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Abstract

In this paper we lay out the proof of this result in group theory using only elementary facts in
group theory and the method of induction.

Theorem 1

Any subgroup of order pn�1 in a group G of order pn, p a prime number, is normal in G.
Proof.
Let P.n/ be the statement that a subgroup of order pn�1 in a group of order pn, p a prime number, is
normal. Now assume P.k� 1/ is true. Let G be a group of order pk and H be subgroup of G of order pk�1.
By Lagrange’s theorem, jZ.G/j D pm for some integer 0 5 m 5 k. Since Z.G/ ¤ .e/, p divides jZ.G/j and
so Z.G/ has an element a of order p. Let N be the subgroup of G generated by a. Then N is of order p.
Since a 2 Z.G/, N must be normal in G. Moreover, jN \ H j divides jN j. So jN \ H j divides p. Thus
jN \H j D 1 or p. Suppose jN \H j D 1. Then

jNH j D
jN jjH j

jN \H j
D pk :

Since NH � G and jNH j D jGj, so NH D G. Since N � Z.G/, every element of N commutes with every
element of G. Let g 2 G. So g D nh for some n 2 N and h 2 H . Let x 2 gH . Thus x D gh0 for some
h0 2 H . Moreover, x D gh0 D .nh/h0 D n.hh0/ D .hh0/n 2 Hn. Hence gH � Hn. Since gH � Hn and
jgH j D jHnj, so gH D Hn and whence every left coset of H in G is a right coset of H in G. So H is normal
in G and hence P.k/ is true. Now suppose jN \H j D p. Since N \H � N and jN \H j D jN j, it follows
that N \H D N and hence N � H . Since G=N is a group of order pk�1 and H=N is a subgroup of G=N

of order pk�2, H=N must be normal in G=N by the induction hypothesis. Thus H is normal in G as well
and hence P.k/ is true.
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