ψ1>+c2|Ψ2>, then <Φ|Ψ> = c1<Φ|Ψ1>+c2<Φ|Ψ2> and <Ψ| = c1*<Ψ1|+c2*<Ψ2|
<Φ|Ψ> = <Ψ|Φ>
<Ψ|Ψ> >= 0
if <Ψ|Ψ> = 0, then |Ψ> = 0
etc.

Hilbert spaces arise naturally and frequently in mathematics, physics, and engineering, typically as infinite-
dimensional function spaces.  They are indispensable tools in the theories of partial differential equations, Fourier 
analysis, signal processing, heat transfer, ergodic theory, and Quantum Mechanics.

The QM Hilbert Space emerges from the fact that the KG Equation is a linear wave PDE – Hilbert spaces as 
solutions to PDE's are a purely mathematical phenomenon – no QM Axiom is required.

Likewise, this introduces the <bra|,|ket> notation, wavevectors, wavefunctions, etc.

Note:

One can use Hilbert Space descriptions of Classical Mechanics using the Koopman-von Neumann formulation.  
One can not use Hilbert Space descriptions of Quantum Mechanics by using the Phase Space formulation of QM.
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Canonical Commutation Relation:
Viewed from standard QM

Standard QM Canonical Commutation Relation: [xj,pk] = iћδjk

The Standard QM Canonical Commutation Relation is simply an axiom in standard QM.
It is just given, with no explanation.  You just had to accept it.

I always found that unsatisfactory.

There are at least 4 parts to it:

Where does the commutation ([ , ]) come from?
Where does the imaginary constant (i) come from?
Where does the Planck constant (ћ) come from?
Where does the Kronecker Delta (δjk) come from?

See the next page for SR enlightenment…
The SR Metric is the source of “quantization”.
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Let (f) be an arbitrary SR function
X[f] = Xf,   ∂[f] = ∂[f]
X, function or not, has no effect on (f) 
∂=∂[ ] is definitely an SR function:operator
 
X[∂[f]] = X∂[f]
∂[Xf] = ∂[X]f + X∂[f]
∂[Xf] - X∂[f] = ∂[X]f
∂[X[f]] - X[∂[f]] = ∂[X]f
Recognize this as a commutation relation
[ ∂ , X ]f = ∂[X]f
 
[ ∂ , X ] = ∂[X]
= ∂μ[Xν] 
= (∂t/c,-∇)[(ct,x)] 
= (∂t/c,-∂x,-∂y,-∂z)[(ct,x,y,z)] 
= Diag{1,-1,-1,-1} = Diag[1,-δjk]
= ημν = Minkowski Metric

[∂μ,Xν] = ημν Tensor form:true for all observers
[Pμ,Xν] = iћημν Independently true from empirical constants (i),(ћ)
[pk,xj] = -iћδkj   [p0,x0] = [E/c,ct] = [E,t] = iћ

[xj,pk] = iћδjk         [t,E] = -iћ

SRQM Diagram:
Canonical QM Commutation Relation 

Derived from SR

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

= -∂[S
action

]

mo

 Eo/c2

4-WaveVector
K=(ω/c,k)
= -∂[Φ

phase
]ωo/c2

4-Gradient
∂=(∂

t
/c,-∇)

E=mc2

Einstein
de Broglie
P =ћK 

Complex
Plane-Waves

..[K∙X]
..[-Φ

phase
]

( i )

4-Displacement
ΔX=(cΔt,Δx)
dX=(cdt,dx)
4-Position
X=(ct,x)

∂∙X=∂μXμ=4
SpaceTime
Dimension

[∂μ,Xν]=∂μ[Xν]=ημν

[∂,X]=∂[X]=ημν

→Diag[1,-1,-1,-1]=Diag[1,-δjk]
Minkowski Metric

Non-Zero Commutation Relation
via natural SR 4-Gradient

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

i[∂,X]=[i∂,X]=[K,X]=iημν

 
Non-Zero Commutation Relation

via SR 4-WaveVector

[iћ∂,X]=[ћK,X]=[P,X]=iћημν

 
Non-Zero Commutation Relation

via SR 4-Momentum

Proper Time

U∙∂=d/dτ=γd/dt
Derivative

Complex
Plane-waves
K=i∂

Wave Velocity
v

group
*v

phase
=c2

Eo/ωo

( ћ )

..[K∙X]
..[-Φ

phase
]

( i )

ProperTime
Derivative

Position:Momentum
QM Commutation Relation

Time:Energy
QM Commutation Relation {P = ћK} and {K = i∂} are empirical SR relations 

Lorentz
∂ν[Xμ’]=∂Xμ’/∂Xν=Λμ’

ν

Transform

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

Eo/ωo

( ћ )
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SRQM Study: 
4-Position and 4-Gradient

SpaceTime
∂∙R = ∂μRμ = 4

Dimension

SR:
Minkowski

Metric
∂[R] = ∂μRν = ημν

→Diag[1,-1,-1,-1]
= Diag[1,-I(3)]
= Diag[1,-δjk]
{in Cartesian form} 

”Particle Physics” Convention

{ημμ} = 1/{ημμ}
Tr[ημν] = 4
ημ

ν = δμ
ν

SR:
Lorentz

Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

 
Λμ

αΛα
ν = ημ

ν = δμ
ν

ημνΛμ
αΛν

β  = ηαβ

(Det[Λ])2 = 1
Det[Λ] = ±1
Λμ

ν = (Λ-1)ν
μ

ΛμνΛμν = 4

Rotations
Boosts
CPT

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)

4-Position
R=(ct,r)

Invariant Interval
R∙R=(ct)2-r∙r = (cτ)2

4-Gradient
∂=(∂

t
/c,-∇)

=(∂
t
/c,-∂

x
,-∂

y
,-∂

z
)

Invariant d’Alembertian
Wave Equation

∂∙∂=(∂
t 
/c)2- ∙∇ ∇=(∂

τ 
/c)2

SRQM:
Non-Zero

Commutation
[∂,R] = [∂μ,Rν]
=∂μRν-Rν∂μ 

= ημν

SRQM:
Tensor Zero

Exterior Product
∂^R = ∂μRν-∂νRμ

= ημν - ηνμ = 0μν

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

SR → QM
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Heisenberg Uncertainty Principle:
Viewed from SRQM

Heisenberg Uncertainty {  σ2
Aσ2

B } >= (1/2)|<[A,B]>|  }
arises from the non-commuting nature of certain operators. 

The commutator is [A,B] = AB-BA, where A & B are functional “measurement” operators. 
The Operator Formalism arose naturally from our SR → QM path: [ ∂ = -iK ]. 
 
The Generalized Uncertainty Relation: σf

2σg
2 = (ΔF) * (ΔG) >= (1/2)|  i[F,G] | ⟨ ⟩

The uncertainty relation is a very general mathematical property, which applies to both 
classical or quantum systems. From Wikipedia: Photon Polarization: "This is a purely 
mathematical result. No reference to a physical quantity or principle is required.” 
 
The Cauchy–Schwarz inequality asserts that (for all vectors f and g of an inner product 
space, with either real or complex numbers): 
σf

2σg
2 = [  f | f ·  g | g ] >= |  f | g |⟨ ⟩ ⟨ ⟩ ⟨ ⟩ 2 

 
But first, let's back up a bit; Using standard complex number math, we have: 
z = a + ib 
z* = a – ib 
Re(z) = a = (z + z*)/(2) 
Im(z) = b = (z - z*)/(2i) 
z*z = |z|2 = a2 + b2 = [Re(z)]2 + [Im(z)]2 = [(z + z*)/(2)]2 + [(z - z*)/(2i)]2 
or 
|z|2 = [(z + z*)/(2)]2 + [(z - z*)/(2i)]2

Now, generically, based on the rules of a complex inner product space we can arbitrarily 
assign: 
z =  f | g , z* =  g | f  ⟨ ⟩ ⟨ ⟩
 
Which allows us to write: 
|  f | g |⟨ ⟩ 2  = [(  f | g  +  g | f )/(2)]⟨ ⟩ ⟨ ⟩ 2 + [(  f | g  -  g | f )/(2i)]⟨ ⟩ ⟨ ⟩ 2 
 

*Note* This is not a QM axiom - This is just pure math.  At this stage we already see the 
hints of commutation and anti-commutation. 
It is true generally, whether applying to a physical or purely mathematical situation. 

We can also note that: 
| f  = F| Ψ  and | g  = G| Ψ  ⟩ ⟩ ⟩ ⟩
 
Thus, 
|  f | g |⟨ ⟩ 2 = [(  Ψ |F* G| Ψ  +  Ψ |G* F| Ψ )/(2)]⟨ ⟩ ⟨ ⟩ 2 + [(  Ψ |F* G| Ψ  -  Ψ |G* F| Ψ )/(2i)]⟨ ⟩ ⟨ ⟩ 2

 
For Hermetian Operators… 
F* = +F, G* = +G 
 
For Anti-Hermetian (Skew-Hermetian) Operators… 
F* = -F, G* = -G 
 
Assuming that F and G are either both Hermetian, or both anti-Hermetian… 
|  f | g |⟨ ⟩ 2 = [(  Ψ |(±)FG| Ψ  +  Ψ |(±)GF| Ψ )/(2)]⟨ ⟩ ⟨ ⟩ 2 + [(  Ψ |(±)FG| Ψ  -  Ψ |(±)GF| Ψ )/(2i)]⟨ ⟩ ⟨ ⟩ 2 
|  f | g |⟨ ⟩ 2 = [(±)(  Ψ |FG| Ψ  +  Ψ |GF| Ψ )/(2)]⟨ ⟩ ⟨ ⟩ 2 + [(±)(  Ψ |FG| Ψ> -  Ψ |GF| Ψ )/(2i)]⟨ ⟨ ⟩ 2 
 
We can write this in commutator and anti-commutator notation… 
|  f | g |⟨ ⟩ 2 = [(±)(  Ψ |{F,G}| Ψ )/(2)]⟨ ⟩ 2 + [(±)(  Ψ |[F,G]| Ψ )/(2i)]⟨ ⟩ 2 
 
Due to the squares, the (±)'s go away, and we can also multiply the commutator by an ( i2 ) 
 
|  f | g |⟨ ⟩ 2 = [(  Ψ |{F,G}| Ψ )/2]⟨ ⟩ 2 + [(  Ψ |i[F,G]| Ψ )/2]⟨ ⟩ 2 
 
|  f | g |⟨ ⟩ 2 = [(  {F,G} )/2]⟨ ⟩ 2 + [(  i[F,G] )/2]⟨ ⟩ 2 
 
The Cauchy–Schwarz inequality again… 
σf

2σg
2  = [  f | f ·  g | g ]  >=  |  f | g |⟨ ⟩ ⟨ ⟩ ⟨ ⟩ 2 = [(  {F,G} )/2]⟨ ⟩ 2 + [(  i[F,G] )/2]⟨ ⟩ 2

 
Taking the root: 
σf

2σg
2  >= (1/2)|  i[F,G] |⟨ ⟩  

Which is what we had for the generalized Uncertainty Relation.
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Heisenberg Uncertainty Principle:
Simultaneous vs Sequential

Heisenberg Uncertainty {  σ2
Aσ2

B >= (1/2)|<[A,B]>|  } arises from the non-commuting nature of certain operators.
[∂μ,Xν] = ∂[X] = ημν = Minkowski Metric
[Pμ,Xν] = [iћ∂μ,Xν] = iћ[∂μ,Xν] = iћημν

Consider the following:
Operator A acts on System |Ψ> at SR Event A:  A|Ψ> →|Ψ'>
Operator B acts on System |Ψ'> at SR Event B:  B|Ψ'> →|Ψ''>
or BA|Ψ> = B|Ψ'> = |Ψ''>

If measurement Events A & B are space-like separated, then there are observers who can see {A before B, A 
simultaneous with B, A after B}, which of course does not match the quantum description of how Operators act on 
Kets

If Events A & B are time-like separated, then all observers will always see A before B.  This does match how the 
operators act on Kets, and also matches how |Ψ> would be evolving along its worldline, starting out as |Ψ>, 
getting hit with operator A at Event A to become |Ψ'>, then getting hit with operator B at Event B to become |Ψ''>.

The Uncertainty Relation here does NOT refer to simultaneous (space-like separated) measurements, it refers to 
sequential (time-like separated) measurements. This removes the need for ideas about the particles not having 
simultaneous properties.  There are simply no “simultaneous measurements” of non-zero commuting properties 
on an individual system, a single worldline – they are sequential, and the first measurement places the system in 
such a state that the outcome of the second measurement will be altered wrt. if the order of the operations had 
been reversed.

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM
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Pauli Exclusion Principle:
Requires SR

for the detailed explanation
The Pauli Exclusion Principle is a result of the empirical fact that nature uses identical particles, and this 
combined with the Spin-Statistics theorem from SR, leads to an exclusion principle for fermions (anti-
symmetric, Fermi-Dirac statistics) and an aggregation principle for bosons (symmetric, Bose-Einstein 
statistics).  The Spin-Statistics Theorem is related as well to the CPT Theorem.

For large numbers and/or mixed states these both tend to the Maxwell-Boltzmann statistics.  In the 
{kT>>(εi-μ)} limit, Bose-Einstein reduces to Rayleigh-Jeans.  The commutation relations here are based 
on space-like separation particle exchanges, unlike the time-like separation for measurement operator 
exchanges in the Uncertainty Principle.

Spin Particle Type Quantum Statistics Classical { kT>>(εi-μ) }

spin:(0,1,...,N) Indistinguishable,
Commutation relation
( ab = ba )

Bose-Einstein:
ni = gi / [ e(ε

i
-μ)/kT -1 ]

aggregation principle

Rayleigh-Jeans:   from ex ~ (1 + x +...)
ni = gi / [ (εi-μ)/kT ]

↓  Limit as e(ε
i
-μ)/kT >>1  ↓

Multi-particle Mixed Distinguishable, or high 
temp, or low density

Maxwell-Boltzmann:
ni = gi / [ e(ε

i
-μ)/kT +0 ]

Maxwell-Boltzmann: 
ni = gi / [ e(ε

i
-μ)/kT ]

↑  Limit as e(ε
i
-μ)/kT >>1  ↑

spin:(1/2,3/2,...,N/2) Indistinguishable,
Anti-commutation relation 
( ab = - ba )

Fermi-Dirac:
ni = gi / [ e(ε

i
-μ)/kT +1 ]

exclusion principle
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4-Vectors & Minkowski Space Review
Complex 4-Vectors

Complex 4-vectors are simply 4-Vectors where the components may be complex-valued

A = Aμ = (a0,a) = (a0,a1,a2,a3) → (at,ax,ay,az)
B = Bμ = (b0,b) = (b0,b1,b2,b3) → (bt,bx,by,bz)

Examples of 4-Vectors with complex components are the 4-Polarization and the 4-
ProbabilityCurrentDensity

Minkowski Metric gμν → ημν = η
μν

 → Diag[1,-1,-1,-1] = Diag[1,-I(3)],

which is the {curvature~0 limit = low-mass limit} of the GR metric gμν.

Applying the Metric to raise or lower an index also applies a complex-conjugation *

Scalar Product = Lorentz Invariant → Same value for all inertial observers
A∙B = η

μν 
AμBν = A

ν
*Bν = AμB

μ
* = (a0*b0 – a*∙b)  using the Einstein summation convention

This reverts to the usual rules for real components
However, it does imply that A∙B = B∙A
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SRQM: CPT Theorem
Phase Connection, Lorentz Invariance

The Phase is a Lorentz Scalar Invariant – all observers must agree on its value.
K∙X = (ω/c,k)∙(ct,x) = (ωt – k∙x) = -Φ: Phase of SR Wave

We take the point of view of an observer operating on a particle at 4-Position X,
which has an initial 4-WaveVector K. The 4-Position X of the particle,
the operation's event, will not change: we are applying the various
operations only to the particle's 4-Momentum K.

Note that for matter particles K = (ωo/c)T,
where T is the Unit-Temporal 4-Vector T = γ(1,β),
which defines the particle's worldline at each point.
The gamma factor ( γ ) will be unaffected in the following operations,
since it uses the square of β: γ=1/Sqrt(1-β∙β).
For photonic particles, K = (ω/c)N,
where N is the “Unit”-Null 4-Vector N = (1,n) and n is a unit-spatial 3-vector.
All operations listed below work similarly on the Null 4-Vector.

Do a Time Reversal Operation: T
The particle's temporal direction is reversed & complex-conjugated:
TT = -T* = γ(-1,β)*

Do a Parity Operation (Space Reflection): P
Only the spatial directions are reversed:
TP = γ(1,-β)

Do a Charge Conjugation Operation: C
Charge Conjugation actually changes all internal quantum #'s:
charge, lepton #, etc.
Feynman showed this is the equivalent of
a world-line reversal & complex-conjugation:
TC = γ(-1,-β)*

Pairwise combinations:
TTP = TPT = TC = γ(-1,-β)*
TTC = TCT = TP = γ(1,-β)
TPC = TCP = TT = γ(-1,β)*, a CP event is mathematically the same as a T event
TCPT = T = γ(1,β) TCC = T = γ(1,β) TPP = T = γ(1,β) TTT = T = γ(1,β)

4-Velocity
U=γ(c,u)

4-Gradient
∂=(∂

t
/c,-∇)

4-Acceleration
A=γ(cγ’,γ’u+γa)

4-Displacement
ΔR=(cΔt,Δr)
dR=(cdt,dr)
4-Position
R=(ct,r)

∂∙R=4
SpaceTime
Dimension

∂[R]=ημν→Diag[1,-1,-1,-1]
Minkowski Metric

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

ProperTime
Derivative

U∙U=c2

ProperTime
Derivative

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

4-UnitTemporal
T=γ(1,β)

4-UnitSpatial
S=(n̂·β,n̂)

┴

T∙S=0

T∙T= 1

S∙S= -1

c

4-”Unit”Null
N=(1,n̂)

Limit as β → 1

N∙N= 0

Matter-like 
T = γ(1,β) 
T∙T = γ(1,β)*∙γ(1,β) = γ2(12 - β∙β) = 1: It's a temporal 4-vector 
 
TC∙TC = γ(-1,-β)∙γ(-1,-β)* = γ2((-1)2 - (-β)∙(-β)) = γ2(12 - β∙β) = 1 
TP∙TP = γ(1,-β)*∙γ(1,-β) = γ2(12 - (-β)∙(-β)) = γ2(12 - β∙β) = 1 
TT∙TT = γ(-1,β)∙γ(-1,β)* = γ2((-1)2 - (β)∙(β)) = γ2(12 - β∙β) = 1 
They all remain temporal 4-vectors 
 
TCPT = T = γ(1,β) 
TCPT∙TCPT= T∙T = 1

Light-like/Photonic 
N = (1,n) 
N∙N = (1,n)*∙(1,n) = (12 - n∙n) = (1-1) = 0: It's a null 4-vector 
 
NC∙NC = (-1,-n)∙(-1,-n)* = ((-1)2 - (-n)∙(-n)) = (12 - n∙n) = (1-1) = 0 
NP∙NP = (1,-n)*∙(1,-,n) = (12 - (-n)∙(-n)) = (12 - n∙n) = (1-1) = 0 
NT∙NT = (-1,n)∙(-1,n)* = ((-1)2 - (n)∙(n)) = (12 - n∙n) = (1-1) = 0 
They all remain null 4-vectors 
 
NCPT = N = (1,n) 
NCPT∙NCPT= N∙N = 0

It is only the combination of all three ops: {C,P,T}, or 
pairs of singles: {CC},{PP},{TT} 
that leave the Unit-Temporal 4-Vector, and thus the 
Phase, Invariant.

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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After (CPT)

  (CPT)
=(CTP)
=(PCT)
=(PTC)
=(TCP)
=(TPC)

SRQM: CPT Theorem
(Charge) vs (Parity) vs (Time)

Classical SR Time-Reversal neglects spin and charge. 
SRQM includes these effects.
Then one gets (CC),(PP),(TT), & (CPT) transforms
all leading back to the Identity (I).

Parity-Inverted 4-Vector
A’=Aμ’=Pμ’

νAν=(a0’,a’)
=(a0,-a)

Lorentz
Parity-Inversion

Transform
Λμ’

ν→Pμ’
ν

= 

4-Vector
A=Aν=(a0,a)

Time-Reversed 4-Vector
A’=Aμ’=Tμ’

νAν=(a0’,a’)
=(-a0,a)*

Lorentz
Time-Reversal

Transform
Λμ’

ν→Tμ’
ν

= 

  *
 

 

Det[Tμ’
ν]

= -1 ?

Identical 4-Vector
A’=Aμ’=ημ’

νAν=(a0’,a’)
=(a0,a)=A

Lorentz
Identity

Transform
Λμ’

ν→ημ’
ν = I

(4)

=

Det[ημ’
ν]

= +1

No mixing       Space Time Charge

Original 4-Vector
A=Aν=(a0,a)

Lorentz
Parity-Inversion

Transform
Λμ’

ν→Pμ’
ν

Lorentz
Time-Reversal

Transform
Λμ’

ν→Tμ’
ν

Lorentz
Identity

Transform
Λμ’

ν→ημ’
ν

Tr[Pμ’
ν]= -2 Tr[Tμ’

ν]= +2*Tr[ημ’
ν]= +4

Charge-Conjugated 4-Vector
A’=Aμ’=Cμ’

νAν=(a0’,a’)
=(-a0,-a)*

Lorentz
Charge-Conjugation

Transform
Λμ’

ν→Cμ’
ν

= 

  *

Lorentz
Charge-Conjugation

Transform
Λμ’

ν→Cμ’
ν

Tr[Cμ’
ν]= -4*

 

Det[Pμ’
ν]

= -1

 

Det[Cμ’
ν]

= +1 ?

4-Vector
B=Bν=(b0,b)

Original
4-Vector

B=Bν=(b0,b)

Identity and Space-Parity are Unitary
Time-Reversal and Charge-Conjugation are Anti-Unitary.

After (PP) or (TT) or (CC)

  1   0  
 0   δi

j 
  1   0  
 0  -δi

j 
  -1   0  
  0   δi

j 
  -1   0  
  0   -δi

j 

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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Transformations
(# of independent parameters = # continuous symmetries = # Lie Dimensions)

Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation
Lie group of all affine isometries of SR:Minkowski TimeSpace (preserve quadratic form ημν)

General Linear,Affine Transform Xμ' = Λμ'
νXν + ΔXμ’ with Det[Λμ'

ν] = ±1
(6+4=10)

 Translation Transform ΔXμ’

(1+3=4) 4-Vector
Lorentz Transform Λμ'

ν

(3+3=6) 4-Tensor {mixed type-(1,1)}

SRQM Transforms: Venn Diagram
Poincaré = Lorentz + Translations

(10) (6) (4)
M01 M02 M03

M10 M12 M13

M20 M21 M23

M30 M31 M32

P0

P1

P2

P3

4-AngularMomentum Mμν = Xμ ^ Pν = XμPν - XνPμ 
= Generator of Lorentz Transformations (6) 
= { Λμ’

ν→Rμ'
ν Rotations (3) + Λμ’

ν→Bμ'
ν Boosts (3) } 

 
4-LinearMomentum Pμ 
= Generator of Translation Transformations (4) 
= { ΔXμ'→(cΔt,0) Time (1) + ΔXμ'→(0,Δx) Space (3) }

Det[Λμ'
ν] = +1 for Proper Lorentz Transforms

Det[Λμ'
ν] = -1 for Improper Lorentz Transforms

Lorentz Matrices can be generated by a matrix M
with Tr[M]=0 which gives:
{ Λ = e ^ M = e ^ (+θ∙J - ζ∙K) }
{ ΛT = (e ^ M)T =  e ^ MT }
{ Λ-1 = (e ^ M)-1 =  e ^ -M }

M = +θ∙J - ζ∙K
B[ζ] = e^(-ζ∙K)
R[θ] = e^(+θ∙J)
Λ = e ^ M = e ^ (+θ∙J - ζ∙K)

Rotations Ji = -εimnMmn/2, Boosts Ki = Mi0

[ (R→ -R*) ] or [ (t→ -t*) & (r→ -r) ] imply q→ -q
Feynman-Stueckelberg Interpretation
Amusingly, Inhomogeneous Lorentz adds homogeneity.

Discrete Continuous

Homogeneity 
{same all points}

Temporal
ΔXμ' → (cΔt,0)

(1)
Δt

Spatial
ΔXμ' → (0,Δx)

(3)
Δx | Δy | Δz

Discrete

          CPT Symmetry
{Charge}
{Partiy}
{Time}

Continuous

Isotropy
{same all directions}

4-Zero
ΔXμ' → (0,0)

(0)
no motion

Parity-Inversion
Λμ'

ν → Pμ’
ν

(0)
r → -r

space parity
unitary

Charge-Conjugation
Λμ'

ν → Cμ'
ν

(0)
R → -R*, q → -q

charge parity
anti-unitary

Time-reversal
Λμ'

ν → Tμ'
ν

(0)
t → -t*

time parity
anti-unitary

Rotation
Λμ'

ν → Rμ’
ν

(3)
x:y | x:z | y:z

Boost
Λμ'

ν → Bμ'
ν

(3)
t:x | t:y | t:z

SpatialFlipCombos
Λμ'

ν → Fμ'
ν

(0)
{x|y|z} → -{x|y|z}

unitary

Identity I(4)

Λμ'
ν → ημ'

ν=δμ'
ν

(0)
no mixing

unitary

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SR:Lorentz Transform
∂ν[Rμ′] = ∂Rμ′/∂Rν = Λμ'

ν

Λμ
ν = (Λ-1)ν

μ : Λμ
αΛα

ν = ημ
ν = δμ

ν

ημνΛμ
αΛν

β  = ηαβ

ΛμνΛμν=4Det[Λμ
ν]=±1



  

Hermitian Generators
Noether's Theorem - Continuity

The Hermitian Generators that lead to translations and rotations via unitary operators in QM...

These all ultimately come from the Poincaré Invariance → Lorentz Invariance that is at the heart of SR and Minkowski 
Space.

Infintesimal Unitary Transformation
Ûε(Ĝ) = I + iεĜ

Finite Unitary Transformation
Ûα(Ĝ) = e^(iαĜ)

let Ĝ = P/ћ = K
let α=Δx

ÛΔx(P/ћ)Ψ(X) = e^(iΔx∙P/ћ)Ψ(X) = e^(-Δx∙∂)Ψ(X) = Ψ(X - Δx)

Time component: ÛΔct(P/ћ)Ψ(ct) = e^(iΔtE/ћ)Ψ(ct) = e^(-Δt ∂t)Ψ(ct) = Ψ(ct - cΔt) =  cΨ(t - Δt)
Space component: ÛΔx(p/ћ)Ψ(x) = e^(iΔx∙p/ћ)Ψ(x) = e^(Δx∙∇)Ψ(x) = Ψ(x + Δx)

By Noether's Theorem, this leads to ∂∙K = 0

We had already calculated
(∂∙∂)[K∙X] = ((∂t/c)2 - ∇∙∇)(ωt - k∙x) = 0
(∂∙∂)[K∙X] = ∂∙(∂[K∙X]) = ∂∙K = 0

Poincaré Invariance also gives the Casimir invariants of mass and spin, and ultimately leads to the spin-statistics theorem 
of RQM.
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QM Correspondence Principle:
Analogous to the GR and SR limits

Basically, the old school QM Correspondence Principle says that QM should give the same results as classical physics in 
the realm of large quantum systems, i.e. where macroscopic behavior overwhelms quantum effects. Perhaps a better way 
to state it is when the change of system by a single quantum has a negligible effect on the overall state.

There is a way to derive this limit, by using Hamilton-Jacobi Theory:
(iħ∂tT)|Ψ> ~ [ V - (ħ∇T)2/2mo ]|Ψ> : The Schrödinger NRQM Equation for a point particle (non-relativistic QM)

Examine solutions of form Ψ = Ψoe^(iΦ)= Ψoe^(iS/ħ), where S is the QM Action
∂t[Ψ] = (i/ħ)Ψ∂t[S] and ∂x[Ψ] = (i/ħ)Ψ∂x[S] and ∇2[Ψ] = (i/ħ)Ψ∇2[S] - (Ψ/ħ2)(∇[S])2

(iħ)(i/ħ)Ψ∂t[S] = VΨ - (ħ2/2mo)((i/ħ)Ψ∇2[S] - (Ψ/ħ2)(∇[S])2)

(i)(i)Ψ∂t[S] = VΨ - ((iħ/2mo)Ψ∇2[S] - (Ψ/2mo)(∇[S])2)

∂t[S] = -V + (iħ/2mo)∇2[S] - (1/2mo)(∇[S])2

∂t[S] + [V+(1/2mo)(∇[S])2 ] = (iħ/2mo)∇2[S] : Quantum Single Particle Hamilton-Jacobi
∂t[S] + [V+(1/2mo)(∇[S])2 ] = 0 : Classical Single Particle Hamilton-Jacobi

Thus, the classical limiting case is:
∇2[Φ] << (∇[Φ])2

ħ∇2[S] << (∇[S])2 
ħ∇∙p << (p∙p)
(pλ)∇∙p << (p∙p)
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QM Correspondence Principle:
Analogous to the GR and SR limits

∂t[S] + [V+(1/2mo)(∇[S])2 ] = (iħ/2mo)∇2[S] : Quantum Single Particle Hamilton-Jacobi
∂t[S] + [V+(1/2mo)(∇[S])2 ] = 0 : Classical Single Particle Hamilton-Jacobi

Thus, the quantum→classical limiting-case is: {all equivalent representations}
ħ∇2[S

action
]   << (∇[S

action
])2 ∇2[Φ

phase
]   << (∇[Φ

phase
])2

ħ∇∙∇[S
action

] << (∇[S
action

])2 ∇∙∇[Φ
phase

] << (∇[Φ
phase

])2

ħ∇∙p         << (p∙p) ∇∙k       << (k∙k)
(pλ)∇∙p       << (p∙p)

with 
P = (E/c,p) = -∂[S

action
] = -(∂t/c,-∇)[S

action
] = (-∂t/c,∇)[S

action
]

K = (ω/c,k) = -∂[Φ
phase

] = -(∂t/c,-∇)[Φ
phase

] = (-∂t/c,∇)[Φ
phase

]

It is analogous to GR → SR in limit of low curvature (low mass), or SR → CM in limit of low velocity { |v|<<c }.
It still applies, but is now understood as the same type of limiting-case as these others.

*Note* The commonly seen form of (c→∞,ħ→0) as limits are incorrect!  
c and ħ are universal constants – they never change.
If c→∞, then photons (light-waves) would have infinite energy { E = pc }. This is not true classically.
If ħ→0, then photons (light-waves) would have zero energy { E = ħω }.  This is not true classically.
Always better to write the SR Classical limit as { |v|<<c }, the QM Classical limit as { ∇2[Φ

phase
] << ( [∇ Φ

phase
])2 }

Again, it is more natural to find a limiting-case of a more general system than to try to unite two separate theories which may or may not 
ultimately be compatible.  From logic, there is always the possibility to have a paradox result from combination of arbitrary axioms, whereas 
deductions from a single true axiom will always give true results.

This page needs some 
work. Source was from 
Goldstein
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SRQM: 4-Vector Quantum Probability
Conservation of ProbabilityDensity

Conservation of Probability : Probability Current : Charge Current
Consider the following purely mathematical argument
(based on Green's Vector Identity):

∂·( f ∂[g] - ∂[f] g ) = f ∂·∂[g] - ∂·∂[f] g
with (f) and (g) as SR Lorentz Scalar functions

Proof:
∂·( f ∂[g] - ∂[f] g )
= ∂·( f ∂[g] ) - ∂·(∂[f] g )
= (f ∂·∂[g] + ∂[f]·∂[g]) - (∂[f]·∂[g] + ∂·∂[f] g)
= f ∂·∂[g] - ∂·∂[f] g

We can also multiply this by a Lorentz Invariant Scalar Constant s
s (f ∂·∂[g] - ∂·∂[f] g) = s ∂·( f ∂[g] - ∂[f] g ) = ∂·s( f ∂[g] - ∂[f] g )

Ok, so we have the math that we need…

Now, on to the physics… Start with the Klein-Gordon Eqn.
∂·∂ = (-imoc/ћ)2 = -(moc/ћ)2

∂·∂ + (moc/ћ)2 = 0

Let it act on SR Lorentz Invariant function g
∂·∂[g] + (moc/ћ)2[g] = 0 [g] 
Then pre-multiply by f 
[f]∂·∂[g] + [f] (moc/ћ)2[g] = [f] 0 [g]  
[f]∂·∂[g] + (moc/ћ)2[f][g] = 0

Do similarly with SR Lorentz Invariant function f 
∂·∂[f] + (moc/ћ)2[f] = 0 [f] 
Then post-multiply by g 
∂·∂[f][g] + (moc/ћ)2[f][g] = 0 [f][g] 
∂·∂[f][g] + (moc/ћ)2[f][g] = 0

Now, subtract the two equations 
{[f] ∂·∂[g] + (moc/ћ)2[f][g] = 0} - { ∂·∂[f][g] + (moc/ћ)2[f][g] = 0} 
[f] ∂·∂[g] + (moc/ћ)2[f][g] - ∂·∂[f][g ]- (moc/ћ)2[f][g] = 0 
[f] ∂·∂[g] - ∂·∂[f][g] = 0 
 
And as we noted from the mathematical Green’s Vector identity at the start… 
[f] ∂·∂[g] - ∂·∂[f][g] = ∂·( f ∂[g] - ∂[f] g ) = 0 
 
Therefore, 
s ∂·( f ∂[g] - ∂[f] g ) = 0 
∂·s( f ∂[g] - ∂[f] g ) = 0 
 
Thus, there is a conserved current 4-Vector, Jprob = s( f ∂[g] - ∂[f] g ), for which ∂·Jprob = 0,
and which also solves the Klein-Gordon equation. 
 
Let's choose as before (∂ = -iK) with a plane wave function f = ae^-i(K·X) = ψ,
and choose g = f* = ae^i(K·X) = ψ*  as its complex conjugate. 

At this point, I am going to choose s = (iћ/2mo), which is Lorentz Scalar Invariant, in order to make 
the probability have dimensionless units and be normalized to unity in the rest case. 
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4-ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux
J

prob
 = (cρ

prob
,j

prob
) = (iћ/2mo)(ψ*∂[ψ]-∂[ψ*]ψ) = (ρ

probo)U = (ρ
probo)γ(c,u) = (γρ

probo)(c,u) = (ρ
prob

)(c,u)

with 4-Divergence of Probability { ∂∙J
prob

 = 0 } by construction via Green’s Vector Identity and the Klein-Gordon RQM Eqn.

The reason for s = (iћ/2mo) becomes more clear by examining our diagram:
Start at the 4-Gradient and follow the arrows toward the 4-ProbabilityFlux
You immediately see where the (iћ/mo) factor comes from.
The ρprob_o is then a function of the ψ’s divided by 2.

∂·( f ∂[g] - ∂[f] g ) = f ∂·∂[g] - ∂·∂[f] g: Green’s Vector Identity
∂·∂ + (moc/ћ)2 = 0: KG RQM Eqn

4-NumberFlux 
N=(nc,n)=n(c,u) 

 
 

4-ProbCurrentDensity 
4-ProbabilityFlux 

J
prob

=(ρ
prob

c,j
prob

)=ρ
prob

(c,u) 

=(iћ/2mo)(ψ*∂[ψ]-∂[ψ*]ψ) 
Complex

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
K=(ω/c,k)

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

ρo

4-Gradient
∂=(∂

t
/c,-∇)..[K∙R] 

..[-Φ
phase

]

( i )

 Eo/ωo

( ћ )

q

∂∙J=0
Conservation of

Charge

∂∙N=0 : ∂∙Jprob=0
Conservation of

Particle # : Probabilty

4-Vector Quantum Probability
4-ProbabilityFlux, Klein-Gordon RQM Eqn

Born
Probability Rule

Examine the temporal component, the Relativistic Probability Density 
ρ

prob
 = (iћ/2moc2)(ψ* ∂t[ψ]-∂t[ψ*] ψ) 

Assume wave solution in following general form: 
{ ψ = A f [k] e(-iωt) }
{ ψ* = A* f [k]* e(+iωt) } 
then 
{ ∂t[ψ] = (-iω)A f [k] e(-iωt) = (-iω)ψ }
{ ∂t[ψ*] = (+iω)A* f [k]* e(+iωt) = (+iω)ψ* } 
then 
ρ

prob
 = (iћ/2moc2)(ψ* ∂t[ψ] - ∂t[ψ*] ψ) 

ρ
prob

 = (iћ/2moc2)((-iω)ψ*ψ - (+iω)ψ*ψ) 

ρ
prob

 = (iћ/2moc2)((-2iω)ψ*ψ) 

ρ
prob

 = (ћω/moc2)(ψ*ψ) 

ρ
prob

 = (ћγωo/moc2)(ψ*ψ) 

ρ
prob

 = (γ)(ψ*ψ) = (γ)(ρ
probo)

Finally, multiply by charge (q) to get standard SR EM
4-CurrentDensity = 4-ChargeFlux = J = (cρ,j) = qJ

prob
 = q(cρ

prob
,j

prob
)

U∙U=c2

P∙P=(moc)2=(Eo/c)2

∂∙∂=(∂
t 
/c)2- ∙∇ ∇

d’Alembertian
∂∙∂= -(moc/ћ)2

Klein-Gordon

N∙N=(noc)2

Jprob∙Jprob=(ρ
proboc)2

J∙J=(ρoc)2

K∙K=(ωo/c)2

K∙K=(moc/ћ)2

 ωo/c2 Wave Velocity
v

group
*v

phase
=c2

E=mc2

EM

Complex
Plane-waves
K=i∂

Einstein
de Broglie
P =ћK 

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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Existing SR Rules
 Quantum Principles 

no

ρ
probo = χ*ψ

=|⟨χ|ψ⟩|2

Rest Number
Density

  4



  

4-ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux
J

prob
 = (cρ

prob
,j

prob
) = (iћ/2mo)(ψ*∂[ψ]-∂[ψ*]ψ) = (ρ

probo)U = (ρ
probo)γ(c,u) = (γρ

probo)(c,u) = (ρ
prob

)(c,u)

with 4-Divergence of Probability { ∂∙J
prob

 = 0 } by construction via Green’s Vector Identity and the Klein-Gordon RQM Eqn.

If we include minimal coupling:
J

prob
 = (cρ

prob
,j

prob
) = (iћ/2mo)(ψ*∂[ψ]-∂[ψ*]ψ) + (q/mo)(ψ*ψ)A

Start at A on the chart
Follow past (q) factor to get to Q = qA
Minimal Coupling allows passage back to P with no factors
Follow back past (1/mo) to get to U
Follow past Born Rule (ψ*ψ)
Now have the additional factor:
+ (q/mo)(ψ*ψ)A 

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

mo

 Eo/c2

4-WaveVector
K=(ω/c,k)

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

ρo

4-EMVectorPotential
A=(φ/c,a)

φo/c2

4-Gradient
∂=(∂

t
/c,-∇)

4-EMPotentialMomentum
Q=(U/c,q)=qA

+
qq

∂∙A=0
Conservation of EM Field

= Lorenz Gauge

∂∙N=0 : ∂∙Jprob=0
Conservation of

Particle # : Probabilty

∂∙J=0
Conservation of

Charge

Minimal Coupling
P + Q 4-MomentumField

P
f
=(E

f
/c,p

f
)

=P+Q=P+qA

E=mc2

4-NumberFlux 
N=(nc,n)=n(c,u) 

 
 

4-Vector Quantum Probability
4-ProbabilityFlux, Klein-Gordon RQM Eqn

with Minimal Coupling
∂∙∂=(∂

t 
/c)2- ∙∇ ∇

d’Alembertian
∂∙∂= -(moc/ћ)2

Klein-Gordon

K∙K=(ωo/c)2

=(moc/(ћ))2

P∙P=(moc)2=(Eo/c)2

U∙U=c2

N∙N=(noc)2

Jprob∙Jprob=(ρ
proboc)2

J∙J=(ρoc)2

A∙A=(φo/c)2 Q∙Q=(Uo/c)2

 Eo/ωo

( ћ )

An alternate way would be to take A to U via the direct route:
+ (c2/φTo)(ψ*ψ)A
which would lead to a term like
ρ

prob
 → (γ)(ψ*ψ) + (γ)(φo/φTo)(ψ*ψ) = (γ)[1 + φo/φTo](ψ*ψ)

with potential due to particle (φo) typically much less than the
potential due to the whole field (φTo) 
(φo) << (φTo)

EM

 ωo/c2 Wave Velocity
v

group
*v

phase
=c2

Complex
Plane-waves
K=i∂

..[K∙R] 
..[-Φ

phase
]

( i )

Einstein
de Broglie
P =ћK 

Born
Probability Rule

EM Charge

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar
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Existing SR Rules
 Quantum Principles 

no
Rest Number
Density

ρprobo = χ*ψ

=|⟨χ|ψ⟩|2

4-ProbCurrentDensity 
4-ProbabilityFlux 

J
prob

=(ρ
prob

c,j
prob

)=ρ
prob

(c,u) 

=(iћ/2mo)(ψ*∂[ψ]-∂[ψ*]ψ)+ (q/mo)(ψ*ψ)A 
Complex

  4



  

4-Vector Quantum Probability 
Newtonian Limit

4-ProbabilityCurrentDensity J
prob

 = (cρ
prob

, j
prob

) = (iћ/2mo)(ψ*∂[ψ]-∂[ψ*]ψ) + (q/mo)(ψ*ψ)A

Examine the temporal component:
ρ

prob
 = (iћ/2moc2)(ψ* ∂t[ψ]-∂t[ψ*] ψ) + (q/mo)(ψ*ψ)(φ/c2)

ρ
prob

 → (γ)(ψ*ψ) + (γ)(qφo/moc2)(ψ*ψ) = (γ)[1 + qφo/Eo](ψ*ψ)

Typically, the particle EM potential energy (qφo) is much less than the particle rest energy (Eo), else it could generate new particles.
So, take (qφo << Eo), which gives  the EM factor (qφo/Eo) ~ 0

Now, taking the low-velocity limit ( γ → 1 ), ρ
prob

 = γ[1 + ~0](ψ*ψ),  ρ
prob

 → (ψ*ψ) = (ρ
probo) for |v|<<c

The Standard Born Probability Interpretation, (ψ*ψ) = (ρ
prob

), only applies in the low-potential-energy & low-velocity limit

This is why the {non-positive-definite} probabilities and {|probabilities| > 1} in the RQM Klein-Gordon equation gave physicists fits,
and is the reason why one must regard the probabilities as charge conservation instead.

The original definition from SR is Continuity of Worldlines, ∂∙J
prob

 = 0, for which all is good and well in the RQM version.

The definition says there are no external sources or sinks of probability = conservation of probability.

The Born idea that (ρ
prob

) → Sum[(ψ*ψ)] = 1 is just the Low-Velocity QM limit.

Only the non-EM rest version (ρ
probo) = Sum[(ψ*ψ)] = 1 is true.

It is not a fundamental axiom, it is an emergent property which is valid only in the NRQM limit

We now multiply by charge (q) to instead get a
4-”Charge”CurrentDensity J = (cρ, j) = qJ

prob
 = q(cρ

prob
, j

prob
), which is the standard SR EM 4-CurrentDensity
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Compton Scattering Derivation : Compton Effect
P·P = (moc)2 generally → 0 for photons (mo=0)
P

phot1
·P

phot2
 = ћ2K

1
·K

2
 = (ћ2ω

1
ω

2
/c2)(1- n̂

1
·n̂

2
) = (ћ2ω

1
ω

2
/c2)(1-cos[ø])

P
phot

·P
mass

 = ћK·P = (ћω/c)(1,n̂)·(E/c,p) = (ћω/c)(E/c - n̂·p) = (ћωEo/c2) = (ћωmo)

P
phot

 + P
mass

 = P'
phot

 + P'
mass

:4-MomentumConservation in Photon·Mass Interaction

===
P

phot
 + P

mass
 - P'

phot
 = P'

mass
:rearrange

(P
phot

 + P
mass

 - P'
phot

)2 = (P'
mass

)2:square to get scalars

(P
phot

·P
phot

 + 2P
phot

·P
mass

 - 2P
phot

·P'
phot

 + P
mass

·P
mass

 - 2P
mass

·P'
phot

 + P'
phot

·P'
phot

) = (P'
mass

)2

(0 + 2P
phot

·P
mass

 - 2P
phot

·P'
phot

 + (moc)2 – 2P
mass

·P'
phot

 + 0) = (moc)2

P
phot

·P
mass

 - P
mass

·P'
phot

 = P
phot

·P'
phot

(ћωmo) - (ћω'mo) = (ћ2ωω'/c2)(1 - cos[ø])
(ω-ω')/(ωω') = (ћ/moc2)(1 - cos[ø])
(1/ω' - 1/ω) = (ћ/moc2)(1 – cos[ø])

Δλ = (λ' - λ) = (ћ/moc)(1 – cos[ø]) = λ
C
(1 – cos[ø])

The Compton Effect:Compton Scattering

with
λ

C
 = λ

C
/2π = (ћ/moc) = Reduced Compton Wavelength

λ
C
 = (h/moc) = Compton Wavelength (not a rest-wavelength, but the wavelength of a photon

  with the energy equivalent to a massive particle of rest-mass mo)

Calculates the wavelength shift of a photon scattering from an electron (ignoring spin)
Proves that light does not have a “wave-only” description, photon 4-Momentum required
E/ω = γEo/γωo = Eo/ωo = ћ K

photon
 = (ω/c)(1,n) = null {ωλ = νλ = c} for photons

SRQM 4-Vector Study:
The QM Compton Effect

Compton Scattering

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
K=(ω/c,k)=(1/cT,n̂/λ)

4-Position
R=(ct,r)

∂μ[Rν]=ημν 
Minkowski Metric

SpaceTime
∂∙R=4

Dimension

ωo/c2

mo

 Eo/c2

Wave Velocity
v

group
*v

phase
= c2

Photon γ initial

Energy:Mass
E = mc2

Eo/ωo

( ћ )Einstein
de Broglie
P =ћK 

4-TotalMomentum
P

T
=(E

T
/c,p

T
)=(H/c,p

T
)

∑
n
[..]

{mo=0} ↔ {P∙U=0} ↔ {P is null}

{ωo=0} ↔ {K∙U=0} ↔ {K is null}

4-WaveVector γ
K

pi
=(ω

pi
/c,k

pi
)

4-Momentum γ 
P

pi
=(m

pi
c,p

pi
)=(E

pi
/c,p

pi
)=(ћ)K

pi

E/ω = Eo/ωo = ( ћ )

4-Momentum e-

P
ei
=(m

ei
c,p

ei
)=(E

ei
/c,p

ei
)

Electron e- initial

4-TotalMomentum e-+γ
P

ti
=(E

T
/c,p

T
)=(H/c,p

T
)

=P
ei
+P

pi

4-TotalMomentum e-+γ
P

tf
=(E

T
/c,p

T
)=(H/c,p

T
)

=P
ef
+P

pf

4-Momentum e-

P
ef
=(m

ef
c,p

ef
)=(E

ef
/c,p

ef
)

4-Momentum γ
P

pf
=(m

pf
c,p

pf
)=(E

pf
/c,p

pf
)=(ћ)K

pf

4-WaveVector γ
K

pf
=(ω

pf
/c,k

pf
)

Electron e- final Photon γ final

ω/E = ωo/Eo = ( 1/ћ )

+

+

Electron:Photon
Interaction

=

 U∙∂[..]
d/dτ[..]

4-Gradient
∂=(∂

t
/c,-∇)

K∙K=(ωo/c)2

=(moc/(ћ))2

P∙P=(moc)2

=(Eo/c)2

Initial

Final

Conservation of
4-TotalMomentum

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar
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SRQM 4-Vector Study:
The QM Aharonov-Bohm Effect

QM Potential ΔΦ
pot

 = -(q/ћ)∫
path

A·dX

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

4-Displacement 
ΔX=(cΔt,Δx) 
dX=(cdt,dx)

∂μ[Xν]=ημν 
Minkowski Metric

SpaceTime
∂∙X=4

Dimension

ωo/c2

mo

 Eo/c2

Wave Velocity
v

group
*v

phase
= c2

Aharonov-Bohm Effect

The EM 4-VectorPotential gives the Aharonov-Bohm Effect.
Φ

pot
 = -(q/ћ)A·X = -K

pot
·X

or taking the differential...
dΦ

pot
 = - (q/ћ)A·dX

over a path...
ΔΦ

pot
 = ∫

path
dΦ

pot
  

ΔΦ
pot

 = -(q/ћ)∫
path

A·dX

ΔΦ
pot

 = -(q/ћ)∫
path

[(φ/c)(cdt) - a·dx] 

ΔΦ
pot

 = -(q/ћ)∫
path

(φdt - a·dx)

Note that both the Electric and Magnetic effects
come out by using the 4-Vector notation.

Electric AB effect:  ΔΦ
pot_Elec

 = - (q/ћ)∫
path

(φdt)

Magnetic AB effect: ΔΦ
pot_Mag

 = + (q/ћ)∫
path

(a·dx)

Proves that the 4-VectorPotential A is more fundamental than
e and b fields, which are just components of the Faraday EM Tensor

Rest
Energy:Mass
E = mc2

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=P+Q=P+qA

 U∙∂[..]
d/dτ[..]

4-Gradient
∂=(∂

t
/c,-∇)

4-WaveVectorIncField
Kf=(ωf/c,kf)=K+(q/ћ)A

4-PotentialMomentum
Q=(U/c,q)=qA

4-VectorPotential
A=(φ/c,a)

φo/c2

q

+

ωo/Eo

( 1/ћ )

ωTo/ETo

( 1/ћ )

K∙X=(ωt-k∙x)
= -Φ

phase_dyn

 
K

f
∙X=(ω

f
t-k

f
∙x)

=Kdyn∙X+Kpot∙X
=K∙X+(q/ћ)A∙X

=(ωt-k∙x)+(q/ћ)(φt-a∙x)
=Kdyn∙X+Kpot∙X

= -Φdynamic+ -Φpotential 
= -Φf_phase 

 

Rest Scalar
Potential

EM
Charge

Minimal
Coupling
P + Q

Rest Ang
Frequency

Einstein
de Broglie
P =ћK 

ProperTime
Derivative

AB Potential
A∙dX=(φdt-a∙dx)Aharonov-Bohm

Quantum EM Potential

4-Position
X=(ct,x)

+ ( 1/ћ )

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
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(0,0)-Tensor S
Lorentz Scalar

Existing SR Rules
 Quantum Principles 

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson



  

SRQM 4-Vector Study:
The QM Josephson Junction Effect = SuperCurrent

EM 4-VectorPotential A = -(ћ/q)∂[ΔΦ
pot

]
Josephson Effect

The EM 4-VectorPotential gives the Aharonov-Bohm Effect.
Phase Φ

pot
 = -(q/ћ)A·X = -K

pot
·X

Rearrange the equation a bit:
-(ћ/q)ΔΦ

pot
 = A·ΔX 

A·ΔX = -(ћ/q)ΔΦ
pot

 

d/dτ[A·ΔX] = d/dτ[-(ћ/q)ΔΦ
pot

] = d/dτ[A]·ΔX + A·d/dτ[ΔX] = d/dτ[A]·ΔX + A·U

Assume that ( d/dτ[A]·ΔX ~ 0)
[A·U] = d/dτ[-(ћ/q)ΔΦ

pot
] 

[U·A] =(U·∂)[-(ћ/q)ΔΦ
pot

]

[A] =-(ћ/q)(∂)[ΔΦ
pot

]

A = -(ћ/q)∂[ΔΦ
pot

]

(φ/c,a) = -(ћ/q)(∂t/c,-∇)[ΔΦ
pot

]

Take the temporal part:
EM ScalarPotential φ = -(ћ/q)(∂

t
)[ΔΦ

pot
]; ω = (q/ћ)φ

If the charge (q) is a Cooper-electron-pair: { q = -2e }

Voltage V(t) = φ(t) = (ћ/2e)(∂/∂t)[ΔΦ
pot

]; AngFreq ω = -2eV/ћ

This is the superconducting phase evolution equation of the Josephson Effect

(ћ/2e) is defined to be the Magnetic Flux Quantum Φo

Which explains Josephson Effect criteria :
ΔX ~ 0: small gap
d/dτ[A] ~ 0: “critical current” & no voltage
d/dτ[A]·ΔX ~ orthogonal: ??

A = (ћ/q)K; K = (ω/c,k) = (q/ћ)A = (q/ћ)(φ/c,a)

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

4-Displacement 
ΔX=(cΔt,Δx) 
dX=(cdt,dx)

∂μ[Xν]=ημν 
Minkowski Metric

SpaceTime
∂∙X=4

Dimension

ωo/c2

mo

 Eo/c2

Wave Velocity
v

group
*v

phase
= c2

Rest
Energy:Mass
E = mc2

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=P+Q=P+qA

 U∙∂[..]
d/dτ[..]

4-Gradient
∂=(∂

t
/c,-∇)

4-WaveVectorIncField
K

f
=(ω

f
/c,k

f
)=K+(q/ћ)A

4-PotentialMomentum
Q=(U/c,q)=qA

4-VectorPotential
A=(φ/c,a)

φo/c2

q

+

ωo/Eo

( 1/ћ )

ωTo/ETo

( 1/ћ )

K∙X=(ωt-k∙x)
= -Φ

phase_dyn

 
Kf∙X=(ωft-kf∙x)
=Kdyn∙X+Kpot∙X
=K∙X+(q/ћ)A∙X

=(ωt-k∙x)+(q/ћ)(φt-a∙x)
=Kdyn∙X+Kpot∙X

= -Φdynamic+ -Φpotential 
= -Φf_phase 

 

Rest Scalar
Potential

EM
Charge

Minimal
Coupling
P + Q

Rest Ang
Frequency

Einstein
de Broglie
P =ћK 

ProperTime
Derivative

AB Potential
A∙dX=(φdt-a∙dx)Aharonov-Bohm

Quantum EM Potential

4-Position
X=(ct,x)

+

Trace[Tμν] = ημνTμν = Tμ
μ = T
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o)2

= Lorentz Scalar
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SRQM Symmetries:
Hamilton-Jacobi vs Relativistic Action

Josephson vs Aharonov-Bohm
Differential (4-Vector) vs Integral (4-Scalar)

Differential Formats : 4-Vectors Notice the Symmetry: Integral Formats : 4-Scalars

SR Hamilton-Jacobi Equation
PT = -∂[ΔSaction]

P + qA = -∂[ΔSaction]
P + qA = -∂[ћΔΦphase]

P + qA = -∂[ћΔΦphase,dyn+ (ћ)ΔΦphase,pot]

Josephson Junction Relation
A = -(ћ/q)∂[ΔΦpotential]

= -(1/q)∂[ΔSact,pot]
=Q/q

Aharonov-Bohm Relation
ΔΦpotential = -(q/ћ)∫pathA·dX

= -(1/ћ)∫pathQ·dX 
=ΔSact,pot/ћ

SR Action Equation
ΔSaction = -∫pathPT ·dX

ΔSaction = -∫path(P+qA)·dX
ћΔΦphase = -∫path(P+qA)·dX

ћΔΦphase,dyn + ћΔΦphase,pot = -∫path(P+qA)·dX
 

4-PotentialMomentum
Q = qA = -∂[ΔSact,pot]

-∂[ћΔΦphase,potential]

Action(potential part)

ΔSact,pot = ћΔΦphase,potential =
-∫path(qA)·dX = -∫path(Q)·dX 

Technically, the standard Josephson Junction uses just 
the temporal part { A = (φ/c,a) } & Cooper-pair-electrons 
{ q = -2e }
giving V(t) = φ = (ћ/2e)∂/∂t[ΔΦpot].
There should be a spatial part as well.

Inverse

4-Momentum
P = -∂[ΔSact,dync]

-∂[ћΔΦphase,dynamic]

+

Action(free part)

ΔSact,dyn = ћΔΦphase,dynamic

= -∫path(P)·dX

+

Inverse

Inverse

Inverse

( ћ )q

4-TotMom Conservation
P

T
 = (P+Q) = (P+qA)

Minimal Coupling 
P = (P

T
-qA) = (P

T
-Q)

4-TotMom Conservation
P

T
 = (P+Q) = (P+qA)

Minimal Coupling 
P = (P

T
-qA) = (P

T
-Q)

Dynamic Part

Potential Part Potential Part

Dynamic Part

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ
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(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)
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(0,0)-Tensor S
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The ћ Connection

P = ћK: Basic Einstein-de Broglie
P+Q = P   + Q
P+Q = ћK

dyn
+ћK

pot

P+Q = ћ(K
dyn

+K
pot

)

Sum over n particles: PT = Σ
n
(P+Q),KT = Σ

n
(K

dyn
+K

pot
) 

PT = ћKT

PT∙X = ћKT∙X
(PT∙X)= ћ(KT∙X)
-S

action
 = -ћΦ

phase

S
action

 = ћΦ
phase

-∂[S
action

] = -ћ∂[Φ
phase

]

PT = ћKT

{SR Hamilton-Jacobi} = ћ{QM Complex Plane-Waves}

The SR Hamilton-Jacobi Equation,
and the QM idea of Complex Plane-Waves,
are related by a simple constant (ћ) relation.

SRQM 4-Vector Study:
Einstein-de Broglie
The (ћ) Connection

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

4-Displacement 
ΔX=(cΔt,Δx) 
dX=(cdt,dx)

∂μ[Xν]=ημν 
Minkowski Metric

SpaceTime
∂∙X=4

Dimension

ωo/c2

mo

 Eo/c2

Wave Velocity
v

group
*v

phase
= c2

Rest
Energy:Mass
E = mc2

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=P+Q=P+qA

 U∙∂[..]
d/dτ[..]

4-Gradient
∂=(∂

t
/c,-∇)

4-WaveVectorIncField
K

f
=(ω

f
/c,k

f
)=K+(q/(ћ))A

4-PotentialMomentum
Q=(U/c,q)=qA

4-VectorPotential
A=(φ/c,a)

φo/c2

q

+

ωo/Eo

( 1/ћ )

ωTo/ETo

( 1/ћ )

K∙X=(ωt-k∙x)
= -Φ

phase_dyn

 
Kf∙X=(ωft-kf∙x)
=Kdyn∙X+Kpot∙X

=K∙X+(q/(ћ))A∙X
=(ωt-k∙x)+(q/(ћ))(φt-a∙x)

=Kdyn∙X+Kpot∙X
= -Φdynamic+ -Φpotential 

= -Φf_phase 

 

Rest Scalar
Potential

EM
Charge

Minimal
Coupling
P + Q

Rest Ang
Frequency

Einstein
de Broglie
P =ћK 

ProperTime
Derivative

4-Position
X=(ct,x)

..[P
T
∙R]

..∫[PT∙dR] 
..[-S

action
]

..[K
T
∙R]

..∫[K
T
∙dR] 

..[-Φ
phase

]
( i )

( 1/ћ )

Hamilton-
  Jacobi
PT = -∂[S]

Complex
Plane-Waves

KT = -∂[Φ]

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar
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SRQM 4-Vector Study:
Dimensionless Physical Objects

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector 
K=(ω/c,k)=(ω/c,ωn̂/v

phase
)

4-Displacement 
ΔX=(cΔt,Δx) 
dX=(cdt,dx)

∂μ[Xν]=ημν

Minkowski Metric

SpaceTime
∂∙X=4

Dimension

ωo/c2

mo

 Eo/c2

Dimensionless Physical Objects

There are a number of dimensionless physical objects in SR
that can be constructed from Physical 4-Vectors.
Most are 4-Scalars, but there are few 4-Vector and 4-Tensors.

∂∙X=4: SpaceTime Dimension
∂μ[Xν]=ημν: The SR Minkowski Metric

T∙T=  1: Lorentz Scalar “Magnitude” of the 4-UnitTemporal
T∙S=  0: Lorentz Scalar of 4-UnitTemporal with 4-UnitSpatial
S∙S= -1: Lorentz Scalar “Magnitude” of the 4-UnitSpatial

K∙X=(ωt-k∙x) = -Φ
phase_dyn

: Phase of an SR Wave

used in SRQM wave functions ψ=a*e^-(K∙X)

(P∙Θ) = (Eo/kBTo): 4-Momentum with 4-InvThermalMomentum
used in statistical mechanics particle distributions 
F(state) ~ e^-(P∙Θ) = e^-(Eo/kBTo)

α = (1/4πεo)(e2/ћc) = (μo/4π)(ce2/ћ): Fine Structure Constant
constructed from Lorentz 4-Scalars, which are themselves
constructed from 4-Vectors via the Lorentz Scalar Product.
ex. ћ=(P∙X)/(K∙X); q=(Q∙X)/(A∙X) →e for electron; c=(T∙U)

μo={(∂∙∂)[A]∙X}/(J∙X) when (∂∙A)=0

{γμ}: Dirac Gamma Matrix (“4-Vector”)
{σμ}: Pauli Spin Matrix (“4-Vector”)
Components are matrices of numbers, not just numbers

Rest
Energy:Mass

E = mc2

4-MomentumIncField
P

f
=(E

f
/c,p

f
)=P+Q=P+qA

4-Gradient
∂=(∂

t
/c,-∇)

4-PotentialMomentum
Q=(U/c,q)=qA

4-VectorPotential
A=(φ/c,a)

φo/c2

q

+

ωo/Eo

( 1/ћ )

K∙X=(ωt-k∙x)
= -Φ

phase_dyn

Rest Scalar
Potential

EM
Charge

Minimal
Coupling
P + Q

Rest Ang
Frequency

Einstein
de Broglie
P =ћK 

ProperTime
Derivative4-Position

X=(ct,x)

4-ChargeFlux
4-CurrentDensity
J=(ρc,j)=ρ(c,u)

(∂∙∂)A-∂(∂∙A)=μoJ
Maxwell EM Wave Eqn

εoc2  

1/μo 

ρo

Rest Charge
Density

 U∙∂[..]
d/dτ[..]

EM
Constants4-UnitTemporal

T=γ(1,β)
1/c

4-UnitSpatial
S=γβn(n̂·β,n̂)

 T∙S=0

4-ThermalVector
4-InverseTempMomentum 

Θ=(θ,θ)=(c/kBT,u/kBT)

θo/c
1/kBTo

βo

Rest Inverse
TemperatureEnergy
β=1/kBT in this case, not v/c
Unfortunate notational clash

β=u/c

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar
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(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)
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(0,0)-Tensor S
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 SRQM: QM Axioms Unnecessary
QM Principles emerge from SR

QM is derivable from SR plus a few empirical facts – the “QM Axioms” aren't necessary
These properties are either empirically measured or are emergent from SR properties...

3 “QM Axioms” are really just empirical constant relations between purely SR 4-Vectors:
  Particle-Wave Duality [(P) = ћ(K)]
  Unitary Evolution [∂ = (-i)K]
  Operator Formalism [(∂) = -iK]

2 “QM Axioms” are just the result of the Klein-Gordon Equation being a linear wave PDE:
  Hilbert Space Representation (<bra|,|ket>, wavefunctions, etc.) & The Principle of Superposition

3 “QM Axioms” are a property of the Minkowski Metric and the empirical fact of Operator Formalism
  The Canonical Commutation Relation
  The Heisenberg Uncertainty Principle (time-like-separated measurement exchange)
  The Pauli Exclusion Principle (space-like-separated particle exchange)

1 “QM Axiom” only holds in the NRQM case
  The Born QM Probability Interpretation – Not applicable to RQM, use Conservation of Worldlines instead

1 “QM Axiom” is really just another level of limiting cases, just like SR → CM in limit of low velocity
  The QM Correspondence Principle ( QM → CM in limit of {∇2[ϕ] << (∇[ϕ])2} )

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)
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SRQM Interpretation:
Relational QM & EPR

The SRQM interpretation fits fairly well with Carlo Rovelli's Relational QM interpretation:

Relational QM treats the state of a quantum system as being observer-dependent, that is, the QM State is the relation 
between the observer and the system.  This is inspired by the key idea behind Special Relativity, that the details of an 
observation depend on the reference frame of the observer.

All systems are quantum systems: no artificial Copenhagen dichotomy between classical/macroscopic/conscious objects 
and quantum objects.

The QM States reflect the observers' information about a quantum system.
Wave function “collapse” is informational – not physical.  A particle always knows it’s complete properties. An observer has 
at best only partial information about the particle’s properties.

No Spooky Action at a Distance. When a measurement is done locally on an entangled system, it is only the partial 
information about the distant entangled state that “changes/becomes-available-instantaneously”.  There is no superluminal 
signal.  Measuring/physically-changing the local particle does not physically change the distant particle.

ex. Place two identical-except-for-color marbles into a box, close lid, and shake. Without looking, pick one marble at 
random and place it into another box. Send that box very far away. After receiving signal of the far box arrival at a distant 
point, open the near box and look at the marble. You now instantaneously know the far marble’s color as well.  The 
information did not come by signal.  You already had the possibilities (partial knowledge). Looking at the near marble color 
simply reduced the partial knowledge of both marble’s color to complete knowledge of both marbles’ color.  No signal was 
required, superluminal or otherwise.

ex. The quantum version of the same experiment uses the spin of entangled particles. When measured on the same axis, 
one will always be spin-up, the other will be spin-down. It is conceptually analogous.  Entanglement is only about 
correlations of system that interacted in the past and are determined by conservation laws.
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SRQM Interpretation:
Interpretation of EPR-Bell Experiment

Einstein and Bohr can both be “right” about EPR:
Per Einstein: The QM State measured is not a “complete” description, just one observer's point-of-view.
Per Bohr: The QM State measured is a “complete” description, it's all that a single observer can get.

The point is that many observers can all see the “same” system, but see different facets of it. But a single 
measurement is the maximal information that a single observer can get without re-interacting with the system, 
which of course changes the system in general. Remember, the Heisenberg Uncertainty comes from non-zero 
commutation properties which *require separate measurement arrangements*. The properties of a particle are 
always there.  Properties define particles. We as observers simply have only partial information about them.

Relativistic QM, being derived from SR, should be local – The low-velocity limit to QM may give unexpected 
anomalous results if taken out of context, or out of the applicable validity range, such as with velocity addition
v12 = v1+v2, where the correct formula should be the relativistic velocity composition v12 = (v1+v2)/[1+v1v2/c2]

These ideas lead to the conclusion that the wavefunction is just one observer’s state of information about a 
physical system, not the state of the physical system itself.  The “collapse” of the wavefunction is simply the 
change in an observer’s information about a system brought about by a measurement or, in the case of EPR, an 
inference about the physical state.

EPR doesn’t break Heisenberg because measurements are made on different particles.  The happy fact is that 
those particles interacted and became correlated in the causal past.  The EPR-Bell experiments prove that it is 
possible to maintain those correlations over long distances.   It does not prove superluminal signaling
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SRQM Interpretation:
Range-of-Validity Facts & Fallacies

We should not be surprised by the “quantum” probabilities being correct instead of “classical” in the EPR and Bell Inequalities experiments.
Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

Examples

*The limit of ћ→0 {Fallacy}:
ћ is a Lorentz Scalar Invariant and Fundamental Physical Constant. It never becomes 0. {Fact}

*The classical commutator being zero [pk,xj] = 0 {Fallacy}:
[Pμ,Xν] = iћημν ; [pk,xj] = -iћδkj ; [p0,x0] = [E/c,ct] = [E,t] = iћ; Again, it never becomes 0 {Fact}

*Using Maxwell-Boltzmann (distinguishable) statistics for counting probabilities of (indistinguishable) quantum states {Fallacy}:
Must use Fermi-Dirac statistics for Fermions:Spin=(n+1/2); Bose-Einstein statistics for Bosons:Spin=(n) {Fact}

*Using sums of classical probabilities on quantum states {Fallacy}:
Must use sums of quantum probability-amplitudes {Fact}

*Ignoring phase cross-terms and interference effects in calculations {Fallacy}:
Quantum systems and entanglement require phase cross-terms {Fact}

*Assuming that one can simultaneously “measure” non-commuting properties at a single spacetime event {Fallacy}:
Particle properties always exist. However, non-commuting ones require separate measurement arrangements to get information about the properties.
The required measurement arrangements on a single particle/worldline are at best sequential events, where the temporal order plays a role; {Fact}
However, EPR allows one to “infer (not measure)” the other property of a particle by the separate measurement of an entangled partner. {Fact}
This does not break Heisenberg Uncertainty, which is about the order of operations (measurement events) on a single worldline. {Fact}
In the entangled case, both/all of the entangled partners share common past-causal entanglement events, typically due to a conservation law. {Fact}
Information is not transmitted at FTL. The particles simply carried their normal respective “correlated” properties (no hidden variables) with them. {Fact}

*Assuming that QM is a generalization of CM, or that classical probabilities apply to QM {Fallacy}:
CM is a limiting-case of QM for when changes in a system by a few quanta have a negligible effect on the whole/overall system. {Fact}
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SRQM Interpretation:
Quantum Information

We should not be surprised by the “quantum” probabilities being correct instead of “classical” in the EPR and Bell Inequalities experiments.
Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

{from Wikipedia}
No-Communication Theorem/No-Signaling:
A no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making 
a measurement of a subsystem of the total state, to communicate information to another observer.  The theorem shows that quantum correlations do not lead to what 
could be referred to as "spooky communication at a distance".  SRQM: There is no FTL signaling.

No-Teleportation Theorem:
The no-teleportation theorem stems from the Heisenberg uncertainty principle and the EPR paradox: although a qubit |ψ> can be imagined to be a specific direction on 
the Bloch sphere, that direction cannot be measured precisely, for the general case |ψ>. The no-teleportation theorem is implied by the no-cloning theorem.
SRQM: Ket states are informational, not physical.

No-Cloning Theorem: 
In physics, the no-cloning theorem states that it is impossible to create an identical copy of an arbitrary unknown quantum state. This no-go theorem of quantum 
mechanics proves the impossibility of a simple perfect non-disturbing measurement scheme.  The no-cloning theorem is normally stated and proven for pure states; 
the no-broadcast theorem generalizes this result to mixed states. SRQM: Measurements are arrangements of particles that interact with a subject particle.

No-Broadcast Theorem: 
Since quantum states cannot be copied in general, they cannot be broadcast. Here, the word "broadcast" is used in the sense of conveying the state to two or more 
recipients. For multiple recipients to each receive the state, there must be, in some sense, a way of duplicating the state. The no-broadcast theorem generalizes the 
no-cloning theorem for mixed states. The no-cloning theorem says that it is impossible to create two copies of an unknown state given a single copy of the state. 
SRQM: Conservation of worldlines.

No-Deleting Theorem: 
In physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it 
is impossible to delete one of the copies. It is a time-reversed dual to the no-cloning theorem, which states that arbitrary states cannot be copied. 
SRQM: Conservation of worldlines.

No-Hiding Theorem: 
the no-hiding theorem is the ultimate proof of the conservation of quantum information. The importance of the no-hiding theorem is that it proves the conservation of 
wave function in quantum theory.
SRQM: Conservation of worldlines. RQM wavefunctions are Lorentz Scalars (spin=0), Spinors (spin=1/2), 4-Vectors (spin=1), all of which are Lorentz Invariant.
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SRQM Interpretation:
Quantum Information

We should not be surprised by the “quantum” probabilities being correct instead of “classical” probabilities in the EPR/Bell-Inequalities experiments.
Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.
{from Wikipedia}
Quantum information (qubits) differs strongly from classical information, epitomized by the bit, in many striking and unfamiliar ways. Among these are the following:

A unit of quantum information is the qubit. Unlike classical digital states (which are discrete), a qubit is continuous-valued, describable by a direction on the Bloch 
sphere. Despite being continuously valued in this way, a qubit is the smallest possible unit of quantum information, as despite the qubit state being continuously-
valued, it is impossible to measure the value precisely.

A qubit cannot be (wholly) converted into classical bits; that is, it cannot be "read". This is the no-teleportation theorem.

Despite the awkwardly-named no-teleportation theorem, qubits can be moved from one physical particle to another, by means of quantum teleportation. That is, qubits 
can be transported, independently of the underlying physical particle. SRQM: Ket states are informational, not physical.

An arbitrary qubit can neither be copied, nor destroyed. This is the content of the no cloning theorem and the no-deleting theorem. SRQM: Conservation of worldlines.

Although a single qubit can be transported from place to place (e.g. via quantum teleportation), it cannot be delivered to multiple recipients; this is the no-broadcast 
theorem, and is essentially implied by the no-cloning theorem. SRQM: Conservation of worldlines.

Qubits can be changed, by applying linear transformations or quantum gates to them, to alter their state. While classical gates correspond to the familiar operations of 
Boolean logic, quantum gates are physical unitary operators that in the case of qubits correspond to rotations of the Bloch sphere.

Due to the volatility of quantum systems and the impossibility of copying states, the storing of quantum information is much more difficult than storing classical 
information. Nevertheless, with the use of quantum error correction quantum information can still be reliably stored in principle. The existence of quantum error 
correcting codes has also led to the possibility of fault tolerant quantum computation.

Classical bits can be encoded into and subsequently retrieved from configurations of qubits, through the use of quantum gates. By itself, a single qubit can convey no 
more than one bit of accessible classical information about its preparation. This is Holevo's theorem. However, in superdense coding a sender, by acting on one of two 
entangled qubits, can convey two bits of accessible information about their joint state to a receiver.

Quantum information can be moved about, in a quantum channel, analogous to the concept of a classical communications channel. Quantum messages have a finite 
size, measured in qubits; quantum channels have a finite channel capacity, measured in qubits per second.
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Minkowski still applies in local GR
QM is a local phenomenon

The QM Schrodinger Equation is not fundamental. It is just the low-energy limiting-case of the RQM 
Klein-Gordon Equation. All of the standard QM Axioms are shown to be empirically measured constants 
or emergent properties of SR.  It is a bad approach to start with NRQM as an axiomatic starting point and 
try to generalize it to RQM, in the same way that one cannot start with CM and derive SR.  Since QM 
*can* be derived from SR, this partially explains the difficulty of uniting QM with GR:
QM is not a “separate formalism” outside of SR that can be used to “quantize” just anything...

Strictly speaking, the use of the Minkowski space to describe physical systems over finite distances 
applies only in the SR limit of systems without significant gravitation. In the case of significant gravitation, 
SpaceTime becomes curved and one must abandon SR in favor of the full theory of GR.

Nevertheless, even in such cases, based on the GR Equivalence Principle, Minkowski space is still a 
good description in a local region surrounding any point (barring gravitational singularities). More 
abstractly, we say that in the presence of gravity, SpaceTime is described by a curved 4-dimensional 
manifold for which the tangent space to any point is a 4-dimensional Minkowski Space. Thus, the 
structure of Minkowski Space is still essential in the description of GR.

So, even in GR, at the local level things are considered to be Minkowskian:
i.e. SR → QM “lives inside the surface” of this local SpaceTime, GR curves the surface.
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SRQM Interpretation: Main Result
QM is derivable from SR!

Hopefully, this interpretation will shed light on why Quantum Gravity has been so elusive. Basically, QM rules of “quantization” don’t 
apply to GR.  They are a manifestation-of/derivation-from SR. Relativity *is* the “Theory of Measurement” that QM has been looking for.

This would explain why no one has been able to produce a successful theory of Quantum Gravity,
and why there have been no violations of Lorentz Invariance nor of the Equivalence Principle.

If quantum effects “live” in Minkowski SpaceTime with SR,
then GR curvature effects are at a level above the RQM description, and two levels above standard QM.
SR+QM are “in” SpaceTime, GR is the “shape” of SpaceTime…

Thus, this treatise explains the following:

● Why GR works so well in it's realm of applicability {large scale systems}.

● Why QM works so well in it's realm of applicability {micro scale systems and certain macroscopic systems}.
   i.e. The tangent space to any point in GR curvature is locally Minkowskian, and thus QM is typically found in small local volumes...

● Why RQM explains more stuff than QM without SR {because QM is just the low-velocity limiting-case of RQM}.

● Why all attempts to "quantize gravity" have failed {essentially, everyone has been trying to put the cart (QM) before the horse (GR)}.

● Why all attempts to modify GR keep conflicting with experimental data {because GR is apparently fundamental}.

● Why QM works perfectly well with SR as RQM but not with GR {because QM is derivable from SR, hence a manifestation of SR rules}.

● How Minkowski Space, 4-Vectors, and Lorentz Invariants play vital roles in RQM, and give the SRQM Interpretation of Quantum 
Mechanics.
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SRQM: The [SR→QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Physical Constant lead to SR,
although technically SR is itself the Minkowski-SpaceTime low-curvature:”flat” limiting-case of GR.
{c,τ,mo,ћ,i} = {c:SpeedOfLight, τ:ProperTime, mo:RestMass, ћ:DiracConstant, i:ImaginaryNumber√[-1]}:
are all Empirically Measured SR Lorentz Invariants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants 
4-Position R = (ct,r) = <Event>   (R∙R) = (cτ)2

4-Velocity U = γ(c,u) = (U∙∂)R=(d/dτ)R=dR/dτ   (U∙U) = (c)2

4-Momentum P = (E/c,p) = moU (P∙P) = (moc)2

4-WaveVector K = (ω/c,k) = P/ħ (K∙K) = (moc/ħ)2  |v|<<c

4-Gradient ∂ = (∂
t
/c,-∇) = -iK   (∂∙∂) = -(moc/ħ)2 = KG Eqn:Relation→RQM→QM

SR + Empirically Measured Physical Constants lead to RQM via the Klein-Gordon Quantum Eqn, and thence to QM
via the low-velocity limit { |v| << c }, giving the Schrödinger Eqn. This fundamental KG relation also leads to the other
Quantum Wave Equations: RQM RQM QM

{ |v| = c : mo = 0 } { 0 <= |v| < c : mo > 0 } { 0 <= |v| << c : mo > 0 }
spin=0 field=4-Scalar: Free Scalar Wave Klein-Gordon Schrödinger (regular QM)
spin=1/2 field=4-Spinor: Weyl Dirac (w/ EM) Pauli (w/ EM)
spin=1 field=4-Vector: Maxwell (EM) Proca

SRQM Chart:
SR→QM Interpretation Simplified
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Matter Wave
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= c2

Rest Angular
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Einstein, de Broglie
P = ћK

Planck:Dirac Constant

SRQM Diagram:
Special Relativity → Quantum Mechanics

RoadMap of SR→QM

4-Velocity Uμ

U=γ(c,u)=dR/dτ

4-Momentum Pμ

P=(mc,p)=(E/c,p)=moU

mo

 Eo/c2

4-WaveVector Kμ
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4-Gradient ∂μ
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t
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( -i )
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R=(ct,r)=<Event>
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( 1/ћ )

4-Velocity=Motion
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in SpaceTime as
both particles & waves

4-Momentum=Substantiation
of SR Particle <Events>
mass:energy & 3-momentum

4-WaveVector=Substantiation
of SR Wave <Events>
oscillations proportional to
mass:energy & 3-momentum

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4
SR SpaceTime 4D Metric
SR Lorentz Transforms
SR Action → 4-Momentum
SR Phase → 4-WaveVector
SR Proper Time
SR & QM Waves
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= (c)2

R∙R=(ct)2-r∙r 
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4-Gradient=Alteration of SR <Events> 
SR SpaceTime Dimension=4 
SR SpaceTime 4D Metric 
SR Lorentz Transforms 
SR Action → 4-Momentum 
SR Phase → 4-WaveVector 
SR Proper Time 
SR & QM Waves

SRQM Diagram: 
Special Relativity → Quantum Mechanics 

RoadMap of SR→QM (EM Potential)

4-Velocity
U=γ(c,u)

4-Momentum
P=(mc,p)=(E/c,p)

4-WaveVector
K=(ω/c,k)

4-Gradient
∂=(∂

t
/c,-∇)

4-Position
R=(ct,r)

=<Event>
  U∙∂[..]
γd/dt[..]
 d/dτ[..]

SR Wave <Events> have 
4-WaveVector=Substantiation 
oscillations proportional to 
mass:energy & 3-momentum
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SRQM Diagram: SRQM 4-Vectors and 
Lorentz Scalars / Physical Constants
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   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

ProperTime
Derivative

Polarization:Spin
is Rest Spatial

Time:Space
Orthogonal

..[P
T
∙R]

..∫[P
T
∙dR]

..[-S
action

]

Soul of SR

4-TotalWaveVector
K

T
=(ω

T
/c,k

T
)

=-∂[Φphase]

Einstein
de Broglie
P =ћK 

E
To/ωTo

( ћ )
Einstein
de Broglie
P

T 
=ћK

T 
 

Heart of SR

U∙A=U∙U’=0

U∙U=c2

T∙T= 1

S∙S= -1

   U∙∂[..]
 γd/dt[..]
 d/dτ[..]

Invariant Interval
R∙R=(ct)2-r∙r = (cτ)2

Minkowski
∂[R]=∂μ[Rν]=ημν

Metric

Lorentz
∂ν[Rμ’]=Λμ’

ν

Transform
SpaceTime Dim

Tr[ημν] = 4 = ΛμνΛμν

Trace[Tμν] = ημνTμν = Tμ
μ = T

V∙V = VμημνVν = [(v0)2 - v∙v] = (v0
o)2

= Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor Tμν

(1,1)-Tensor Tμ
ν or Tμ

ν

(0,2)-Tensor Tμν

SR 4-Vector
(1,0)-Tensor Vμ = V = (v0,v)

SR 4-CoVector 
(0,1)-Tensor Vμ = (v0,-v)

SR 4-Scalar
(0,0)-Tensor S
Lorentz Scalar

4-ProbCurrDensity
4-ProbabilityFlux
J

prob
=(ρ

prob
c, j

prob
)

ρ
probo = χ*ψ

=|⟨χ|ψ⟩|2

Existing SR Rules
 Quantum Principles 

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

 SRQM Diagram 
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Special Relativity → Quantum Mechanics
The SRQM Interpretation: Links

See also:
http://scirealm.org/SRQM.html (alt discussion)

http://scirealm.org/SRQM-RoadMap.html (main SRQM website)

http://scirealm.org/4Vectors.html (4-Vector study)

http://scirealm.org/SRQM-Tensors.html (Tensor & 4-Vector Calculator)

http://scirealm.org/SciCalculator.html (Complex-capable RPN Calculator)

or Google “SRQM”

http://scirealm.org/SRQM.pdf (this document: most current ver. at SciRealm.org)

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

http://scirealm.org/SRQM.html
http://scirealm.org/SRQM-RoadMap.html
http://scirealm.org/4Vectors.html
http://scirealm.org/SRQM-Tensors.html
http://scirealm.org/SciCalculator.html
https://www.google.com/search?q=srqm
http://scirealm.org/SRQM.pdf
mailto:SciRealm@aol.com
mailto:SciRealm@aol.com


  

The 4-Vector SRQM Interpretation
QM is derivable from SR!

quantum
relativity

SRQM = SciRealm QM? A happy coincidence…   :) Ambigrams

The SRQM or [SR→QM] Interpretation of Quantum Mechanics 
A Tensor Study of Physical 4-Vectors

SRQM: A treatise of SR→QM by John B. Wilson (SciRealm@aol.com)

SR → QM

A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

mailto:SciRealm@aol.com
mailto:SciRealm@aol.com
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