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1 INTRODUCTION

Abstract

The proof of Goldbach’s strong conjecture is presented, built on the
foundations of the theory of gap, which, when combined with certain
criteria about the existence of prime numbers in successions, gives us
the evidence cited. In reality, We have proof a more general statement
in relation to that attributed to Goldbach. As result, it is proved how
a even number is the sum of two odd primes, of infinite ways and as
a corollary, the conjecture about of the twin primes is also proof.

1 Introduction

When someone claims that he has the proof of a legendary and famous con-
jecture, the answer he gets is disbelief. And it’s not for less, considering
the centuries of passed history and the amount of geniuses that failed when
trying to solve it. Skepticism is well received, but must give way to analysis
as compelling events are revealed.

In my opinion, if one can explain why a phenomenon occurs, then one
has a proof for that phenomenon. Goldbach’s strong conjecture had not been
proven simply because nobody could explain why it happens. This document
is a technical explanation of why this phenomenon exists. The theory used
is not new to the author, I have called it the theory of gap and I used it
in my research work on Fermat’s Last Theorem, even before Andrew Wiles
presented his laborious proof. A few days ago it occurred to me to dust off
those ideas and apply them to Goldbach’s conjecture to see what came out
and the result is the content of this document.

The proof, finally, has been relatively easy to achieve. They do not require
more than the four basic operations of arithmetic and a bit of fundamentals
about primality theory. This can “turn on alarms”among those who believe
that the most important open problems can only be solved through very
elaborate and complex theories! A very elaborate “proof”, usually can only
be understood by three or four specialists in the world which makes it terribly
unpopular. This is because only these people have, not intelligence, but
rather, the necessary experience in the issues involved and hence the review
of a work of these can take years. However, nowhere is it written that difficult
problems must be solved in the same way. On the contrary, the simpler a
proof for a difficult problem, more aroused admiration, since, in this case,
there is more merit in discovering the facts that for centuries specialists have
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2 THE GOLDBACH CONJETURE

ignored that, in continuing to pay a certain cult to the difficulty and moving
away more and more the pure mathematics of the “mortal currents“. This
proof is specially built so that anyone with basic education can understand
it, I hope, without major difficulties.

Finally, I dedicate this proof to the memory of my deceased parents:
Néstor and Sof́ıa.

2 The Goldbach Conjeture

The Goldbach conjecture is one of the oldest open problems in mathematics.1

is defined as:2

Definition 1. Any even number greater than 2 can be written as the sum of

two prime numbers.

The conjecture is easy to see for small pairs, as illustrated in table 1:

No p+ q p q
1 4 2 2
2 6 3 3
3 8 3 5
4 10 5 5
5 12 5 7
6 14 7 7
7 16 5 11
8 18 5 13
9 20 7 13
10 22 11 11

Table 1: First 10 pairs in the Goldbach conjecture.

The conjeture:3

1G.H. Hardy in 1921, in his famous speech at the Copenhagen Mathematical Society,
commented that probably the Goldbach conjecture is not only one of the most difficult
unresolved problems of number theory, but of all mathematics (see [7]).

2Christian Goldbach (1690-1764), Prussian mathematician.
3See [7]
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2 THE GOLDBACH CONJETURE

it has been checked by computers for all even numbers less than
1018. Most mathematicians believe that the conjecture is
true, and rely mostly on statistical considerations about
the probabilistic distribution of prime numbers in the
set of natural numbers: the larger the even integer, the makes
more “likely”that can be written as the sum of two prime num-
bers.

Goldbach made two related conjectures about the sum of prime numbers:

• The strong conjeture and,

• The “weak”conjeture of Goldbach.

This research is about Goldbach’s strong conjecture, which is often mentioned
simply as conjeture of Goldbach.

The weak conjeture of Goldbach state that (see [8]):

“All odd number greater than 5 can be expressed as the sum of
three prime numbers.”

This conjecture was demonstrated by Harald Andrés Helfgott 4, and re-
ceives the name of “weak ”because the strong Goldbach conjecture, auto-
matically implies the weak Goldbach conjecture. This is feasible because if
every even number greater than 4 is the sum of two odd primes, you can add
three to even numbers greater than 4 to produce odd numbers greater than
7, so sometimes it is usually stated as follows:

“All odd number greater than 7 can be expressed as the sum of
three odd prime numbers.”

The following results summarize the advances obtained in this matter in
the last two centuries:5

1. In 1923, Hardy and Littlewood showed that, assuming a certain
generalization of the Riemann hypothesis, the weak Goldbach con-
jecture is true for all sufficiently large odd numbers.

4Two works published in the years 2012 and 2013 by the Peruvian mathematician
Harald Andrés Helfgott, who claim the improvement of the estimates of the major and
minor arcs, are considered sufficient to unconditionally demonstrate the conjecture weak
of Goldbach.

5See [8].

6



2 THE GOLDBACH CONJETURE

2. In 1937, the Russian mathematician Iván Matvéyevich Vinográdov
6 It was able to eliminate the dependence of the Riemann hypothesis
and directly showed that all sufficiently large odd numbers can be writ-
ten as a sum of three primes.

3. Chen Jing-run showed that each sufficiently large number is the sum
of a prime number with a number that has no more than two prime
divisors.

4. Olivier Ramaré showed in 1995 that every even number greater than
four (n ≥ 4) is in fact the sum of, at most, six primes, so it follows that
each odd number n ≥ 5 is the sum of at most, seven primes.

5. Leszek Kaniecki showed that every odd integer is the sum of at most,
five primes, under the condition of the Riemann hypothesis. In 2012,
Terence Tao demonstrated this without need of using the Riemann
hypothesis.

6. Perhaps the most important result has been achieved by the Peru ma-
thematic Harald Andrés Helfgott, who in January of 2014 presented
the document [2] with the aforementioned demonstration.

On the result of Helfgott it is commented on [5]:

“The proof is based on the advances made in the early twen-
tieth century by Hardy, Littlewood and Vinogradov. In 1937,
Vinogradov proved that the conjecture is true for all odd num-
bers greater than some constant C. (Hardy and Littlewood had
shown the same under the assumption that the generalized Rie-
mann Hypothesis was true, we will discuss this later.) Since then,
the constant C has been specified and gradually improved, but
the best value (this is, the smallest) of C that was available was
C = e3100 > 101346 (Liu-Wang), which was by far too large. Even

6Vinográdov could not determine what “was sufficiently large ”exactly, his student K.
Borodzin showed that 314,348,907 is a upper bound for the concept of “large enough”. This
number has more than six million digits, so checking the conjecture in each number below
this level would be impossible. Fortunately, in 1989 Wang and Chen reduced this level to
1043000. This means that if each of the odd numbers less than 1043000 turns out to be the
sum of three prime numbers, then the weak Goldbach conjecture will be proven. However,
this level must still be greatly reduced before each number can be checked below it.
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3 GAP THEORY

C = 10100 would be too much: as 10100 is larger than the product
of the estimated number of subatomic particles in the universe by
the number of seconds since the Big Bang, there was no hope of
checking each case up to 10100 per computer (even assuming that
one was an alien dictator using the entire universe as a highly
highly parallel computer). ”

For the purposes of this investigation, the following definition is consi-
dered for Goldbach’s strong conjecture:

Definition 2. All even number greater than 4 is the sum of two odd primes.

For convenience, we exclude the case 4 = 2+ 2 and focus on the odd primes.

3 Gap Theory

3.1 Gap Successions of Goldbach

Consider the succession:
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3 GAP THEORY

0 · 16 = 0
17

1 · 17 = 17 2
19

2 · 18 = 36 2
21

3 · 19 = 57 2
23

4 · 20 = 80 2
25

5 · 21 = 105 2
27

6 · 22 = 132 2
29

7 · 23 = 161 2
31

8 · 24 = 192 2
33

9 · 25 = 225 2
35

10 · 26 = 260 2
37

11 · 27 = 297 2
39

12 · 28 = 336 2
41

13 · 29 = 377 2
43

14 · 30 = 420 2

45
...

15 · 31 = 465
...

Named as Gap Succession of Goldbach (GSG). In the succession GSG, by
inspection, we can make the following observations:

1. Each element of the sequence is obtained by the difference of the two
consecutive elements that precede it in the column on the left.
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3 GAP THEORY

2. All the elements of the first column 7, with the exception, perhaps, of
the element that immediately follows zero (17 in this case), are num-
bers compounds, that is, that can be expressed as the product of two
nontrivial factors.

3. Each element in the sequence can be obtained from the elements that
precede it by means of sums. For example, 17 = 17+0, y 36 = 17+19 =
17 + 17 + 2, equally 57 = 17 + 19 + 21 = 17 + 17 + 2 + 17 + 4, etc.

4. Since the last column is constant and equal to 2! = 2, each new element
is obtained by adding 2 to the element that precedes it in the middle
column, a result that is added in a similar way to the first column to
get a new element.

5. The first column is then composed of “compound numbers”, the second
column are all odd numbers and the third column are constant values.

6. Note that the factors involved in the first column all have the
same difference, that is, 31 − 15 = 16, 30 − 14 = 16, 29 − 13 = 16,
. . ., 17 − 1 = 16, y 16 − 0 = 16. In addition, 16 serves as a generator
of the entire sequence since the first element is obtained by doing 17 =
0 + (16 + 1) = 0 + 17, and successively are obtained 36 = 19 + 17 =
(17 + 2) + 17, etc.

7. Note also that, the sum of the factors involved in the first column co-
rresponds to the difference that appears in the second column decreased
by one unit, that is, 31 + 15 = 46 = 45 + 1, 14 + 30 = 44 = 43 + 1,
13 + 29 = 42 = 41 + 1, etc.

On the other hand, in a similar way, we can define the sequence:

7It can be seen as “gaps ”of zero order.
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3 GAP THEORY

0 · 42 = 0
41

1 · 41 = 41 -2
39

2 · 40 = 80 -2
37

3 · 39 = 117 -2
35

4 · 38 = 152 -2
33

5 · 37 = 185 -2
31

6 · 36 = 216 -2
29

7 · 35 = 245 -2
27

8 · 34 = 272 -2
25

9 · 33 = 297 -2
23

10 · 32 = 320 -2
21

11 · 31 = 341 -2
19

12 · 30 = 360 -2
17

13 · 29 = 377 -2
15

14 · 28 = 392 -2

13
...

15 · 27 = 405
...

In this last sequence we can also make some similar observations:

1. The factors involved in the elements of the first column add up all the
same, that is, 27 + 15 = 42, 14 + 28 = 42, 13 + 29 = 42, etc.

2. The difference of the factors involved in the first column now corre-
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3 GAP THEORY

sponds to the elements of the second column decreased in the unit.
This is, 27− 15 = 12 = 13− 1, 28− 14 = 14 = 15− 1, etc.

3. The elements of the last column, the constant column, are now negative.

4. All the elements of the first column, with the exception perhaps of the
element immediately following to zero (41 in this case), are compound
numbers, that is, they can be expressed as the product of two nontrivial
factors.

In both cases, we have two even numbers, namely, the difference and
the sum of the factors involved in the first column. These even numbers
are, by nature, associated with an infinite series of pairs of prime
numbers, which leads to the direct proof of the Goldbach conjecture, as will
be shown more clearly in the section 4.1.

3.2 Gap Successions of Fermat

The successions seen above are intended to provide proof of the Goldbach
conjecture, however, they are not the only ones. We can define similar se-
quences to attack other types of problems. For example, the following se-
quence, calculated for the first time in 1991, can be used to directly study
Fermat’s Last Theorem:

173 − (163 + 113) = −514
433

183 − (173 + 103) = −81 -54
379 6

193 − (183 + 93) = 298 -48
331 6

203 − (193 + 83) = 629 -42

289
...

213 − (203 + 73) = 916
...

3.3 The Successions Theorem

Given a generating numerical sequence g = (gi)i∈Z, the infinite matrix is
built
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3 GAP THEORY

E(g) = [eij ]i∈Z,j∈N

of the following way

• For each i ∈ Z : ei0 = gi

• For each i ∈ Z, j ∈ N : ei,j+1 = ei+1,j − eij

schematically you have
Theorem 18. For each i ∈ Z j ∈ N, we have

eij =

j
∑

k=0

(

j

k

)

(−1)j−kgi+k (1)

Proof. (Induction on j)

1. j = 0 By definition, for any i ∈ Z we have ei = gi and trivially

gi =

0
∑

k=0

(

0

k

)

(−1)0−kgi+k (2)

2. Suppose that the formula is valid for j (and any i ∈ Z) by definition
ej+1
i = ei+1,j − eij; For both ei+1,j and eij the formula is valid, then it
can be replaced:

eij =

j
∑

l=0

(

j

l

)

(−1)j−lgi+1+l −

j
∑

k=0

(

j

k

)

(−1)j−kgi+k (3)

(4)

8Oostra-Useche, 1991.
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3 GAP THEORY

(changing index: k = l + 1)

=

j+1
∑

k=1

(

j

k − 1

)

(−1)j−k+1gi+k +

j
∑

k=0

(

j

k

)

(−1)j−k+1gi+k (5)

= (

j
∑

k=1

(

j

k − 1

)

(−1)j−k+1gi+k + gi+j+1 + (−1)j+1gi+ (6)

j
∑

k=1

(

j

k

)

(−1)j−k+1gi+k) (7)

= (−1)j+1gi +

j
∑

k=1

(

(

j

k − 1

)

+

(

j

k

)

)(−1)j−k+1gi+k + gi+j+1 (8)

(9)

(by a property of the binomial coefficients)

=

(

0

j + 1

)

(−1)j+1−0gi+0 +

j
∑

k=1

(

j + 1

k

)

(−1)j+1−kgi+k+ (10)

(

j + 1

j + 1

)

(−1)j+1−(j+1)gi+(j+1) (11)

=

j+1
∑

k=0

(

j + 1

k

)

(−1)j+1−kgi+k (12)

and this is the formula for j + 1 �

3.3.1 Special cases

1. If b is a non-zero real number, for each i ∈ Z let gi = bi. Then,
according to the affirmation 1, it is received

eij =

j
∑

k=0

(

j

k

)

(−1)j−kbi+k (13)

= bi
j

∑

k=0

(

j

k

)

bk(−1)j−k (14)

= bi(b− 1)j (15)
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4 HARD NUMBER

2. If n is positive integer, for each i ∈ Z let gi = in

The following section is dedicated to proof that in this case for each i ∈ Z

we have
ein = n! (16)

combining this fact with the proven statement, we obtain the following “sur-
prising expressions ”of the factorial

1. For each whole number i ∈ Z,

n! =
n

∑

k=0

(

n

k

)

(−1)n−k(i+ k)n (17)

2. In special,

n! =

n
∑

k=0

(

n

k

)

(−1)n−kkn (18)

3.

n! =

n
∑

k=0

(

n

k

)

kk(−k)n−k (19)

4.

n! =

n
∑

k=0

(

n

k

)

(−1)k(i− k)n (20)

4 Hard Number

The “hard numbers ”are integers of the form n = p·q, where p, q ∈ P. That is,
they are integers in whose canonical decomposition only two nontrivial prime
factors appear. For example 77 = 11 ·7 is a hard number that, however, does
not honor its name simply because its magnitude is small. These numbers,
having only two prime factors are very difficult to factoring when their size
exceeds a certain dimension. However, in this paper, the factorization of these
numbers does not represent a problem, as will be appreciated immediately.
These numbers play a central role in demonstrating the strong Goldbach
conjecture and other results.

The GSG defined in 3.2 enclose some mathematical details that allow us
to know its nature. In effect, consider the GSG, written as shown below:
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4 HARD NUMBER

0 · 16 = 0
17

1 · 17 = 17 = (17+1
2

)2 − (17−1
2

)2 = 92 − 82 2
19

2 · 18 = 36 = (19+1
2

)2 − (17−1
2

)2 = 102 − 82 2
21

3 · 19 = 57 = (21+1
2

)2 − (17−1
2

)2 = 112 − 82 2
23

4 · 20 = 80 = (23+1
2

)2 − (17−1
2

)2 = 122 − 82 2
25

5 · 21 = 105 = (25+1
2

)2 − (17−1
2

)2 = 132 − 82 2
27

6 · 22 = 132 = (27+1
2

)2 − (17−1
2

)2 = 142 − 82 2
29

7 · 23 = 161 = (29+1
2

)2 − (17−1
2

)2 = 152 − 82 2
31

8 · 24 = 192 = (31+1
2

)2 − (17−1
2

)2 = 162 − 82 2
33

9 · 25 = 225 = (33+1
2

)2 − (17−1
2

)2 = 172 − 82 2
35

10 · 26 = 260 = (35+1
2

)2 − (17−1
2

)2 = 182 − 82 2
37

11 · 27 = 297 = (37+1
2

)2 − (17−1
2

)2 = 192 − 82 2
39

12 · 28 = 336 = (39+1
2

)2 − (17−1
2

)2 = 202 − 82 2
41

13 · 29 = 377 = (41+1
2

)2 − (17−1
2

)2 = 212 − 82 2
43

14 · 30 = 420 = (43+1
2

)2 − (17−1
2

)2 = 222 − 82 2

45
...

15 · 31 = 465 = (45+1
2

)2 − (17−1
2

)2 = 232 − 82

...

A remarkable fact appears in this presentation, namely, that each gap of
zero order in a GSG can be written as the difference of two squares, namely
two squares of the form:

(
a+ 1

2
)2 − (

b− 1

2
)2

16



4 HARD NUMBER

where a represents the sum of the two factors decreased in the unit,
and b represents the difference between the same factors. This im-
plies that, being n a gap of zero order of the GSG, then we can write its
decomposition as:

n = (
a+ 1

2
)2 − (

b− 1

2
)2 (21)

= (a′)2 − (b′)2 (22)

= (a′ + b′) · (a′ − b′) (23)

= p · q (24)

whore a′ = a+1
2

y b′ = b+1
2
. Also, p = a′ + b′ y q = a′ − b′.

We define the numbers n = p · q, where, both p and q are odd primes, like
the “hard numbers” of the sequence and we represent them by ~. That
is, wherever ~ appears, it will be understood that we are talking about a
compound “hard ”(hard number), a number with only two non-trivial prime
factors. Some authors call these numbers as false primes or pseudoprimes.

For example, the hard numbers of the example given in the section 3.1
are:

3 · 19 = 57 = 112 − 82 = (11− 8) · (11 + 8) (25)

7 · 23 = 161 = 152 − 82 = (15− 8) · (15 + 8) (26)

13 · 29 = 377 = 212 − 82 = (21− 8) · (21 + 8) (27)

Of course, only for the interval shown.

4.1 Existence

The existence of hard numbers (~) allows associating an even number with
two odd primes, so that this pair is just the sum of such primes. In practice
there is more than one way to do that, however, in order to prove the strong
Goldbach conjecture, in theory, it is only necessary to guarantee the existence
of at least one hard number in each GSG.

Essentially, we look for numbers of the form x±y, where x+y = a prime
and x − y = other prime, which are part of the first column of a GSG. By
the Dirichlet theorem9 on arithmetic progressions, it is known that there are

9See [9]
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4 HARD NUMBER

linear functions f(x) = ax + b that produce infinite prime numbers as long
as a and b are relative primes, that is, (a, b) = 1. There are many results
that involve primes generated by linear functions. However, in this study, we
will follow a different strategy to guarantee the existence of infinite ~ in any
GSG.

Let’s go back to the GSG of the example given in the section 3.1. If we
detail a little the elements of the first column, that is,

0 · 16 = 0
17

1 · 17 = 17 2
19

2 · 18 = 36 2
21

3 · 19 = 57 2
...

...

The elements, 0, 17, 36, 57, etc., all them with exception of 17, are com-
pound numbers that assume the form n = p · q, with p, q ∈ N, and in some
special cases (hard numbers) we have p, q ∈ P.

We can imagine the elements of the GSG as being part of a “strip ”double
of numbers, which have an offset equal to the difference of q − p. The first
strip, that is, the values 0, 1, 2, 3, . . ., naturally goes over all the integers and
therefore runs through the complete set of prime numbers 2, 3, 5, . . .. What
will be the probability that one of these integers turns out to be a number
prime ? considering a given interval. To calculate this value, we first use the
prime counting function, that is,

π(x) ∼
x

lnx
(28)

18
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N π(x) P (x)
10 4 0.4
100 21 0.21
1000 144 0.144
10000 1085 0.1085
100000 8685 0.08685
1000000 72382 0.072382
10000000 620420 0.0620420
100000000 5428681 0.0542868
1000000000 48254942 0.0482549
10000000000 434294481 0.04343

Table 2: First values for π(x), with x ≤ 1010.

The table 2 shows the values of π(x) for different 10-powers with x ≤

109. The value of P (x) refers to the probability that an integer is prime for
different intervals. For example, the first line indicates that there are four
primes less than 10 (2, 3, 5, and 7). Therefore, the probability that any
of those integers in the interval (0, 10) turns out prime, is equal to P (4) =
4/10 = 0.4. In general we can express this probability as:

P (x) = π(x)/x =
1

ln x
(29)

On the other hand, for be a hard number, there must be two odd primes.
This leads us to ask ourselves the question: What is the probability that the
two factors in the first column of a GSG are prime numbers ? Since the two
“strips”considered above are essentially the same, the probability that both
factors are prime numbers is a composite probability and in our case it is:

P (x, y) = P (x) · P (y) = (
1

ln x
)2 (30)

The equation in 30 gives us the probability of having a hard number (~)
in a GSG.

4.1.1 Improving π(x)

The estimate for π(x) given in the table 2 corresponds to the classical ex-
pression for π(x). However, we can improve the precision of this value a bit
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more by computing π(x) with the expression:

π(x) ∼
x

ln x− 1.08366
(31)

which was introduced by Legendre, 25 years after Gauss discovered the ap-
proach (see [10]).

N π(x) P (x)
10 8 0.43429
100 28 0.21715
1000 172 0.14476
10000 1231 0.10857
100000 9588 0.08686
1000000 78543 0.07238
10000000 665140 0.06204
100000000 5768004 0.05429
1000000000 50917519 0.04825
10000000000 455743004 0.04343

Table 3: Improving values for π(x), with x ≤ 1010.

The table 3, slightly improves the estimate of π(x). However, the estimate
for P (x) does not vary substantially and for this reason this modification will
not affect the statistical calculations.

4.2 Prediction

In the section 4.1, method and formula (Ec. 30) is given to calculate the
probability that any element of the GSG sequence will be a hard number.
Based on the Ec. 30 we can obtain the amount of hard numbers (N(~))
expected in the GSG sequence. The expression for this value is:

N(~) = x · P (x, y) = x(
1

ln x
)2 (32)

Where, N(~) denotes the theoretical hard numbers in GSG, and x defines
the sample size.

The expression given in Ec. 32 allows us to know how many hard num-
bers can be expected in a GSG before a certain value, as illustrated
in the table 4.
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x ln x (1/ lnx)2 π(x) N(~)
10 2.30259 0.1886117 4 2
102 4.60517 0.0471529 22 5
103 6.90776 0.0209569 145 21
104 9.21034 0.0117882 1086 118
105 11.51293 0.0075445 8686 754
106 13.81551 0.0052392 72382 5239
107 16.11810 0.0038492 620421 38492
108 18.42068 0.0029471 5428681 294706
109 20.72327 0.0023285 48254942 2328539
1010 23.02585 0.0018861 434294482 18861170
1011 25.32844 0.0015588 3948131654 155877436
1012 27.63102 0.0013098 36191206825 1309803451
1013 29.93361 0.0011160 334072678387 11160455444
1014 32.23619 0.0009623 3102103442166 96230457659
1015 34.53878 0.0008383 28952965460217 838274208941
1016 36.84136 0.0007368 271434051189532 7367644414516
1017 39.14395 0.0006526 2554673422960305 65263562979797
1018 41.44653 0.0005821 24127471216847324 582134867319796
1019 43.74912 0.0005225 228576043106974624 5224700748244154
1020 46.05170 0.0004715 2171472409516259072 47152924252903480

Table 4: Expected number of hard numbers (~) before a certain value x,
compare with the value of π(x).

With the help of this table, we collect the following facts:

1. for x = 4, the equation for N(~) yields:

N(4) = 4(
1

ln 4
)2 = 4 · (0.72134752)2 = 4 · 0.52034225 ≈ 2

We also find, N(6) = 2, N(8) = 2, ..., N(50) = 3

Therefore it is clear that N(~) > 0 for all x ∈ N. This is important
because the condition N(~) > 0 guarantees that in each GSG, there is
at least one hard number, that is, a n such that n = p ·q with p, q ∈ P

and n forming part of GSG.

2. The table shows that the number of primes before a certain value x,
that is, π(x), is always greater than the number of hard numbers N(~),
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10 in the same interval, however, its magnitudes are comparable, having
a close order, so that if π(x) → ∞, then, likewise N(~) → ∞. This
results in the presence of infinite ~ for each GSG.

3. This behavior is easy to see in the expression:

lim
x→∞

x(
1

ln x
)2 = lim

x→∞

x · lim
x→∞

(
1

ln x
)2 = ∞

Since limx→∞ x is ∞, the full expression it evaluates to ∞.
The equation 32 is a consequence of the symmetry of the problem, and

has a singularity in x = 1, since 1
ln 1

= indeterminate. However, this condition
does not affect the calculation of N(~) in any case.

We can now formulate the following:
Theorem 2: Every GSG contains infinite values ~ in its elements of zero
order.
Proof. It is a consequence of the arguments presented in numerals 1 to 3 of
this section �.

4.3 n−Primes

Theorem 2 leads us to define the primes in special series, so that in each
GSG, s = p ± q =constant, for all elements of zero order in the GSG. That
is, here s represents the sum of the factors p, q in the broad sense. To see it
more directly, consider the following examples.

4.3.1 n = 2 (Twin primes)

Indeed, we have an infinite series of ~, associated with an even number and,
in this order of ideas, we can generate all the possible SGS, starting with the
first pair, n = 2, to obtain something like

10Which is very obvious, since its definition.
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0 · 2 = 0
3

1 · 3 = 3 2
5

2 · 4 = 8 2
7

3 · 5 = 15
...

Succession in which all so-called “twin primes”appear (see section 5.2),
that is, 3 and 5, 11 and 13, 17 and 19, etc.

But this situation is not exclusive to even 2.

4.3.2 n = 4 (4-primes)

Another GSG with n = 4 will be:

0 · 4 = 0
5

1 · 5 = 5 2
7

2 · 6 = 12 2
9

3 · 7 = 21
...

Where other primes are obtained, which can no be called “twins ”because
they are separated by 4 units, then we can tell them the “4-primes”, of which
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the first is 3 · 7 = 21, and following:

7− 3 = 4

11− 7 = 4

17− 13 = 4

23− 19 = 4

41− 37 = 4

47− 43 = 4

71− 67 = 4

83− 79 = 4

101− 97 = 4

...

And then come “6-primes”, and so on for every pair.

4.3.3 n = 16, (16-primes)

For a moment, let’s go back to the example in the section 3.1 and suppose
you want to know, in this case, the value of N(~) for the given sequence
and for different sample sizes. First, consider a sample of 10 elements that
according to 32 will produce:

N(~) = 10 · (
1

ln 10
)2 = 10 · (0.43429448)2 = 10 · 0.1886 = 1.886 ≈ 2

hard number. When reviewing the first 10 elements of the sequence one by
one, there are actually two hard numbers (57 and 161). Repeating this same
exercise achieves the table 5. The table shows that the theoretical prediction
for N(~t) is always less than the real value, and the relationship between
these two quantities (column 5) “seems”converge to a certain value around
0.6.
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Sample P (x)2 N(~) Real N(~) Theoretical N(~t)/N(~r)
10 0.189 2 1 0.5
100 0.047 9 4 0.44
1000 0.021 39 20 0.51282
10000 0.012 200 117 0.585
100000 0.008 1233 754 0.61152
1000000 0.005 8210 5239 0.63812
10000000 0.004 58606 38490 0.65679
100000000 0.003 441055 294705 0.66818

Table 5: N(~) in GSG for even number 16 and a sample size that varies from
10 to 108 items in succession.

Actually, it is difficult to know the value of this relationship for large
values of the sample size in GSG, because N(~r), must be calculated by
“brute force ”, that is, verifying one by one the hard numbers existing in the
sequence. So, for very large sample sizes, this calculation is impractical.

4.3.4 n = 98, (98-primes)

If we change the reference par value from 16 to 98, then the relation

N(~t)

N(~r)

suffers, of course, some changes as shown in table 6.

Muestra P (x)2 N(~) Real N(~) Teórico N(~t)/N(~r)
10 0.189 1 1 1
100 0.047 7 4 0.57143
1000 0.021 40 20 0.50000
10000 0.012 231 117 0.50649
100000 0.008 1485 754 0.50774
1000000 0.005 9815 5239 0.53377
10000000 0.004 70139 38492 0.54880
100000000 0.003 528631 294705 0.55749

Table 6: N(~) in GSG for even number 98 and a sample size that varies from
10 to 108.
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The situation is essentially the same, noting that the observed relation,
now, has varied from 0.6 to 0.5, but the fact that the theoretical values are
lower than the real is maintained, excluding the case N(~(10)), where the
comparison is a bit abusive.

4.3.5 Cases 6 ≤ x < 50

The table 7 shows the result of evaluating N(~) for even numbers 6 ≤ x < 50.
It is observed how the values of N(~t) are shown less than N(~r), the latter,
always growing to the right in the box.

Therefore, regardless the size of the reference pair used, the expression
used in Ec. 32 guarantees that there will always be an infinite number of ~
for any GSG sequence. A fact that was expected due to the way “combine
the strips”considered in GSG, that is, the whole factors of the zero-order
gaps.
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Even/N 10 102 103 104 105 106

Theor value. 1 4 20 117 754 5239
6 2 16 74 411 2447 16386
8 1 8 37 207 1259 8241
10 2 11 51 270 1624 10934
12 2 15 70 404 2421 16378
14 1 9 47 244 1487 9877
16 2 9 39 200 1233 8210
18 1 14 74 417 2477 16451
20 0 9 47 268 1644 10971
22 1 7 41 226 1351 9171
24 1 14 78 403 2474 16342
26 1 8 41 239 1347 8927
28 1 8 41 248 1468 9784
30 1 18 99 536 3329 21990
32 0 5 36 195 1203 8195
34 1 8 43 214 1305 8745
36 2 14 76 404 2463 16441
38 1 7 38 212 1291 8699
40 2 10 48 267 1638 10967
42 1 15 87 489 2931 19839
44 0 6 40 226 1408 9209
46 1 6 39 201 1292 8599
48 0 12 71 408 2482 16500

Table 7: N(~) in GSG for 4 < N < 50 and 6 sample sizes ≤ 106. The first
line corresponds to the theoretical values that do not depend on the even
number.

5 New statement

Now that we have proven results, it is convenient to review the classic state-
ment of the strong conjecture to try to discover the meaning of the expression
“every even number is the sum of two prime numbers”, a statement that is
associated with the strong Goldbach conjecture.

However, some discrepancy arises when the expression “sum”is given a
meaning different from that used by Goldbach towards the first years of the
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18th century. In fact, to see it better, consider how the conjecture material-
izes around the pair n = 8. So, it is easy to verify that 8 = 5 + 3 would be
the only solution in the sense used by Goldbach. Such solutions are obtained
from the partitions for par 8 as shown below:

8 = 1 + 7

= 2 + 6

= 3 + 5

= 4 + 4

Since 3, 5 are the only pair of odd primes and therefore the only value
~ associated with par 8 under the concept of Goldbach sum, which implies
a restrictive sense of the sum that does not take into account the signature
of the addends. However, we can establish a relation of “sum”, in a more
generalized additive sense, as shown below:

8 = 11 + (−3) = 11− 3

8 = 12 + (−4) = 12− 4

8 = 13 + (−5) = 13− 5

8 = 14 + (−6) = 14− 6

8 = 15 + (−7) = 15− 7

8 = 16 + (−8) = 16− 8

8 = 17 + (−9) = 17− 9

8 = 18 + (−10) = 18− 10

8 = 19 + (−11) = 19− 11

8 = 20 + (−12) = 20− 12

8 = 21 + (−13) = 21− 13

8 = 22 + (−14) = 22− 14

8 = 23 + (−15) = 23− 15

...

That is, we look for all combinations x ± y = constant pair. By doing
this, the ~ values are achieved
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8 = 11− 3

8 = 13− 5

8 = 19− 11

...

that according to the results obtained in the section 4.2 yields infinite values
~, which correspond to all the ways of writing par 8 as the sum of two odd
primes, including the signature, as indicated above :

11 - 3 = 8

13 - 5 = 8

19 - 11 = 8

31 - 23 = 8

37 - 29 = 8

61 - 53 = 8

67 - 59 = 8

79 - 71 = 8

97 - 89 = 8

109 - 101 = 8

139 - 131 = 8

157 - 149 = 8

181 - 173 = 8

199 - 191 = 8

241 - 233 = 8

271 - 263 = 8

277 - 269 = 8

367 - 359 = 8

397 - 389 = 8

409 - 401 = 8

439 - 431 = 8

457 - 449 = 8

487 - 479 = 8

499 - 491 = 8

571 - 563 = 8

577 - 569 = 8
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5.1 The proposed statement

All these values of ~ are part of the GSG sequence associated with the par 8
and when it is evaluated for a sample size of one million, 8241 hard numbers
(~) are obtained, from where we have taken the sample previous to illustrate
the case par = 8. We have chosen 8 for this example because in the restricted
sense of the sum, only one value is obtained for 8 = 5 + 3. But as we have
just seen, by changing the meaning of the sum and accepting a more general
concept as it is done now, infinite solutions appear for 8 = p1 ± p2, where
p1, p2 ∈ P. This approach leads us to the next

Theorem 3: Every even number is the sum11 of two odd prime in infi-
nite ways.
Proof. Observe that since the Theorem 1 the existence of a sequence is
guaranteed in such a way that the difference (or sum) q−p of all its elements
is always the same, that is, it is constant for all the numbers ni = pi · qi that
are gaps of zero order, that is, d = qi − pi = cte. This allows an arbitrary
number pair (q − p or q + p) be associated with the product of two factors,
n = p · q, in infinite forms, as shown in the sections “Gap Theory”and “Gap
Succession Goldbach”. By combining this result with Theorem 2, the desired
result is achieved � In the section “Hard Number in GSG”it was shown and
proved that, statistically speaking, the zero-order gaps of the resulting GSG
contain, effectively, infinite hard numbers.

As a corollary we can say that Goldbach’s strong conjecture, as we know
it and have been stated here, is a special case of Theorem 3, which, being
more general, include the concept of addition in the restricted sense and
allows use a broader concept that involves no longer a pair, but infinite pairs
of prime numbers, all them being part of the same “family ”of numbers as
zero-order gaps and all them constructed from the repetitive sum of the same
quantity, an even number, as illustrated above in the section 3.1.

5.2 The twin primes

Another very legendary conjecture states that:

“There is an infinite number of primes p such that p + 2 is
also prime.”

11Notice that here we are using the term sum in its broadest sense, as illustrated above.
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For example, 3 and 5, are twin primes, also 11 and 13, 17 and 19, etc.
All of them are built with:

0 · 2 = 0
3

1 · 3 = 3 2
5

2 · 4 = 8 2
7

3 · 5 = 15 2
9

4 · 6 = 24 2
11

5 · 7 = 35 2
13

6 · 8 = 48 2
15

7 · 9 = 63 2
17

8 · 10 = 80 2
19

9 · 11 = 99 2
21

10 · 12 = 120 2
23

11 · 13 = 143 2
25

12 · 14 = 168 2
27

13 · 15 = 195 2
29

14 · 16 = 224 2

31
...

15 · 17 = 255
...

in where, we separate the values ~ and we obtain the set of all the twin
primes. Now, admitting the Theorem 3, it follows then that there are infi-
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nite twin primes in the GSG given above. In this way, the conjecture of the
twin primes becomes the twin primes theorem, in the following:

Theorem 4. There are infinite twin primes.
Proof. It follows from Theorem 3.

Although we have stated this theorem separately, in reality, it has been
a corollary of Theorem 3.
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