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Abstract

The purpose of this paper is to try to replicate what happens in C on spaces where there
are more then one of immaginary units. All these spaces, in our definition, will have the
same Hilbert structure. At first we will introduce the sum and product operations on
C(H) := R × H (where H is an Hilbert space), then we’ll investigate on its algebraic
properties. In our construction we lose only the associative of multiplication regardless
of H, exept when dimH = 1 (in this case R × H ' C), and this is why we say weak
extension. One of the most important result of this study is the Weak Integrity Theorem
(th. 12) according to which in particular conditions there exist zero divisors. The next
result is the Foundamental Theorem (th. 34) according to which for all z ∈ C(H) there
exists w ∈ C(H) such that z = w2. Afterwards we will study tranformations between
these spaces which keep operation (that’s why we will call them C-morphisms). At the
end we will look at the commutative functions, i.e. maps C(H) → C(H ′) which can be
rapresented by complex transformations C→ C

1 The Pseudo-Complex Space

Definition 1. Let (H, 〈· | ·〉) be an Hilbert space on R and define two operation on R×H
as such

(x, f) + (y, g) := (x+ y, f + g) (1)

(x, f) · (y, g) := (xy − 〈f | g〉 , xg + yf) (2)

for any choice of x, y ∈ R and f, g ∈ H. We call pseudo-complex space C(H) on H the
triad (R×H,+, ·). We will often use ab notation instead of a · b where a, b ∈ C(H) and
0 := (0, 0H) and λ instead (λ, 0) when λ ∈ R. If z = (x, f) ∈ C(H) we denote <(z) := x
and =(z) := f respectively the real and immaginary part of z

EXAMPLE 1. If H = Rn then for every x, y ∈ R and every u, v ∈ H with u = (u1, . . . , un)
and v = (v1, . . . , vn) we have

(x, u) · (y, v) =

xy − n∑
i=1

uivi,

xv1 + yu1
...

xvn + yun
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EXAMPLE 2. If H = L2(R) then for every x, y ∈ R and every f, g ∈ H we have

(x, f) · (y, g) =

(
xy −

∫
R
fg dµ, xg + yf

)
EXAMPLE 3. If H = R then there is a field isomorphism between C(H) and C

(x, y)↔ x+ iy

EXAMPLE 4. If in H there is an orthonormal basis {ej}j∈I ⊂ H then for all f ∈ H there
exist {aj ∈ R}j∈I such that

f =
∑
j∈I

ajej

So, for all x ∈ R

(x, f) =

(
x,
∑
j∈I

ajej

)
= (x, 0) +

∑
j∈I

aj(0, ej)

Calling (0, ej) := ij for j ∈ I, we will have the algebraic notation

(x, f) = x+
∑
j∈I

ajij

By using definition, we can observe that ijik = −δjk for j, k ∈ I

1.1 An Hilbert space

Definition 2. Let’s define the conjugate of (x, f) ∈ H the element (x, f) := (x,−f)

Observation 1. For any z1, z2 ∈ C(H) we have

z1 + z2 = z̄1 + z̄2 ; z1z2 = z̄1z̄2

Proposition 1. The application

C(H)× C(H)→ R

(z1, z2)→ 1

2
(z1z̄2 + z̄1z2) (3)

is a dot product

Proof. Let’s note that if z1 = (x, f) and z2 = (y, g) then

(z1 | z2) =
1

2
(z1z̄2 + z̄1z2) = xy + 〈f | g〉

and so the proof

Observation 2. (z1 | z̄2) = (z̄1 | z2)

Corollary 2. If z1z2 = 0 then (z1 | z̄2) = 0



Proof.
2(z1 | z̄2) = z1z2 + z1z2 = 0

Henceforth we call |z| :=
√
zz̄ ∀z ∈ C(H). So we’re ready to prove this:

Theorem 3. C(H) is an Hilbert space

Proof. |z| is a norm on C(H) induced by (3) which complete the product space R ×H.
Indeed if {(xn, fn)}n∈N ⊂ C(H) is a Cauchy sequence so |(xn, fn)− (xm, fm)| < ε, that is

(xn − xm)2 + ‖fn − fm‖2
H < ε2

i.e. |xn − xm| < ε and ‖fn − fm‖H < ε. Since R and H are both complete there exist

x̃ ∈ R and f̃ ∈ H such that xn → x̃ and fn
H−→ f̃ i.e. (xn, fn)→ (x̃, f̃) ∈ C(H)

Proposition 4. Let z1, z2 ∈ C(H). Then

|z1z2| ≤ |z1| |z2| ;
∣∣z2

1

∣∣ = |z1|2

Proof. Let’s call z1 = (x, f) and z2 = (y, g). Then

|z1z2|2 =
∣∣(xy − 〈f | g〉 , xg + yf

)∣∣ = x2y2 + 〈f | g〉2 + x2 ‖g‖2
H + y2 ‖f‖2

H ≤

≤ x2y2 + ‖f‖2
H ‖g‖

2
H + x2 ‖g‖2

H + y2 ‖f‖2
H =

(
x2 + ‖f‖2

H

) (
y2 + ‖g‖2

H

)
= |z1|2 |z2|2

where we used the Cauchy-Schwarz inequality |〈f | g〉| ≤ ‖f‖H ‖g‖H . If z1 = z2 we got
the second identity

Corollary 5. Since |z1z2| ≤ |z1| |z2|, C(H) is a Banach algebra

1.2 C(H) algebra

Let’s check some algebraic properties of these spaces:

Proposition 6. (C(H),+) is an abelian group; multiplication satisfies commutativity
property and is distributive with respect to addition. Furthermore there exists an identity
element for multiplication and every non-null element admits a multiplicative inverse

Proof. We’ll not prove these items. We just want to highlight the fact that

|z|2 = zz̄ =⇒ z−1 =
z̄

|z|2

when z 6= 0

Proposition 7 (Weak Associativity). For any choice of A = (a, α), B = (b, β), C =
(c, γ) ∈ C(H)

A(BC) = (AB)C ⇐⇒ α 〈β | γ〉 = 〈α | β〉 γ (4)

Observation 3. From (4) we can observe that the associativity property is satisfied when
α ∈ Span γ or when 〈α | β〉 = 0 = 〈β | γ〉



Corollary 8. C(H) is a field iff dimH ∈ {0, 1}

Proof. If dimH ∈ {0, 1} then C(H) is R or C. If C(H) is a field then A(BC) = (AB)C
for any A,B,C ∈ C(H). In particular α ∈ Span γ for any α ∈ H so dimH ∈ {0, 1}

Corollary 9. For any z ∈ C(H)

znzm = zn+m ∀n,m ∈ N

Corollary 10. For any z, w ∈ C(H)

z(wz−1) = (zw)z−1

Proof. It is sufficient to apply (4)

Observation 4. If z, w ∈ C(H) with z = (x, f) and w = (y, g) then

zwz−1 = w ⇔ g = λf ∀λ ∈ R

Proposition 11. C(H) is a R−algebra

Theorem 12 (Weak Integrity). Fixed z1, z2 ∈ C(H) such that <(z1) 6= 0 and z1z2 = 0
then z2 = 0

Proof. Let’s take z1 = (x, f) and z2 = (y, g) so

0 = (xy − 〈f | g〉 , xg + yf) (5)

Since x 6= 0 we have

g = −y
x
f (6)

therefore replacing it in the real part of (5)

0 = xy +
y

x
‖f‖2

H ⇒ y|z1|2 = 0

that is y = 0. Replacing it in (6) we have g = 0 indeed z2 = 0

Observation 5. If there exist f, g ∈ H such that 〈f | g〉 = 0 then

(0, f) · (0, g) = 0

Observation 6. If <(z) 6= 0 there is only one inverse moltiplicative for z. Otherwise, fixed
f ∈ H for all g ∈ H such that 〈f | g〉 = 0 we have

(0, f) ·

(
0, g − f

‖f‖2
H

)
= 1

Proposition 13. If A,B ∈ C(H) with <(A) 6= 0 there is a unique z ∈ C(H) such that

Az +B = 0 (7)



Proof. The uniqueness comes from Theorem 12: if z1, z2 are the solutions of (7) then
A(z1 − z2) = 0. Since <(A) 6= 0 follows that z1 − z2 = 0.
Calling A = (a, α), B = (b, β), we define

x = − 1

|A|2
(ab+ 〈α | β〉) ; f = −1

a
(β + xα)

so (x, f) is a solution of (7)

Observation 7. In general C(H) is not algebraically closed. Indeed if H = R2, calling
A = (1, 0) and B = (0, 1) the equation (0, A) · z + (0, B) = 0 has got no solution

Let’s see one last thing about the algebra on C(H)

Proposition 14. C(H) is a Lie algebra and [z, w] := zw − wz is the Lie bracket

Proof. The bilinearity and nilpotency of [·, ·] are immediately. Let’s check Jacobi’s iden-
tity: ∀A,B,C ∈ C(H) we should have

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

But
[A, [B,C]] = A(BC)− (AB)C =

(
0,
(
γ 〈β | α〉 − α 〈β | γ〉

))
[B, [C,A]] = B(CA)− (BC)A =

(
0,
(
α 〈β | γ〉 − β 〈α | γ〉

))
[C, [A,B]] = C(AB)− (CA)B =

(
0,
(
β 〈γ | α〉 − γ 〈β | α〉

))
Summing, it follows the proof

1.3 C−morphisms

From these observations we can now define maps among pseudo-complex spaces:

Definition 3. Let H and H ′ be Hilbert spaces. A C−morphism T : C(H)→ C(H ′) is
a continuos map such that ∀z1, z2 ∈ C(H)

C1: T (z1 + z2) = T (z1) + T (z2)

C2: T (z1z2) = T (z1)T (z2)

The set of C−morphism form H to H ′ is named C (H,H ′). If H = H ′ we denote C (H,H ′)
simply C (H)

EXAMPLE 5. If H = Rn and H = L2(R) let’s take the operator

Λ : Rn → L2(R)

(u1, . . . , un)→
n∑

k=1

ukχ[k,k+1)

Then the map T : C(Rn)→ C(L2(R)) such that

T
(
(x, u)

)
=
(
x,Λ(u)

)
∀x ∈ R ∀u ∈ Rn

is a C−morphism



Proposition 15. For every Hilbert space H, the map z 7→ z̄ is a C−morphism in C (H)

Corollary 16. The constant map z 7→ 0 is a C−morphism in C (H,H ′) for every H,H ′

Hilbert spaces

Proposition 17. Let H1, H2 and H3 be Hilbert spaces and T1 ∈ C (H1, H2) and T2 ∈
C (H2, H3) C−morphisms. Then T2 ◦ T1 ∈ C (H1, H3)

Proof. Since T1 and T2 are continuos, T2 ◦ T1 is continuos. Moreover, calling T := T2 ◦ T1

for all z, w ∈ C(H) we have

T (z + w) = T2(T1(z + w)) = T2(T1(z) + T1(w)) = T2(T1(z)) + T2(T1(w)) = T (z) + T (w)

T (zw) = T2(T1(zw)) = T2(T1(z)T1(w)) = T2(T1(z))T2(T1(w)) = T (z)T (w)

and so the proof

Proposition 18. Let T ∈ C (H,H ′) be a C−morphism. If there exists z0 ∈ C(H) \ {0}
such that T (z0) = 0 then T ≡ 0

Proof. Suppose <e(z0) 6= 0. From Proposition 13, for all z ∈ C(H) there exists w ∈ C(H)
such that z0w = z. That is

T (z) = T (z0w) = T (z0)T (w) = 0

Without restrictions on <e(z0), if z0 6= 0 such that T (z0) = 0 then

T (|z0|2) = T (z0)T (z̄0) = 0

But |z0|2 ∈ R \ {0} and the result is proved

Corollary 19. Let T ∈ C (H,H ′) be a non-null C−morphism, then T is injective

Proof. Suppose T isn’t injective. Then there exist z1, z2 ∈ C(H) such that z1 6= z2 and
T (z1) = T (z2). That is T (z1 − z2) = 0 i.e. T ≡ 0 by Prop. 18

Proposition 20. Let T ∈ C (H,H ′) be an invertible C−morphism. Then T−1 ∈ C (H ′, H)

Proof. if w1, w2 ∈ C(H ′), there exist z1, z2 ∈ C(H) such that w1 = T (z1) and w2 = T (z2).
So

T−1(w1 + w2) = T−1 (T (z1) + T (z2)) = T−1 (T (z1 + z2)) = z1 + z2 = T−1(w1) + T−1(w2)

T−1(w1w2) = T−1 (T (z1)T (z2)) = T−1 (T (z1z2)) = z1z2 = T−1(w1)T−1(w2)

The continuity of T−1 follows from the continuity and invertibility of T

Proposition 21. T ∈ C (H,H ′) is a Lie homomorphism

Proof. For all z1, z2 ∈ C(H)

[T (z1), T (z2)] = T (z1)T (z2)−T (z2)T (z1) = T (z1z2)−T (z2z1) = T (z1z2−z2z1) = T ([z1, z2])



Proposition 22. If T ∈ C (H,H ′) a non-null C−morphism. Then for all z ∈ C(H)

1. T (0) = 0

2. T (1) = 1

3. T (−z) = −T (z)

4. T (z−1) = T (z)−1 when z 6= 0

5. T (λz) = λT (z) ∀λ ∈ R

6. T (x) = x ∀x ∈ R

Proof. 1. using C1 we have T (0) = T (0 + 0) = T (0) + T (0)

2. using C2 we have T (1) = T (1 · 1) = T (1)2

3. 0 = T (0) = T (z − z) = T (z) + T (−z)

4. 1 = T (1) = T (zz−1) = T (z)T (z−1)

5. if n ∈ N

T (nz) = T

(
n∑

k=1

z

)
=

n∑
k=1

T (z) = nT (z)

Using 3. it follows the property for n ∈ Z and T (n) = n. If a, b ∈ Z with b 6= 0 then

T (ab−1) = T (a)T (b)−1 =
a

b

in according with 4. That is T (qz) = qT (z) for all q ∈ Q. Let λ ∈ R and {qn}n∈N ⊆
Q such that qn → λ, that is

T (qnz) = qnT (z)→ λT (z)

Since T is continous
T (qnz)→ T (λz)

6. T (x) = T (x · 1) = xT (1) = x

Corollary 23. Let T ∈ C (H,H ′) be a non-null C−morphism. Then <e T (0, f) = 0
∀f ∈ H

Proof. Let’s suppose T (0, f) = (c, g) where g ∈ H ′. Then

‖f‖2
H = T (‖f‖2

H , 0) = T ((0, f) · (0,−f)) = T (0, f) · T (0,−f) =

= −T (0, f)2 = −(c, g)2 = −(c2 − ‖g‖2
H′ , 2cg)

that is cg = 0. If c = 0 the result is proved; otherwise if g = 0 then ‖f‖2
H = −c2 which is

possible iff c = ‖f‖H = 0 and so the proof



Corollary 24. Let T ∈ C (H,H ′) be a non-null C−morphism. Then

T (z̄) = T (z) ∀z ∈ C(H)

Proof. By the previous Corollary, there exists g ∈ H ′ such that T (0, f) = (0, g). That is,
for all x ∈ R

T (x, f) = T (x, 0) + T (0, f) = (x, 0) + (0, g) = (x, g)

T (x,−f) = T (x, 0) + T (0,−f) = (x, 0)− T (0, f) = (x, 0)− (0, g) = (x,−g)

which proves the result

Corollary 25. Let T ∈ C (H,H ′) be a non-null C−morphism. Then ∀z, w ∈ C(H)(
T (z) | T (w)

)
H′

= (z | w)H

Proof.(
T (z) | T (w)

)
H′

=
1

2

(
T (z)T (w) + T (z)T (w)

)
= T

(
zw̄ + z̄w

2

)
= T ((z | w)H)

But (z | w)H ∈ R and so the proof

Corollary 26. Let T ∈ C (H,H ′) be a non-null C−morphism. Then T is an isometry

Theorem 27 (Representation). Let T ∈ C (H,H ′) be a C−isomorphism. Then there
exist a unique unitary operator Λ ∈ L (H,H ′) such that

T (x, f) =
(
x,Λf

)
∀(x, f) ∈ C(H)

Proof. We can write

T (x, f) = T (x, 0H) + T (0, f) = (x, 0H) + (0, k(f)) = (x, k(f))

where k : H → H ′. From hypothesis, exists Λ ∈ L (H,H ′) such that k(f) = Λf . From
hypothesis, using C2 with (x1, f1), (x2, f2) ∈ C(H), we have now

T
(

(x1, f1) · (x2, f2)
)

=
(
x1x2 − 〈f1 | f2〉H ,Λ(x1f2 + x2f1)

)
T (x1, f1) · T (x2, f2) =

(
x1x2 − 〈Λf1 | Λf2〉H′ ,Λ(x1f2 + x2f1)

)
which implies that(

x1x2 − 〈f1 | f2〉H ,Λ(x1f1 + x2f2)
)

=
(
x1x2 − 〈Λf1 | Λf2〉H′ ,Λ(x1f2 + x2f1)

)
that is

〈f1 | f2〉H = 〈Λf1 | Λf2〉H′

for all f1, f2 ∈ H. So Λ must be unitary.
Suppose T is represented by two operators Λ1 and Λ2 such that ∀x ∈ R and ∀f ∈ H

T (x, f) = (x,Λ1f) ; T (x, f) = (x,Λ2f)

Using linearity of T we have

0 = T (x, f)− T (x, f) = (x,Λ1f)− (x,Λ2f) =
(
0, (Λ1 − Λ2)f

)
and so the uniqueness.



EXAMPLE 6. C (Rn+1,Rn) = {0}

Proof. T ∈ C (Rn+1,Rn) is a linear map on R so there exists A ∈ Mn+1,n(R) such that
T (x, u) = (x,Au) for all (x, u) ∈ C(Rn+1). It follows that rg(A) ≤ n but rg(A) =
n+ 1−dim kerA so dim kerA ≥ 1. If u, v ∈ Rn+1 such that u 6= v and u− v ∈ kerA then

T (0, u− v) = (0, A(u− v)) = 0

that is T ≡ 0 by Proposition 18

1.4 Subspaces

Definition 4. A subset M ⊆ C(H) is called subspace of C(H) if is complete and for
all z, w ∈ M and ∀λ ∈ R we have z + w ∈ M , λz ∈ M e zw ∈ M . A subspace M is
autonomous if for all z ∈M there is at least one w ∈M such that w2 = z

EXAMPLE 7. {(0, 0)} is an autonomous subspace of every C(H); R × {0} is a non
autonomous subspace of C(R)

Theorem 28. For every pair of morphisms F,G : C(H)→ C(H ′) the set

EQF,G := {z ∈ C(H) : F (z) = G(z)}

is a subspace of C(H)

Proof. Since F and G are linear, EQF,G is a vectorial space on R with the dot product
induced by C(H). If z1, z2 ∈ EQF,G then

F (z1z2) = F (z1)F (z2) = G(z1)G(z2) = G(z1z2)

i.e. z1z2 ∈ EQF,G. Let’s take a Cauchy sequence {zn}n∈N ⊆ EQF,G. Since C(H) is an
Hilbert space, there exists a z∗ ∈ C(H) such that zn → z∗ for n→∞. That is

F (z∗) = lim
n→∞

F (zn) = lim
n→∞

G(zn) = G(z∗)

i.e. EQF,G is an Hilbert space

Proposition 29. Fixed f ∈ H, the set

〈f〉 := {(x, λf) ∈ C(H) : x, λ ∈ R}

called fundamental subspace, is a subspace of C(H)

Proof. The properties of the subspaces are obvious. Let’s check the completness: let
{(xn, λnf)}n∈N ⊆ 〈f〉 be a Cauchy sequence. That is for all ε > 0 there exists n0 ∈ N
such that ∀n,m ∈ N

|(xn, λnf)− (xm, λmf)| < ε

that is (xn−xm) < ε and (λn−λm) < ε/ ‖f‖H . Since R is complete, there exist x∗, λ∗ ∈ R
such that xn → x∗ and λn → λ∗ so (xn, λnf)→ (x∗, λ∗f) ∈M



Theorem 30. Fixed f ∈ H \ {0}, the map

Tf : 〈f〉 → C(R)

(x, λf) 7→ (x, λ)

is a C−isomorphism iff ‖f‖H = 1

Proof. If ‖f‖H = 1 then the product and the sum are conserved: if (x1, λ1f), (x2, λ2f) ∈
〈f〉 then

Tf
(
(x1, λ1f)(x2, λ2f)

)
= Tf

(
x1x2 − λ1λ2, (x1λ2 + x2λ1)f

)
= (x1x2 − λ1λ2, x1λ2 + x2λ1)

Tf (x1, λ1f)Tf (x2, λ2f) = (x1, λ1)(x2, λ2) = (x1x2 − λ1λ2, x1λ2 + x2λ1)

as for the sum. The invertibility is obvious.
If Tf is a C−isomorphism then it is an isometry too, that is

|Tf (x, λf)| = |(x, λf)|

x2 + λ2 = x2 + λ2 ‖f‖2
H

λ(‖f‖H − 1) = 0

and the result is proved

Figure 1: The action of Tf/‖f‖2 on a foundamental subspace of C(R2)

Proposition 31. 〈f〉 ' 〈g〉 for every f, g ∈ H \ {0} and 〈f〉 = 〈g〉 iff there exists µ ∈ R
such that f = µg

Proof. The first item is obvious by the map (x, λf) ↔ (x, λg); if 〈f〉 = 〈g〉 than for all
λ ∈ R \ {0} there exists λ′ ∈ R such that

(x, λf) = (x, λ′g) ∀x ∈ R

i.e. µ = λ′/λ



Definition 5. Let’s fix f, g ∈ B1(0) ⊂ C(H), the foundamental map is the application

Φf,g : 〈f〉 → 〈g〉

(x, λf) 7→ (x, λg)

Observation 8. Φf,g = T−1
g ◦ Tf

Corollary 32.

C(H) =
⋃

f∈H\{0}

〈f〉

Proposition 33. There exists a natural injection P(H) 7→ Gr2(C(H))1

Proof. Let’s take the map
[f ]→ 〈f〉 ∀f ∈ H

Fixed f, g ∈ H such that 〈f〉 = 〈g〉, by Prop. 31 there exists λ ∈ R such that f = λg,
that is [f ] = [g]

Theorem 34 (Fundamental of Pseudo-Complex Spaces). Let H be a non null Hilbert
space. Then

∀z ∈ C(H)∃w ∈ C(H) : z = w2

Furthermore, 〈f〉 is autonomous if f ∈ H such that ‖f‖H = 1

Proof. Let z = (x, f) be in C(H). If f = 0 then we have two cases: if x ≥ 0 then
w = (

√
x, 0); if x < 0 then there exists g ∈ H such that ‖g‖H =

√
−x, that is w = (0, g)

is the square root of z. Otherwise, let’s call f̃ = f/ ‖f‖H it results that
∥∥∥f̃∥∥∥

H
= 1 and

z =
(
x, ‖f‖H f̃

)
so we can write

z ∈
〈
f̃
〉

Then
Tf̃ (z) = (x, ‖f‖H)

Let’s take ψ : C(R)→ C such that ψ(x, y) = x+ iy. It is clear that ψ is an isomorphism
and preserves products. So there exists w ∈ C such that w2 = x + i ‖f‖H . Since Tf̃ is a
C−isomorphism, it implies that

z = T−1

f̃
(ψ−1(w2)) = T−1

f̃
(ψ−1(w))2

i.e. T−1

f̃
(ψ−1(w)) is a square root of z

Corollary 35. Let H be a non null Hilbert space. Then

∀n ≥ 1∀z ∈ C(H)∃w ∈ C(H) : z = wn

Proof. The proof is similar to the previous one in which we use that T (zn) = T (z)n where
T is a C−morphism

1Grassmannian space



1.5 Commutative Lifting

Definition 6. A map F : C(H) → C(H ′) is commutative if there exist an application
Λ : H → H ′ called shift and a complex map F̃ : C(R) → C(R) such that the next
diagrams are commutative for all f ∈ H

〈f〉 ⊆ C(H) F //

Tf/‖f‖H
��

〈Λ(f)〉 ⊆ C(H ′)

TΛ(f)/‖Λ(f)‖H′
��

C(R) F̃ // C(R)

If H = H ′, F is called commutative lifting of F̃ into C(H), indicated by

F := LiftΛ,H

(
F̃
)

where Λ : H → H

Theorem 36. LiftΛ,H : C(R)C(R) → C(H)C(H) is a group homomorphism and preserves
the product

Proof. For all F,G : C(R)→ C(R) and ∀(x, f) ∈ C(H), where f̂ := f/ ‖f‖H

LiftΛ,H (F +G) (x, f) = T−1

Λ̂f
◦(F+G)◦Tf̂ = T−1

Λ̂f
(F (Tf̂ )+G(Tf̂ )) = T−1

Λ̂f
(F (Tf̂ ))+T−1

Λ̂f
(G(Tf̂ )) =

=
(
T−1

Λ̂f
◦ F ◦ Tf̂

)
+
(
T−1

Λ̂f
◦G ◦ Tf̂

)
= LiftΛ,H (F ) + LiftΛ,H (G)

0 : C(R)→ C(R) is the identity element, so

LiftΛ,H (0) = T−1

Λ̂f
◦ 0 ◦ Tf̂ = 0

Moreover

LiftΛ,H (F ·G) (x, f) = T−1

Λ̂f
◦(F ·G)◦Tf̂ = T−1

Λ̂f
(F (Tf̂ )·G(Tf̂ )) = T−1

Λ̂f
(F (Tf̂ ))·T−1

Λ̂f
(G(Tf̂ )) =

=
(
T−1

Λ̂f
◦ F ◦ Tf̂

)
·
(
T−1

Λ̂f
◦G ◦ Tf̂

)
= LiftΛ,H (F ) · LiftΛ,H (G)

EXAMPLE 8. z2 is a commutative lifting because if F̃ (w) = w2 and Λ = idH then

T−1
f/‖f‖H

F̃
(
x, ‖f‖H

)
= T−1

f/‖f‖H

(
x, ‖f‖H

)2
= T−1

f/‖f‖H

(
x2−‖f‖2

H , 2x ‖f‖H
)
=
(
x2−‖f‖2

H , 2xf
)
= (x, f)2

So z2 is the commutative lifting of the complex square power

EXAMPLE 9. The map z 7→ zn is a commutative lifting because if F̃ (w) = wn and
Λ = idH then, by strong induction

(x, f)n+1 = (x, f)(x, f)n = T−1
f/‖f‖H

(
x, ‖f‖H

)
T−1
f/‖f‖H

(
x, ‖f‖H

)n
=

= T−1
f/‖f‖H

(
(x, ‖f‖H)

(
x, ‖f‖H

)n)
= T−1

f/‖f‖H

(
x, ‖f‖H

)n+1

So zn is the commutative lifting of the complex n−power



EXAMPLE 10. Every constant function F : C(H) → C(H) is a commutative lifting:
indeed if F (x, f) = (y, g) we can take Λ : H → H such that Λ(f) = g and F̃ (x, ‖f‖H) =
(y, ‖g‖H)

Theorem 37. Let F : C(H)→ C(H) be a pseudo-complex map, then F is a commutative
lifting iff

F |〈g〉= Φf,g ◦ F |〈f〉 ∀f, g ∈ B1(0)

Proof. We can rewrite the last line into the next mode

F ◦ Φf,g |〈f〉= Φf,g ◦ F |〈f〉

⇒) By hypothesis F is a commutative lifting, i.e. there exist F̃ : C(R)→ C(R) such that

F = LiftidH ,H

(
F̃
)

Looking at the next diagrams

〈f〉

F ##
Tf

��

Φf,g

// 〈g〉

F ##
Tg

��

〈f〉
Φf,g //

Tf

��

〈g〉

Tg

��

C(R) id //

F̃ ##

C(R)
F̃

##
C(R)

id
// C(R)

we can observe that Φf,g = T−1
g ◦ id ◦ Tf , so

Φf,g ◦ F |〈f〉=
(
T−1
g ◦ id ◦ Tf

)
◦
(
T−1
f ◦ F̃ ◦ Tf

)
= T−1

g ◦ F̃ ◦ Tf =

= T−1
g ◦ F̃ ◦ id ◦ id ◦ Tf =

(
T−1
g ◦ F̃ ◦ Tg

)
◦
(
T−1
g ◦ id ◦ Tf

)
= F ◦ Φf,g |〈f〉

and so the first proof.
⇐) We can observe, by hypothesis, that F (〈f〉) ⊆ 〈f〉 because Φ has got 〈f〉 as a domain.
We have to find a F̃ : C(R)→ C(R) such that the diagrams

〈f〉 F //

Tf

��

〈f〉
Tf

��
C(R) F̃ // C(R)

are commutative. Let’s pick F̃ := Tf ◦ Φ−1
f,g ◦ F ◦ Φf,g ◦ T−1

f , so

F̃ ◦ Tf =
(
Tf ◦ Φ−1

f,g ◦ F ◦ Φf,g ◦ T−1
f

)
◦ Tf = Tf ◦ Φ−1

f,g ◦ (F ◦ Φf,g) =

= Tf ◦ Φ−1
f,g ◦ (Φf,g ◦ F ) = Tf ◦

(
Φ−1

f,g ◦ Φf,g

)
◦ F = Tf ◦ F

which proves the result



Figure 2: An example of the action of Φf,g on a commutative function F in C(R2)

Proposition 38. If Λ1,Λ2 : H → H then forall (x, f) ∈ C(H)

T
Λ̂2Λ1f

◦ LiftΛ2Λ1,H = TΛ̂1f
◦ LiftΛ1,H

1.6 Product Spaces

Definition 7. Let k ∈ N be a integer with k ≥ 1. We define

C1(H) := C(H) ; Ck+1(H) := C
(
Ck(H)

)
Proposition 39. The transformation T : C(H)→ C(C(H)) such that

(x, f) 7→ (x, (0, f))

is in C (H,C(H))

Proof. For all (x, f), (y, g) ∈ C(H)

T (x, f) + T (y, f) = (x, (0, f)) + (y, (0, g)) =

= (x+ y, (0, f + g)) = T (x+ y, f + g) = T ((x, f) + (y, g))

Let’s verify C2

T (x, f) · T (y, g) = (x, (0, f)) · (y, (0, g)) =
(
xy − 〈f | g〉 , (0, xg) + (0, yf)

)
=

=
(
xy − 〈f | g〉 , (0, xg + yf)

)
= T (xy − 〈f | g〉 , xg + yf) = T

(
(x, f) · (y, g)

)
Observation 9. If {(Hn, 〈· | ·〉Hn

)}n=1,...,N is a finite family of Hilbert spaces on R then
H := H1 × · · · ×Hn is an Hilbert space with dot product 〈· | ·〉H : H2 → R such that for
all (f1, . . . , fN), (g1, . . . , gN) ∈ H

〈(f1, . . . , fN) | (g1, . . . , gN)〉H :=
N∑
k=1

〈fk | gk〉Hk



Theorem 40. For all k ∈ N \ {0}

C(H)k ' Ck(Hk)

Proof. Observe that Ck(Hk) ' Rk ×Hk and C(H)k ' (R×H)k

Proposition 41. For all integer k > 1

Ck(H) ' C(Rk−1 ×H)

Definition 8. The product space of C(H) with C(H ′) is

C(H)× C(H ′) := C(C(H ×H ′))

with the projections π1 : C(C(H ×H ′))→ C(H) e π2 : C(C(H ×H ′))→ C(H ′) such that

π1

(
x, (y, (f, g))

)
= (x, f) ; π2

(
x, (y, (f, g))

)
= (y, g)

for all (x, f) ∈ C(H) and forall (y, g) ∈ C(H ′)

Conclusions

The benefit of this approach consists on having universal properties that do not depend
directly on the choice of H; the handicap is the weak associative property as shown
in Proposition 7, which creates zero divisors (th. 12). Another interesting item is the
characterization of C−morphisms, which look like ring homomorphisms and have only
one direction in the sense of injectivity. Our goals are now the generalization of the
exponential function and building a pseudo-complex derivation, with which verify if it is
possible to extend Cauchy-Riemann equations and so the concept of holomorphy
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