Equation of Zero

July 21, 2019
Yuji Masuda

(y_masuda0208@yahoo.co.jp)

First, $\pm \infty$ is constant at any observation point (position).
If a set of real numbers is R, then

$$
\begin{aligned}
& R \times(\pm \infty)= \pm \infty \\
& R+(\pm \infty)= \pm \infty \\
& (-1) \times(\pm \infty) \neq \mp \infty
\end{aligned}
$$

On the other hand, when $x(\in R)$ is taken on a number line, the absolute value X becomes larger toward $\pm \infty$ as the absolute value X is expanded.
Similarly, as the size decreases, the absolute value X decreases toward 0 .
Furthermore, $x(-1)$ represents the reversal of the direction of the axis.

$$
\begin{aligned}
& R \times(-1) \times(\pm \infty)=\frac{R}{ \pm \infty} \\
& -1=\left(\frac{1}{ \pm \infty}\right)^{2}=i^{2} \\
& 1=(\pm \infty) \times i
\end{aligned}
$$

$$
\therefore(\pm \infty) \cdot i-1=0
$$

