A weak extension of Complex structure on Hilbert spaces

NAUM E. SALIS

Contact: naumsa@hotmail.it

Abstract

The purpose of this paper is to try to replicate what happens in \mathbb{C} on spaces where there are more then one of immaginary units. All these spaces, in our definition, will have the same Hilbert structure. At first we will introduce the sum and product operations on $\mathbb{C}(H):=\mathbb{R} \times H$ (where H is an Hilbert space), then we'll investigate on its algebraic properties. In our construction we lose only the associative of multiplication regardless of H, exept when $\operatorname{dim} H=1$ (in this case $\mathbb{R} \times H \simeq \mathbb{C}$), and this is why we say weak extension. One of the most important result of this study is the Weak Integrity Theorem (th. 12) according to which in particular conditions there exist zero divisors. The next result is the Foundamental Theorem (th. 34) according to which for all $z \in \mathbb{C}(H)$ there exists $w \in \mathbb{C}(H)$ such that $z=w^{2}$. Afterwards we will study tranformations between these spaces which keep operation (that's why we will call them \mathbb{C}-morphisms). At the end we will look at the commutative functions, i.e. maps $\mathbb{C}(H) \rightarrow \mathbb{C}\left(H^{\prime}\right)$ which can be rapresented by complex transformations $\mathbb{C} \rightarrow \mathbb{C}$

1 The Pseudo-Complex Space

Definition 1. Let $(H,\langle\cdot \mid \cdot\rangle)$ be an Hilbert space on \mathbb{R} and define two operation on $\mathbb{R} \times H$ as such

$$
\begin{gather*}
(x, f)+(y, g):=(x+y, f+g) \tag{1}\\
(x, f) \cdot(y, g):=(x y-\langle f \mid g\rangle, x g+y f) \tag{2}
\end{gather*}
$$

for any choice of $x, y \in \mathbb{R}$ and $f, g \in H$. We call pseudo-complex space $\mathbb{C}(H)$ on H the $\operatorname{triad}(\mathbb{R} \times H,+, \cdot)$. We will often use $a b$ notation instead of $a \cdot b$ where $a, b \in \mathbb{C}(H)$ and $0:=\left(0,0_{H}\right)$ and λ instead $(\lambda, 0)$ when $\lambda \in \mathbb{R}$. If $z=(x, f) \in \mathbb{C}(H)$ we denote $\Re(z):=x$ and $\Im(z):=f$ respectively the real and immaginary part of z
EXAMPLE 1. If $H=\mathbb{R}^{n}$ then for every $x, y \in \mathbb{R}$ and every $u, v \in H$ with $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ we have

$$
(x, u) \cdot(y, v)=\left(x y-\sum_{i=1}^{n} u_{i} v_{i},\left(\begin{array}{c}
x v_{1}+y u_{1} \\
\vdots \\
x v_{n}+y u_{n}
\end{array}\right)\right)
$$

EXAMPLE 2. If $H=L^{2}(\mathbb{R})$ then for every $x, y \in \mathbb{R}$ and every $f, g \in H$ we have

$$
(x, f) \cdot(y, g)=\left(x y-\int_{\mathbb{R}} f g d \mu, x g+y f\right)
$$

EXAMPLE 3. If $H=\mathbb{R}$ then there is a field isomorphism between $\mathbb{C}(H)$ and \mathbb{C}

$$
(x, y) \leftrightarrow x+i y
$$

EXAMPLE 4. If in H there is an orthonormal basis $\left\{e_{j}\right\}_{j \in I} \subset H$ then for all $f \in H$ there exist $\left\{a_{j} \in \mathbb{R}\right\}_{j \in I}$ such that

$$
f=\sum_{j \in I} a_{j} e_{j}
$$

So, for all $x \in \mathbb{R}$

$$
(x, f)=\left(x, \sum_{j \in I} a_{j} e_{j}\right)=(x, 0)+\sum_{j \in I} a_{j}\left(0, e_{j}\right)
$$

Calling $\left(0, e_{j}\right):=i_{j}$ for $j \in I$, we will have the algebraic notation

$$
(x, f)=x+\sum_{j \in I} a_{j} i_{j}
$$

By using definition, we can observe that $i_{j} i_{k}=-\delta_{j k}$ for $j, k \in I$

1.1 An Hilbert space

Definition 2. Let's define the conjugate of $(x, f) \in H$ the element $\overline{(x, f)}:=(x,-f)$
Observation 1. For any $z_{1}, z_{2} \in \mathbb{C}(H)$ we have

$$
\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2} \quad ; \quad \overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}
$$

Proposition 1. The application

$$
\begin{gather*}
\mathbb{C}(H) \times \mathbb{C}(H) \rightarrow \mathbb{R} \\
\left(z_{1}, z_{2}\right) \rightarrow \frac{1}{2}\left(z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}\right) \tag{3}
\end{gather*}
$$

is a dot product
Proof. Let's note that if $z_{1}=(x, f)$ and $z_{2}=(y, g)$ then

$$
\left(z_{1} \mid z_{2}\right)=\frac{1}{2}\left(z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}\right)=x y+\langle f \mid g\rangle
$$

and so the proof
Observation 2. $\left(z_{1} \mid \bar{z}_{2}\right)=\left(\bar{z}_{1} \mid z_{2}\right)$
Corollary 2. If $z_{1} z_{2}=0$ then $\left(z_{1} \mid \bar{z}_{2}\right)=0$

Proof.

$$
2\left(z_{1} \mid \bar{z}_{2}\right)=\overline{z_{1} z_{2}}+z_{1} z_{2}=0
$$

Henceforth we call $|z|:=\sqrt{z \bar{z}} \quad \forall z \in \mathbb{C}(H)$. So we're ready to prove this:
Theorem 3. $\mathbb{C}(H)$ is an Hilbert space
Proof. $|z|$ is a norm on $\mathbb{C}(H)$ induced by (3) which complete the product space $\mathbb{R} \times H$. Indeed if $\left\{\left(x_{n}, f_{n}\right)\right\}_{n \in \mathbb{N}} \subset \mathbb{C}(H)$ is a Cauchy sequence so $\left|\left(x_{n}, f_{n}\right)-\left(x_{m}, f_{m}\right)\right|<\epsilon$, that is

$$
\left(x_{n}-x_{m}\right)^{2}+\left\|f_{n}-f_{m}\right\|_{H}^{2}<\epsilon^{2}
$$

i.e. $\left|x_{n}-x_{m}\right|<\epsilon$ and $\left\|f_{n}-f_{m}\right\|_{H}<\epsilon$. Since \mathbb{R} and H are both complete there exist $\tilde{x} \in \mathbb{R}$ and $\tilde{f} \in H$ such that $x_{n} \rightarrow \tilde{x}$ and $f_{n} \xrightarrow{H} \tilde{f}$ i.e. $\left(x_{n}, f_{n}\right) \rightarrow(\tilde{x}, \tilde{f}) \in \mathbb{C}(H)$

Proposition 4. Let $z_{1}, z_{2} \in \mathbb{C}(H)$. Then

$$
\left|z_{1} z_{2}\right| \leq\left|z_{1}\right|\left|z_{2}\right| \quad ; \quad\left|z_{1}^{2}\right|=\left|z_{1}\right|^{2}
$$

Proof. Let's call $z_{1}=(x, f)$ and $z_{2}=(y, g)$. Then

$$
\begin{gathered}
\left|z_{1} z_{2}\right|^{2}=|(x y-\langle f \mid g\rangle, x g+y f)|=x^{2} y^{2}+\langle f \mid g\rangle^{2}+x^{2}\|g\|_{H}^{2}+y^{2}\|f\|_{H}^{2} \leq \\
\leq x^{2} y^{2}+\|f\|_{H}^{2}\|g\|_{H}^{2}+x^{2}\|g\|_{H}^{2}+y^{2}\|f\|_{H}^{2}=\left(x^{2}+\|f\|_{H}^{2}\right)\left(y^{2}+\|g\|_{H}^{2}\right)=\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}
\end{gathered}
$$

where we used the Cauchy-Schwarz inequality $|\langle f \mid g\rangle| \leq\|f\|_{H}\|g\|_{H}$. If $z_{1}=z_{2}$ we got the second identity

Corollary 5. Since $\left|z_{1} z_{2}\right| \leq\left|z_{1}\right|\left|z_{2}\right|, \mathbb{C}(H)$ is a Banach algebra

$1.2 \mathbb{C}(H)$ algebra

Let's check some algebraic properties of these spaces:
Proposition 6. $(\mathbb{C}(H),+)$ is an abelian group; multiplication satisfies commutativity property and is distributive with respect to addition. Furthermore there exists an identity element for multiplication and every non-null element admits a multiplicative inverse

Proof. We'll not prove these items. We just want to highlight the fact that

$$
|z|^{2}=z \bar{z} \quad \Longrightarrow \quad z^{-1}=\frac{\bar{z}}{|z|^{2}}
$$

when $z \neq 0$
Proposition 7 (Weak Associativity). For any choice of $A=(a, \alpha), B=(b, \beta), C=$ $(c, \gamma) \in \mathbb{C}(H)$

$$
\begin{equation*}
A(B C)=(A B) C \Longleftrightarrow \alpha\langle\beta \mid \gamma\rangle=\langle\alpha \mid \beta\rangle \gamma \tag{4}
\end{equation*}
$$

Observation 3. From (4) we can observe that the associativity property is satisfied when $\alpha \in \operatorname{Span} \gamma$ or when $\langle\alpha \mid \beta\rangle=0=\langle\beta \mid \gamma\rangle$

Corollary 8. $\mathbb{C}(H)$ is a field iff $\operatorname{dim} H \in\{0,1\}$
Proof. If $\operatorname{dim} H \in\{0,1\}$ then $\mathbb{C}(H)$ is \mathbb{R} or \mathbb{C}. If $\mathbb{C}(H)$ is a field then $A(B C)=(A B) C$ for any $A, B, C \in \mathbb{C}(H)$. In particular $\alpha \in \operatorname{Span} \gamma$ for any $\alpha \in H$ so $\operatorname{dim} H \in\{0,1\}$

Corollary 9. For any $z \in \mathbb{C}(H)$

$$
z^{n} z^{m}=z^{n+m} \quad \forall n, m \in \mathbb{N}
$$

Corollary 10. For any $z, w \in \mathbb{C}(H)$

$$
z\left(w z^{-1}\right)=(z w) z^{-1}
$$

Proof. It is sufficient to apply (4)
Observation 4. If $z, w \in \mathbb{C}(H)$ with $z=(x, f)$ and $w=(y, g)$ then

$$
z w z^{-1}=w \quad \Leftrightarrow \quad g=\lambda f \forall \lambda \in \mathbb{R}
$$

Proposition 11. $\mathbb{C}(H)$ is a \mathbb{R}-algebra
Theorem 12 (Weak Integrity). Fixed $z_{1}, z_{2} \in \mathbb{C}(H)$ such that $\Re\left(z_{1}\right) \neq 0$ and $z_{1} z_{2}=0$ then $z_{2}=0$

Proof. Let's take $z_{1}=(x, f)$ and $z_{2}=(y, g)$ so

$$
\begin{equation*}
0=(x y-\langle f \mid g\rangle, x g+y f) \tag{5}
\end{equation*}
$$

Since $x \neq 0$ we have

$$
\begin{equation*}
g=-\frac{y}{x} f \tag{6}
\end{equation*}
$$

therefore replacing it in the real part of (5)

$$
0=x y+\frac{y}{x}\|f\|_{H}^{2} \Rightarrow y\left|z_{1}\right|^{2}=0
$$

that is $y=0$. Replacing it in (6) we have $g=0$ indeed $z_{2}=0$
Observation 5. If there exist $f, g \in H$ such that $\langle f \mid g\rangle=0$ then

$$
(0, f) \cdot(0, g)=0
$$

Observation 6. If $\Re(z) \neq 0$ there is only one inverse moltiplicative for z. Otherwise, fixed $f \in H$ for all $g \in H$ such that $\langle f \mid g\rangle=0$ we have

$$
(0, f) \cdot\left(0, g-\frac{f}{\|f\|_{H}^{2}}\right)=1
$$

Proposition 13. If $A, B \in \mathbb{C}(H)$ with $\Re(A) \neq 0$ there is a unique $z \in \mathbb{C}(H)$ such that

$$
\begin{equation*}
A z+B=0 \tag{7}
\end{equation*}
$$

Proof. The uniqueness comes from Theorem 12: if z_{1}, z_{2} are the solutions of (7) then $A\left(z_{1}-z_{2}\right)=0$. Since $\Re(A) \neq 0$ follows that $z_{1}-z_{2}=0$.
Calling $A=(a, \alpha), B=(b, \beta)$, we define

$$
x=-\frac{1}{|A|^{2}}(a b+\langle\alpha \mid \beta\rangle) \quad ; \quad f=-\frac{1}{a}(\beta+x \alpha)
$$

so (x, f) is a solution of (7)
Observation 7. In general $\mathbb{C}(H)$ is not algebraically closed. Indeed if $H=\mathbb{R}^{2}$, calling $A=(1,0)$ and $B=(0,1)$ the equation $(0, A) \cdot z+(0, B)=0$ has got no solution

Let's see one last thing about the algebra on $\mathbb{C}(H)$
Proposition 14. $\mathbb{C}(H)$ is a Lie algebra and $[z, w]:=z w-w z$ is the Lie bracket
Proof. The bilinearity and nilpotency of $[\cdot, \cdot]$ are immediately. Let's check Jacobi's identity: $\forall A, B, C \in \mathbb{C}(H)$ we should have

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

But

$$
\begin{aligned}
& {[A,[B, C]]=A(B C)-(A B) C=(0,(\gamma\langle\beta \mid \alpha\rangle-\alpha\langle\beta \mid \gamma\rangle))} \\
& {[B,[C, A]]=B(C A)-(B C) A=(0,(\alpha\langle\beta \mid \gamma\rangle-\beta\langle\alpha \mid \gamma\rangle))} \\
& {[C,[A, B]]=C(A B)-(C A) B=(0,(\beta\langle\gamma \mid \alpha\rangle-\gamma\langle\beta \mid \alpha\rangle))}
\end{aligned}
$$

Summing, it follows the proof

$1.3 \mathbb{C}$-morphisms

From these observations we can now define maps among pseudo-complex spaces:
Definition 3. Let H and H^{\prime} be Hilbert spaces. A \mathbb{C}-morphism $T: \mathbb{C}(H) \rightarrow \mathbb{C}\left(H^{\prime}\right)$ is a continuos map such that $\forall z_{1}, z_{2} \in \mathbb{C}(H)$
$\mathrm{C} 1: T\left(z_{1}+z_{2}\right)=T\left(z_{1}\right)+T\left(z_{2}\right)$
C2: $T\left(z_{1} z_{2}\right)=T\left(z_{1}\right) T\left(z_{2}\right)$
The set of \mathbb{C}-morphism form H to H^{\prime} is named $\mathscr{C}\left(H, H^{\prime}\right)$. If $H=H^{\prime}$ we denote $\mathscr{C}\left(H, H^{\prime}\right)$ simply $\mathscr{C}(H)$

EXAMPLE 5. If $H=\mathbb{R}^{n}$ and $H=L^{2}(\mathbb{R})$ let's take the operator

$$
\begin{aligned}
\Lambda: \mathbb{R}^{n} & \rightarrow L^{2}(\mathbb{R}) \\
\left(u_{1}, \ldots, u_{n}\right) & \rightarrow \sum_{k=1}^{n} u_{k} \chi_{[k, k+1)}
\end{aligned}
$$

Then the map $T: \mathbb{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}\left(L^{2}(\mathbb{R})\right)$ such that

$$
T((x, u))=(x, \Lambda(u)) \quad \forall x \in \mathbb{R} \forall u \in \mathbb{R}^{n}
$$

is a \mathbb{C}-morphism

Proposition 15. For every Hilbert space H, the map $z \mapsto \bar{z}$ is a \mathbb{C}-morphism in $\mathscr{C}(H)$
Corollary 16. The constant map $z \mapsto 0$ is a \mathbb{C}-morphism in $\mathscr{C}\left(H, H^{\prime}\right)$ for every H, H^{\prime} Hilbert spaces

Proposition 17. Let H_{1}, H_{2} and H_{3} be Hilbert spaces and $T_{1} \in \mathscr{C}\left(H_{1}, H_{2}\right)$ and $T_{2} \in$ $\mathscr{C}\left(H_{2}, H_{3}\right) \mathbb{C}$-morphisms. Then $T_{2} \circ T_{1} \in \mathscr{C}\left(H_{1}, H_{3}\right)$

Proof. Since T_{1} and T_{2} are continuos, $T_{2} \circ T_{1}$ is continuos. Moreover, calling $T:=T_{2} \circ T_{1}$ for all $z, w \in \mathbb{C}(H)$ we have

$$
\begin{gathered}
T(z+w)=T_{2}\left(T_{1}(z+w)\right)=T_{2}\left(T_{1}(z)+T_{1}(w)\right)=T_{2}\left(T_{1}(z)\right)+T_{2}\left(T_{1}(w)\right)=T(z)+T(w) \\
T(z w)=T_{2}\left(T_{1}(z w)\right)=T_{2}\left(T_{1}(z) T_{1}(w)\right)=T_{2}\left(T_{1}(z)\right) T_{2}\left(T_{1}(w)\right)=T(z) T(w)
\end{gathered}
$$

and so the proof
Proposition 18. Let $T \in \mathscr{C}\left(H, H^{\prime}\right)$ be a \mathbb{C}-morphism. If there exists $z_{0} \in \mathbb{C}(H) \backslash\{0\}$ such that $T\left(z_{0}\right)=0$ then $T \equiv 0$

Proof. Suppose $\Re \mathrm{e}\left(z_{0}\right) \neq 0$. From Proposition 13 , for all $z \in \mathbb{C}(H)$ there exists $w \in \mathbb{C}(H)$ such that $z_{0} w=z$. That is

$$
T(z)=T\left(z_{0} w\right)=T\left(z_{0}\right) T(w)=0
$$

Without restrictions on $\Re \mathrm{e}\left(z_{0}\right)$, if $z_{0} \neq 0$ such that $T\left(z_{0}\right)=0$ then

$$
T\left(\left|z_{0}\right|^{2}\right)=T\left(z_{0}\right) T\left(\bar{z}_{0}\right)=0
$$

But $\left|z_{0}\right|^{2} \in \mathbb{R} \backslash\{0\}$ and the result is proved
Corollary 19. Let $T \in \mathscr{C}\left(H, H^{\prime}\right)$ be a non-null \mathbb{C}-morphism, then T is injective
Proof. Suppose T isn't injective. Then there exist $z_{1}, z_{2} \in \mathbb{C}(H)$ such that $z_{1} \neq z_{2}$ and $T\left(z_{1}\right)=T\left(z_{2}\right)$. That is $T\left(z_{1}-z_{2}\right)=0$ i.e. $T \equiv 0$ by Prop. 18

Proposition 20. Let $T \in \mathscr{C}\left(H, H^{\prime}\right)$ be an invertible \mathbb{C}-morphism. Then $T^{-1} \in \mathscr{C}\left(H^{\prime}, H\right)$ Proof. if $w_{1}, w_{2} \in \mathbb{C}\left(H^{\prime}\right)$, there exist $z_{1}, z_{2} \in \mathbb{C}(H)$ such that $w_{1}=T\left(z_{1}\right)$ and $w_{2}=T\left(z_{2}\right)$. So

$$
\begin{gathered}
T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(T\left(z_{1}\right)+T\left(z_{2}\right)\right)=T^{-1}\left(T\left(z_{1}+z_{2}\right)\right)=z_{1}+z_{2}=T^{-1}\left(w_{1}\right)+T^{-1}\left(w_{2}\right) \\
T^{-1}\left(w_{1} w_{2}\right)=T^{-1}\left(T\left(z_{1}\right) T\left(z_{2}\right)\right)=T^{-1}\left(T\left(z_{1} z_{2}\right)\right)=z_{1} z_{2}=T^{-1}\left(w_{1}\right) T^{-1}\left(w_{2}\right)
\end{gathered}
$$

The continuity of T^{-1} follows from the continuity and invertibility of T
Proposition 21. $T \in \mathscr{C}\left(H, H^{\prime}\right)$ is a Lie homomorphism
Proof. For all $z_{1}, z_{2} \in \mathbb{C}(H)$
$\left[T\left(z_{1}\right), T\left(z_{2}\right)\right]=T\left(z_{1}\right) T\left(z_{2}\right)-T\left(z_{2}\right) T\left(z_{1}\right)=T\left(z_{1} z_{2}\right)-T\left(z_{2} z_{1}\right)=T\left(z_{1} z_{2}-z_{2} z_{1}\right)=T\left(\left[z_{1}, z_{2}\right]\right)$

Proposition 22. If $T \in \mathscr{C}\left(H, H^{\prime}\right)$ a non-null \mathbb{C}-morphism. Then for all $z \in \mathbb{C}(H)$

1. $T(0)=0$
2. $T(1)=1$
3. $T(-z)=-T(z)$
4. $T\left(z^{-1}\right)=T(z)^{-1}$ when $z \neq 0$
5. $T(\lambda z)=\lambda T(z) \quad \forall \lambda \in \mathbb{R}$
6. $T(x)=x \forall x \in \mathbb{R}$

Proof. 1. using C1 we have $T(0)=T(0+0)=T(0)+T(0)$
2. using C 2 we have $T(1)=T(1 \cdot 1)=T(1)^{2}$
3. $0=T(0)=T(z-z)=T(z)+T(-z)$
4. $1=T(1)=T\left(z z^{-1}\right)=T(z) T\left(z^{-1}\right)$
5. if $n \in \mathbb{N}$

$$
T(n z)=T\left(\sum_{k=1}^{n} z\right)=\sum_{k=1}^{n} T(z)=n T(z)
$$

Using 3. it follows the property for $n \in \mathbb{Z}$ and $T(n)=n$. If $a, b \in \mathbb{Z}$ with $b \neq 0$ then

$$
T\left(a b^{-1}\right)=T(a) T(b)^{-1}=\frac{a}{b}
$$

in according with 4 . That is $T(q z)=q T(z)$ for all $q \in \mathbb{Q}$. Let $\lambda \in \mathbb{R}$ and $\left\{q_{n}\right\}_{n \in \mathbb{N}} \subseteq$ \mathbb{Q} such that $q_{n} \rightarrow \lambda$, that is

$$
T\left(q_{n} z\right)=q_{n} T(z) \rightarrow \lambda T(z)
$$

Since T is continous

$$
T\left(q_{n} z\right) \rightarrow T(\lambda z)
$$

6. $T(x)=T(x \cdot 1)=x T(1)=x$

Corollary 23. Let $T \in \mathscr{C}\left(H, H^{\prime}\right)$ be a non-null \mathbb{C}-morphism. Then $\Re e T(0, f)=0$ $\forall f \in H$

Proof. Let's suppose $T(0, f)=(c, g)$ where $g \in H^{\prime}$. Then

$$
\begin{gathered}
\|f\|_{H}^{2}=T\left(\|f\|_{H}^{2}, 0\right)=T((0, f) \cdot(0,-f))=T(0, f) \cdot T(0,-f)= \\
=-T(0, f)^{2}=-(c, g)^{2}=-\left(c^{2}-\|g\|_{H^{\prime}}^{2}, 2 c g\right)
\end{gathered}
$$

that is $c g=0$. If $c=0$ the result is proved; otherwise if $g=0$ then $\|f\|_{H}^{2}=-c^{2}$ which is possible iff $c=\|f\|_{H}=0$ and so the proof

Corollary 24. Let $T \in \mathscr{C}\left(H, H^{\prime}\right)$ be a non-null \mathbb{C}-morphism. Then

$$
T(\bar{z})=\overline{T(z)} \quad \forall z \in \mathbb{C}(H)
$$

Proof. By the previous Corollary, there exists $g \in H^{\prime}$ such that $T(0, f)=(0, g)$. That is, for all $x \in \mathbb{R}$

$$
\begin{gathered}
T(x, f)=T(x, 0)+T(0, f)=(x, 0)+(0, g)=(x, g) \\
T(x,-f)=T(x, 0)+T(0,-f)=(x, 0)-T(0, f)=(x, 0)-(0, g)=(x,-g)
\end{gathered}
$$

which proves the result
Corollary 25. Let $T \in \mathscr{C}\left(H, H^{\prime}\right)$ be a non-null \mathbb{C}-morphism. Then $\forall z, w \in \mathbb{C}(H)$

$$
(T(z) \mid T(w))_{H^{\prime}}=(z \mid w)_{H}
$$

Proof.

$$
(T(z) \mid T(w))_{H^{\prime}}=\frac{1}{2}(T(z) \overline{T(w)}+\overline{T(z)} T(w))=T\left(\frac{z \bar{w}+\bar{z} w}{2}\right)=T\left((z \mid w)_{H}\right)
$$

$\operatorname{But}(z \mid w)_{H} \in \mathbb{R}$ and so the proof
Corollary 26. Let $T \in \mathscr{C}\left(H, H^{\prime}\right)$ be a non-null \mathbb{C}-morphism. Then T is an isometry
Theorem 27 (Representation). Let $T \in \mathscr{C}\left(H, H^{\prime}\right)$ be a \mathbb{C}-isomorphism. Then there exist a unique unitary operator $\Lambda \in \mathscr{L}\left(H, H^{\prime}\right)$ such that

$$
T(x, f)=(x, \Lambda f) \quad \forall(x, f) \in \mathbb{C}(H)
$$

Proof. We can write

$$
T(x, f)=T\left(x, 0_{H}\right)+T(0, f)=\left(x, 0_{H}\right)+(0, k(f))=(x, k(f))
$$

where $k: H \rightarrow H^{\prime}$. From hypothesis, exists $\Lambda \in \mathscr{L}\left(H, H^{\prime}\right)$ such that $k(f)=\Lambda f$. From hypothesis, using C 2 with $\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right) \in \mathbb{C}(H)$, we have now

$$
\begin{gathered}
T\left(\left(x_{1}, f_{1}\right) \cdot\left(x_{2}, f_{2}\right)\right)=\left(x_{1} x_{2}-\left\langle f_{1} \mid f_{2}\right\rangle_{H}, \Lambda\left(x_{1} f_{2}+x_{2} f_{1}\right)\right) \\
T\left(x_{1}, f_{1}\right) \cdot T\left(x_{2}, f_{2}\right)=\left(x_{1} x_{2}-\left\langle\Lambda f_{1} \mid \Lambda f_{2}\right\rangle_{H^{\prime}}, \Lambda\left(x_{1} f_{2}+x_{2} f_{1}\right)\right)
\end{gathered}
$$

which implies that

$$
\left(x_{1} x_{2}-\left\langle f_{1} \mid f_{2}\right\rangle_{H}, \Lambda\left(x_{1} f_{1}+x_{2} f_{2}\right)\right)=\left(x_{1} x_{2}-\left\langle\Lambda f_{1} \mid \Lambda f_{2}\right\rangle_{H^{\prime}}, \Lambda\left(x_{1} f_{2}+x_{2} f_{1}\right)\right)
$$

that is

$$
\left\langle f_{1} \mid f_{2}\right\rangle_{H}=\left\langle\Lambda f_{1} \mid \Lambda f_{2}\right\rangle_{H^{\prime}}
$$

for all $f_{1}, f_{2} \in H$. So Λ must be unitary.
Suppose T is represented by two operators Λ_{1} and Λ_{2} such that $\forall x \in \mathbb{R}$ and $\forall f \in H$

$$
T(x, f)=\left(x, \Lambda_{1} f\right) \quad ; \quad T(x, f)=\left(x, \Lambda_{2} f\right)
$$

Using linearity of T we have

$$
0=T(x, f)-T(x, f)=\left(x, \Lambda_{1} f\right)-\left(x, \Lambda_{2} f\right)=\left(0,\left(\Lambda_{1}-\Lambda_{2}\right) f\right)
$$

and so the uniqueness.

EXAMPLE 6. $\mathscr{C}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n}\right)=\{0\}$

Proof. $T \in \mathscr{C}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n}\right)$ is a linear map on \mathbb{R} so there exists $A \in \mathcal{M}_{n+1, n}(\mathbb{R})$ such that $T(x, u)=(x, A u)$ for all $(x, u) \in \mathbb{C}\left(\mathbb{R}^{n+1}\right)$. It follows that $\operatorname{rg}(A) \leq n$ but $\operatorname{rg}(A)=$ $n+1-\operatorname{dim} \operatorname{ker} A$ so $\operatorname{dim} \operatorname{ker} A \geq 1$. If $u, v \in \mathbb{R}^{n+1}$ such that $u \neq v$ and $u-v \in \operatorname{ker} A$ then

$$
T(0, u-v)=(0, A(u-v))=0
$$

that is $T \equiv 0$ by Proposition 18

1.4 Subspaces

Definition 4. A subset $M \subseteq \mathbb{C}(H)$ is called subspace of $\mathbb{C}(H)$ if is complete and for all $z, w \in M$ and $\forall \lambda \in \mathbb{R}$ we have $z+w \in M, \lambda z \in M \mathrm{e} z w \in M$. A subspace M is autonomous if for all $z \in M$ there is at least one $w \in M$ such that $w^{2}=z$

EXAMPLE 7. $\{(0,0)\}$ is an autonomous subspace of every $\mathbb{C}(H) ; \mathbb{R} \times\{0\}$ is a non autonomous subspace of $\mathbb{C}(\mathbb{R})$

Theorem 28. For every pair of morphisms $F, G: \mathbb{C}(H) \rightarrow \mathbb{C}\left(H^{\prime}\right)$ the set

$$
\mathrm{EQ}_{F, G}:=\{z \in \mathbb{C}(H): F(z)=G(z)\}
$$

is a subspace of $\mathbb{C}(H)$
Proof. Since F and G are linear, $\mathrm{EQ}_{F, G}$ is a vectorial space on \mathbb{R} with the dot product induced by $\mathbb{C}(H)$. If $z_{1}, z_{2} \in \mathrm{EQ}_{F, G}$ then

$$
F\left(z_{1} z_{2}\right)=F\left(z_{1}\right) F\left(z_{2}\right)=G\left(z_{1}\right) G\left(z_{2}\right)=G\left(z_{1} z_{2}\right)
$$

i.e. $z_{1} z_{2} \in \mathrm{EQ}_{F, G}$. Let's take a Cauchy sequence $\left\{z_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathrm{EQ}_{F, G}$. Since $\mathbb{C}(H)$ is an Hilbert space, there exists a $z^{*} \in \mathbb{C}(H)$ such that $z_{n} \rightarrow z^{*}$ for $n \rightarrow \infty$. That is

$$
F\left(z^{*}\right)=\lim _{n \rightarrow \infty} F\left(z_{n}\right)=\lim _{n \rightarrow \infty} G\left(z_{n}\right)=G\left(z^{*}\right)
$$

i.e. $\mathrm{EQ}_{F, G}$ is an Hilbert space

Proposition 29. Fixed $f \in H$, the set

$$
\langle f\rangle:=\{(x, \lambda f) \in \mathbb{C}(H): x, \lambda \in \mathbb{R}\}
$$

called fundamental subspace, is a subspace of $\mathbb{C}(H)$
Proof. The properties of the subspaces are obvious. Let's check the completness: let $\left\{\left(x_{n}, \lambda_{n} f\right)\right\}_{n \in \mathbb{N}} \subseteq\langle f\rangle$ be a Cauchy sequence. That is for all $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $\forall n, m \in \mathbb{N}$

$$
\left|\left(x_{n}, \lambda_{n} f\right)-\left(x_{m}, \lambda_{m} f\right)\right|<\varepsilon
$$

that is $\left(x_{n}-x_{m}\right)<\varepsilon$ and $\left(\lambda_{n}-\lambda_{m}\right)<\varepsilon /\|f\|_{H}$. Since \mathbb{R} is complete, there exist $x^{*}, \lambda^{*} \in \mathbb{R}$ such that $x_{n} \rightarrow x^{*}$ and $\lambda_{n} \rightarrow \lambda^{*}$ so $\left(x_{n}, \lambda_{n} f\right) \rightarrow\left(x^{*}, \lambda^{*} f\right) \in M$

Theorem 30. Fixed $f \in H \backslash\{0\}$, the map

$$
\begin{aligned}
T_{f}:\langle f\rangle & \rightarrow \mathbb{C}(\mathbb{R}) \\
(x, \lambda f) & \mapsto(x, \lambda)
\end{aligned}
$$

is a \mathbb{C}-isomorphism iff $\|f\|_{H}=1$
Proof. If $\|f\|_{H}=1$ then the product and the sum are conserved: if $\left(x_{1}, \lambda_{1} f\right),\left(x_{2}, \lambda_{2} f\right) \in$ $\langle f\rangle$ then

$$
\begin{gathered}
T_{f}\left(\left(x_{1}, \lambda_{1} f\right)\left(x_{2}, \lambda_{2} f\right)\right)=T_{f}\left(x_{1} x_{2}-\lambda_{1} \lambda_{2},\left(x_{1} \lambda_{2}+x_{2} \lambda_{1}\right) f\right)=\left(x_{1} x_{2}-\lambda_{1} \lambda_{2}, x_{1} \lambda_{2}+x_{2} \lambda_{1}\right) \\
T_{f}\left(x_{1}, \lambda_{1} f\right) T_{f}\left(x_{2}, \lambda_{2} f\right)=\left(x_{1}, \lambda_{1}\right)\left(x_{2}, \lambda_{2}\right)=\left(x_{1} x_{2}-\lambda_{1} \lambda_{2}, x_{1} \lambda_{2}+x_{2} \lambda_{1}\right)
\end{gathered}
$$

as for the sum. The invertibility is obvious.
If T_{f} is a \mathbb{C}-isomorphism then it is an isometry too, that is

$$
\begin{gathered}
\left|T_{f}(x, \lambda f)\right|=|(x, \lambda f)| \\
x^{2}+\lambda^{2}=x^{2}+\lambda^{2}\|f\|_{H}^{2} \\
\lambda\left(\|f\|_{H}-1\right)=0
\end{gathered}
$$

and the result is proved

Figure 1: The action of $T_{f /\|f\|_{2}}$ on a foundamental subspace of $\mathbb{C}\left(\mathbb{R}^{2}\right)$
Proposition 31. $\langle f\rangle \simeq\langle g\rangle$ for every $f, g \in H \backslash\{0\}$ and $\langle f\rangle=\langle g\rangle$ iff there exists $\mu \in \mathbb{R}$ such that $f=\mu g$

Proof. The first item is obvious by the map $(x, \lambda f) \leftrightarrow(x, \lambda g)$; if $\langle f\rangle=\langle g\rangle$ than for all $\lambda \in \mathbb{R} \backslash\{0\}$ there exists $\lambda^{\prime} \in \mathbb{R}$ such that

$$
(x, \lambda f)=\left(x, \lambda^{\prime} g\right) \quad \forall x \in \mathbb{R}
$$

i.e. $\mu=\lambda^{\prime} / \lambda$

Definition 5. Let's fix $f, g \in B_{1}(0) \subset \mathbb{C}(H)$, the foundamental map is the application

$$
\begin{gathered}
\Phi_{f, g}:\langle f\rangle \rightarrow\langle g\rangle \\
(x, \lambda f) \mapsto(x, \lambda g)
\end{gathered}
$$

Observation 8. $\Phi_{f, g}=T_{g}^{-1} \circ T_{f}$
Corollary 32.

$$
\mathbb{C}(H)=\bigcup_{f \in H \backslash\{0\}}\langle f\rangle
$$

Proposition 33. There exists a natural injection $\mathbb{P}(H) \mapsto \mathbf{G r}_{2}(\mathbb{C}(H))^{1}$
Proof. Let's take the map

$$
[f] \rightarrow\langle f\rangle \quad \forall f \in H
$$

Fixed $f, g \in H$ such that $\langle f\rangle=\langle g\rangle$, by Prop. 31 there exists $\lambda \in \mathbb{R}$ such that $f=\lambda g$, that is $[f]=[g]$

Theorem 34 (Fundamental of Pseudo-Complex Spaces). Let H be a non null Hilbert space. Then

$$
\forall z \in \mathbb{C}(H) \exists w \in \mathbb{C}(H): z=w^{2}
$$

Furthermore, $\langle f\rangle$ is autonomous if $f \in H$ such that $\|f\|_{H}=1$
Proof. Let $z=(x, f)$ be in $\mathbb{C}(H)$. If $f=0$ then we have two cases: if $x \geq 0$ then $w=(\sqrt{x}, 0)$; if $x<0$ then there exists $g \in H$ such that $\|g\|_{H}=\sqrt{-x}$, that is $w=(0, g)$ is the square root of z. Otherwise, let's call $\tilde{f}=f /\|f\|_{H}$ it results that $\|\tilde{f}\|_{H}=1$ and

$$
z=\left(x,\|f\|_{H} \tilde{f}\right)
$$

so we can write

$$
z \in\langle\tilde{f}\rangle
$$

Then

$$
T_{\tilde{f}}(z)=\left(x,\|f\|_{H}\right)
$$

Let's take $\psi: \mathbb{C}(\mathbb{R}) \rightarrow \mathbb{C}$ such that $\psi(x, y)=x+i y$. It is clear that ψ is an isomorphism and preserves products. So there exists $w \in \mathbb{C}$ such that $w^{2}=x+i\|f\|_{H}$. Since $T_{\tilde{f}}$ is a \mathbb{C}-isomorphism, it implies that

$$
z=T_{\tilde{f}}^{-1}\left(\psi^{-1}\left(w^{2}\right)\right)=T_{\tilde{f}}^{-1}\left(\psi^{-1}(w)\right)^{2}
$$

i.e. $T_{\tilde{f}}^{-1}\left(\psi^{-1}(w)\right)$ is a square root of z

Corollary 35. Let H be a non null Hilbert space. Then

$$
\forall n \geq 1 \forall z \in \mathbb{C}(H) \exists w \in \mathbb{C}(H): z=w^{n}
$$

Proof. The proof is similar to the previous one in which we use that $T\left(z^{n}\right)=T(z)^{n}$ where T is a \mathbb{C}-morphism

[^0]
1.5 Commutative Lifting

Definition 6. A map $F: \mathbb{C}(H) \rightarrow \mathbb{C}\left(H^{\prime}\right)$ is commutative if there exist an application $\Lambda: H \rightarrow H^{\prime}$ called shift and a complex map $\tilde{F}: \mathbb{C}(\mathbb{R}) \rightarrow \mathbb{C}(\mathbb{R})$ such that the next diagrams are commutative for all $f \in H$

If $H=H^{\prime}, F$ is called commutative lifting of \tilde{F} into $\mathbb{C}(H)$, indicated by

$$
F:=\operatorname{Lift}_{\Lambda, H}(\tilde{F})
$$

where $\Lambda: H \rightarrow H$
Theorem 36. $\operatorname{Lift}_{\Lambda, H}: \mathbb{C}(\mathbb{R})^{\mathbb{C}(\mathbb{R})} \rightarrow \mathbb{C}(H)^{\mathbb{C}(H)}$ is a group homomorphism and preserves the product

Proof. For all $F, G: \mathbb{C}(\mathbb{R}) \rightarrow \mathbb{C}(\mathbb{R})$ and $\forall(x, f) \in \mathbb{C}(H)$, where $\hat{f}:=f /\|f\|_{H}$
$\operatorname{Lift}_{\Lambda, H}(F+G)(x, f)=T_{\hat{\Lambda} f}^{-1} \circ(F+G) \circ T_{\hat{f}}=T_{\hat{\Lambda} f}^{-1}\left(F\left(T_{\hat{f}}\right)+G\left(T_{\hat{f}}\right)\right)=T_{\hat{\Lambda} f}^{-1}\left(F\left(T_{\hat{f}}\right)\right)+T_{\hat{\Lambda} f}^{-1}\left(G\left(T_{\hat{f}}\right)\right)=$

$$
=\left(T_{\hat{\Lambda} \hat{f}}^{-1} \circ F \circ T_{\hat{f}}\right)+\left(T_{\hat{\Lambda} \hat{f}}^{-1} \circ G \circ T_{\hat{f}}\right)=\operatorname{Lift}_{\Lambda, H}(F)+\operatorname{Lift}_{\Lambda, H}(G)
$$

$0: \mathbb{C}(\mathbb{R}) \rightarrow \mathbb{C}(\mathbb{R})$ is the identity element, so

$$
\operatorname{Lift}_{\Lambda, H}(0)=T_{\hat{\Lambda} f}^{-1} \circ 0 \circ T_{\hat{f}}=0
$$

Moreover

$$
\begin{gathered}
\operatorname{Lift}_{\Lambda, H}(F \cdot G)(x, f)=T_{\hat{\Lambda f}}^{-1} \circ(F \cdot G) \circ T_{\hat{f}}=T_{\hat{\Lambda f}}^{-1}\left(F\left(T_{\hat{f}}\right) \cdot G\left(T_{\hat{f}}\right)\right)=T_{\hat{\Lambda f}}^{-1}\left(F\left(T_{\hat{f}}\right)\right) \cdot T_{\hat{\Lambda f}}^{-1}\left(G\left(T_{\hat{f}}\right)\right)= \\
=\left(T_{\hat{\Lambda f}}^{-1} \circ F \circ T_{\hat{f}}\right) \cdot\left(T_{\hat{\Lambda f}}^{-1} \circ G \circ T_{\hat{f}}\right)=\operatorname{Lift}_{\Lambda, H}(F) \cdot \operatorname{Lift}_{\Lambda, H}(G)
\end{gathered}
$$

EXAMPLE 8. z^{2} is a commutative lifting because if $\tilde{F}(w)=w^{2}$ and $\Lambda=\operatorname{id}_{H}$ then
$T_{f /\|f\|_{H}}^{-1} \tilde{F}\left(x,\|f\|_{H}\right)=T_{f /\|f\|_{H}}^{-1}\left(x,\|f\|_{H}\right)^{2}=T_{f /\|f\|_{H}}^{-1}\left(x^{2}-\|f\|_{H}^{2}, 2 x\|f\|_{H}\right)=\left(x^{2}-\|f\|_{H}^{2}, 2 x f\right)=(x, f)^{2}$
So z^{2} is the commutative lifting of the complex square power
EXAMPLE 9. The map $z \mapsto z^{n}$ is a commutative lifting because if $\tilde{F}(w)=w^{n}$ and $\Lambda=\mathrm{id}_{H}$ then, by strong induction

$$
\begin{gathered}
(x, f)^{n+1}=(x, f)(x, f)^{n}=T_{f /\|f\|_{H}}^{-1}\left(x,\|f\|_{H}\right) T_{f /\|f\|_{H}}^{-1}\left(x,\|f\|_{H}\right)^{n}= \\
=T_{f /\|f\|_{H}}^{-1}\left(\left(x,\|f\|_{H}\right)\left(x,\|f\|_{H}\right)^{n}\right)=T_{f /\|f\|_{H}}^{-1}\left(x,\|f\|_{H}\right)^{n+1}
\end{gathered}
$$

So z^{n} is the commutative lifting of the complex n-power

EXAMPLE 10. Every constant function $F: \mathbb{C}(H) \rightarrow \mathbb{C}(H)$ is a commutative lifting: indeed if $F(x, f)=(y, g)$ we can take $\Lambda: H \rightarrow H$ such that $\Lambda(f)=g$ and $\tilde{F}\left(x,\|f\|_{H}\right)=$ $\left(y,\|g\|_{H}\right)$

Theorem 37. Let $F: \mathbb{C}(H) \rightarrow \mathbb{C}(H)$ be a pseudo-complex map, then F is a commutative lifting iff

$$
\left.F\right|_{\langle g\rangle}=\left.\Phi_{f, g} \circ F\right|_{\langle f\rangle} \quad \forall f, g \in B_{1}(0)
$$

Proof. We can rewrite the last line into the next mode

$$
\left.F \circ \Phi_{f, g}\right|_{\langle f\rangle}=\left.\Phi_{f, g} \circ F\right|_{\langle f\rangle}
$$

$\Rightarrow)$ By hypothesis F is a commutative lifting, i.e. there exist $\tilde{F}: \mathbb{C}(\mathbb{R}) \rightarrow \mathbb{C}(\mathbb{R})$ such that

$$
F=\operatorname{Lift}_{\operatorname{id}_{H}, H}(\tilde{F})
$$

Looking at the next diagrams

we can observe that $\Phi_{f, g}=T_{g}^{-1} \circ \mathrm{id} \circ T_{f}$, so

$$
\begin{gathered}
\left.\Phi_{f, g} \circ F\right|_{\langle f\rangle}=\left(T_{g}^{-1} \circ \mathrm{id} \circ T_{f}\right) \circ\left(T_{f}^{-1} \circ \tilde{F} \circ T_{f}\right)=T_{g}^{-1} \circ \tilde{F} \circ T_{f}= \\
=T_{g}^{-1} \circ \tilde{F} \circ \mathrm{id} \circ \mathrm{id} \circ T_{f}=\left(T_{g}^{-1} \circ \tilde{F} \circ T_{g}\right) \circ\left(T_{g}^{-1} \circ \mathrm{id} \circ T_{f}\right)=\left.F \circ \Phi_{f, g}\right|_{\langle f\rangle}
\end{gathered}
$$

and so the first proof.
$\Leftarrow)$ We can observe, by hypothesis, that $F(\langle f\rangle) \subseteq\langle f\rangle$ because Φ has got $\langle f\rangle$ as a domain. We have to find a $\tilde{F}: \mathbb{C}(\mathbb{R}) \rightarrow \mathbb{C}(\mathbb{R})$ such that the diagrams

are commutative. Let's pick $\tilde{F}:=T_{f} \circ \Phi_{f, g}^{-1} \circ F \circ \Phi_{f, g} \circ T_{f}^{-1}$, so

$$
\begin{gathered}
\tilde{F} \circ T_{f}=\left(T_{f} \circ \Phi_{f, g}^{-1} \circ F \circ \Phi_{f, g} \circ T_{f}^{-1}\right) \circ T_{f}=T_{f} \circ \Phi_{f, g}^{-1} \circ\left(F \circ \Phi_{f, g}\right)= \\
=T_{f} \circ \Phi_{f, g}^{-1} \circ\left(\Phi_{f, g} \circ F\right)=T_{f} \circ\left(\Phi_{f, g}^{-1} \circ \Phi_{f, g}\right) \circ F=T_{f} \circ F
\end{gathered}
$$

which proves the result

Figure 2: An example of the action of $\Phi_{f, g}$ on a commutative function F in $\mathbb{C}\left(\mathbb{R}^{2}\right)$

Proposition 38. If $\Lambda_{1}, \Lambda_{2}: H \rightarrow H$ then forall $(x, f) \in \mathbb{C}(H)$

$$
T_{\widehat{\Lambda_{2} \Lambda_{1} f}} \circ \operatorname{Lift}_{\Lambda_{2} \Lambda_{1}, H}=T_{\widehat{\Lambda_{1} f}} \circ \operatorname{Lift}_{\Lambda_{1}, H}
$$

1.6 Product Spaces

Definition 7. Let $k \in \mathbb{N}$ be a integer with $k \geq 1$. We define

$$
\mathbb{C}^{1}(H):=\mathbb{C}(H) \quad ; \quad \mathbb{C}^{k+1}(H):=\mathbb{C}\left(\mathbb{C}^{k}(H)\right)
$$

Proposition 39. The transformation $T: \mathbb{C}(H) \rightarrow \mathbb{C}(\mathbb{C}(H))$ such that

$$
(x, f) \mapsto(x,(0, f))
$$

is in $\mathscr{C}(H, \mathbb{C}(H))$
Proof. For all $(x, f),(y, g) \in \mathbb{C}(H)$

$$
\begin{gathered}
T(x, f)+T(y, f)=(x,(0, f))+(y,(0, g))= \\
=(x+y,(0, f+g))=T(x+y, f+g)=T((x, f)+(y, g))
\end{gathered}
$$

Let's verify C2

$$
\begin{aligned}
& T(x, f) \cdot T(y, g)=(x,(0, f)) \cdot(y,(0, g))=(x y-\langle f \mid g\rangle,(0, x g)+(0, y f))= \\
& =(x y-\langle f \mid g\rangle,(0, x g+y f))=T(x y-\langle f \mid g\rangle, x g+y f)=T((x, f) \cdot(y, g))
\end{aligned}
$$

Observation 9. If $\left\{\left(H_{n},\langle\cdot \mid \cdot\rangle_{H_{n}}\right)\right\}_{n=1, \ldots, N}$ is a finite family of Hilbert spaces on \mathbb{R} then $H:=H_{1} \times \cdots \times H_{n}$ is an Hilbert space with dot product $\langle\cdot \mid \cdot\rangle_{H}: H^{2} \rightarrow \mathbb{R}$ such that for all $\left(f_{1}, \ldots, f_{N}\right),\left(g_{1}, \ldots, g_{N}\right) \in H$

$$
\left\langle\left(f_{1}, \ldots, f_{N}\right) \mid\left(g_{1}, \ldots, g_{N}\right)\right\rangle_{H}:=\sum_{k=1}^{N}\left\langle f_{k} \mid g_{k}\right\rangle_{H_{k}}
$$

Theorem 40. For all $k \in \mathbb{N} \backslash\{0\}$

$$
\mathbb{C}(H)^{k} \simeq \mathbb{C}^{k}\left(H^{k}\right)
$$

Proof. Observe that $\mathbb{C}^{k}\left(H^{k}\right) \simeq \mathbb{R}^{k} \times H^{k}$ and $\mathbb{C}(H)^{k} \simeq(\mathbb{R} \times H)^{k}$
Proposition 41. For all integer $k>1$

$$
\mathbb{C}^{k}(H) \simeq \mathbb{C}\left(\mathbb{R}^{k-1} \times H\right)
$$

Definition 8. The product space of $\mathbb{C}(H)$ with $\mathbb{C}\left(H^{\prime}\right)$ is

$$
\mathbb{C}(H) \times \mathbb{C}\left(H^{\prime}\right):=\mathbb{C}\left(\mathbb{C}\left(H \times H^{\prime}\right)\right)
$$

with the projections $\pi_{1}: \mathbb{C}\left(\mathbb{C}\left(H \times H^{\prime}\right)\right) \rightarrow \mathbb{C}(H)$ e $\pi_{2}: \mathbb{C}\left(\mathbb{C}\left(H \times H^{\prime}\right)\right) \rightarrow \mathbb{C}\left(H^{\prime}\right)$ such that

$$
\pi_{1}(x,(y,(f, g)))=(x, f) \quad ; \quad \pi_{2}(x,(y,(f, g)))=(y, g)
$$

for all $(x, f) \in \mathbb{C}(H)$ and forall $(y, g) \in \mathbb{C}\left(H^{\prime}\right)$

Conclusions

The benefit of this approach consists on having universal properties that do not depend directly on the choice of H; the handicap is the weak associative property as shown in Proposition 7, which creates zero divisors (th. 12). Another interesting item is the characterization of \mathbb{C}-morphisms, which look like ring homomorphisms and have only one direction in the sense of injectivity. Our goals are now the generalization of the exponential function and building a pseudo-complex derivation, with which verify if it is possible to extend Cauchy-Riemann equations and so the concept of holomorphy

References

[1] Hamilton-Rowan, Elements of quaternions; Longman Greens, 1899, https://archive.org/details/117770258_001
[2] Bourbaki N., Algebra; Springer-Verlag; , Berlino-New York, 1988, 978-3-540-19373-9
[3] Kantor-Solodownikow, Hyperkomplexe Zahlen; B.G. Teubner, Lipsia, 1978

[^0]: ${ }^{1}$ Grassmannian space

