Science from History to Future

1. INERTIA
2. Form of the interference field
3. CORRECTED Maswell's equations
4. Corrected Newton's Laws of Motion
5. Kinetic energy of a charge moving at the velocity of v has two different values:

Kinetic energy against direction of motion as wave
Tkin ad $=\mathrm{mc} 2[\ln |1+\mathrm{v} / \mathrm{c}|-(\mathrm{v} / \mathrm{c}) /(1+\mathrm{v} / \mathrm{c})]$
Kinetic energy in direction of motion as particle Tkin id $=m c 2[\ln |1-v / c|+(v / c) /(1-v / c)]$

- 1. INERTIA

- Inertial motion is an intrinsic property of matter. Bat no Newton's, no Einstein's linear motion is an intrinsic property of matter. Inertial motion is only quasi-circle. It is Galileian's motion
- The atomic theory shows that the electrons and the nucleus circulate around the center of gravity of atom in approximate circles. The body rotating around its own axis (a flywheel) persists in this status.
- Similarly, the planets, stars, galaxies, molecules, nuclei and elementary particles rotate around their own axes. Since the uniform straight-line inertial motion cannot be achieved in a microworld, its place here is exclusively in the inertial quasi-circle motion. It is analogous in the macroworld. Each real "straight-line" motion can be replaced by a circle of a huge radius. This discussion results in the following:
- "Every mass (atom, molecule, particle, body, vacuum) persists in the status of the quasi-rest or quasi-uniform motion in a quasi-circle as far as it the external forces do not force it to change its status. (This notion is called the generalized law of inertia)."
- 1.1 Newton in his book "Mathematical Principles of Natural Philosophy":
Every body continues to rest in a state of rest or a uniform and rectilinear movement, until and because it does not force the forces applied to change this state.

In an rotating frame of reference the law of inertia is allegedly incorrect, therefore the Newtonian formulation was replaced by the postulate of the existence of inertial frames of reference (by EINSTEIN !!!).
Galilei's, Newton's, Einstein's movement "along a straight line" is a circle with radius 6378 km !!

No real motion can be straight-line one. It is only mathematical definition.

Mathematics is NO PHYSICS !!!
The postulate of the existence of inertial frames of reference
does not belong to physics. Neither postulate does not belong to physics.

Physics is based on experiments and not on postulates.
"The difference between a good experiment and a good theory is in the fact that the theory gets old quickly and it is replaced by another one, based on more perfect ideas. It will be forgotten quickly. The experiment is something else. The experiment, which has been thought well and performed carefully, will step in the science forever. It will become its part. It is possible to explain such experiment differently in different periods of times."
P. L. KAPICA

- 1.2 Galileo Galilei
- The first law (the law of inertia), in a less clear form, was published by Galileo. It should be noted that Galileo allowed free movement not only along a straight line, but also along a circle (apparently from astronomical considerations). Galileo also formulated the most important principle of relativity
- 1996: Let's have a real coordinates system firmly connected with a real laboratory on Earth, where all experiments testing the physical theories are performed. We know that this coordinates system moves around the Earth axis during an astronomical day i. e. it performs a quasi-circular motion. During the year it rotates around the Sun approximately in a quasi-circle together with the Earth. During $2 * 10^{\wedge} 8$ years it circulates in the quasi-circle around the center of the Galaxy. It performs a quasiuniform motion in a quasi-circle together with the Sun.
- The Galaxy performs a quasi-uniform and quasi-circle motion around the center within the framework of metagalaxies of star clusters and our laboratory coordinates system on Earth together with it, etc.
- From the experimental testing of the law of inertia it is known that the body moves along the "plane" stated by a waterlevel, i. e. in fact it is not a straight-line uniform motion, but it is the motion in the circle of the Earth radius of $\mathrm{R}=6378 \mathrm{~km}$.
- The space aeronautics show that space ships, Earth satellites and orbital laboratories move quasi-uniformly in almost a circle around the Earth.
- Linear form of the interference field

- Non linear form of the interference field

- Linear form of the interference field

Fresnel: $\quad \alpha=0.44, v-\alpha u,{ }^{v+} \alpha u, u=7.059 \mathrm{~m} / \mathrm{s}$

Theory must use drag coefficient α and aether.

- Fizeau's Experiment

- Non linear form of the interference field

- Fizeau's Experiment

- We do not need any drag coefficient α.
- Fizeau's experiment confirms also that the interference field has a non-linear form.

2. Form of the interference field

2. Form of the interference field

Fig. 2.5. [7] Tab. 1., 2. Reihe

Table 2. Calculation of the kinetic energy $T_{\text {kin }}$ of a body moving at the velocity of v according to Vlcek and according to Einstein

v/c	Vlcek's theory - kinetic energy against direction of motion as wave $T_{\text {kin ad }}=m c^{2}[\ln \|1+v / c\|-(v / c) /(1+\nu / c)]$	Vlcek 's theory - kinetic energy in direction of motion as particle $T_{\text {kin id }}=m c^{2}[\ln \|1-v / c\|+(v / c) /(1-v / c)]$	Einstein's theory $T_{k n}=m c^{2}-m_{0} c^{2}$
0.1	$0.00439 \mathrm{mc}^{2}$	$0.0057 \mathrm{mc}^{2}$	$0.0050 \mathrm{~m}_{0} \mathrm{c}^{2}$
0.2	$0.0156 m c^{2}$	$0.0268 \mathrm{mc}^{2}$	$0.0200 m_{0} c^{2}$
0.3	$0.0316 m c^{2}$	$0.0719 m c^{2}$	$0.0480 m_{0} c^{2}$
0.4	$0.0508 m c^{2}$	0.1558 mc ${ }^{2}$	$0.0910 m_{0} c^{2}$
0.5	$0.0722 m c^{2}$	0.3068 mc ${ }^{2}$	$0.1550 m_{0} c^{2}$
0.6	0.0950 mc ${ }^{2}$	$0.5837 \mathrm{mc}^{2}$	$0.2500 m_{0} c^{2}$
0.7	$0.1174 m c^{2}$	$1.1293 m c^{2}$	$0.4010 m_{0} c^{2}$
0.8	$0.1434 m c^{2}$	$2.3905 m c^{2}$	$0.6670 m_{0} c^{2}$
0.9	$0.1680 m c^{2}$	$6.6974 m^{2}$	$1.2930 m_{0} c^{2}$
0.99	$0.1906 m c^{2}$	$94.3948 \mathrm{mc}^{2}$	$6.9200 m_{0} c^{2}$
1.0	0.1931 mc ${ }^{2}$	infinite	infinite

2. Form of the interference field

Kaufmann's Experiment - diagram

Kaufmann's Experiment

(1)Annalen der Physik, Vierte Folge, Band 19, Leipzig 1906, Verlag von Johann Ambrosius Barth, page 487-552

	1631 V	$\mathbf{2 6 0 3} \mathbf{~ V}$	3250 V
$y_{\mathrm{b}}[\mathrm{cm}]$	0.1236	0.1493	0.1664
β	0.1119	0.1302	0.1616
$2^{\circ}[\mathrm{cm}]$	0.23626	0.3873	0.4985
$y_{\mathrm{T}}[\mathrm{cm}]$	0.0629	0.09947	0.12557
y_{T}-theoretical value (our new theory) $: y_{\mathrm{b}}[\mathrm{cm}]=y_{\mathrm{T}}[\mathrm{cm}]$			

CORRECTED Maswell's equations

Let us take the equation (2.20) in the vector form:

$$
E_{\text {mor }}=E_{\text {still }}\left(1-\frac{v}{c} \cos \vartheta\right)^{2}
$$

The force acting on the moving electric charge is

$$
\begin{aligned}
& F=Q E_{\operatorname{mor}}=Q E_{\sin }\left(1-\frac{v}{c} \cos \vartheta\right)^{2}=Q E_{\sin }\left(1+\frac{v}{c} \sin \phi\right)^{2}= \\
& =Q E_{\sin }+Q E_{\sin }\left(2+\frac{v}{c} \sin \phi\right) \frac{v}{c} \sin \phi
\end{aligned}
$$

whereby

$$
-\cos \beta=\sin \phi
$$

It is known, in line with the classical theory, that a magnetic field is created by the moving charges and electric currents. The result is that the moving charge creates its own magnetic field of induction \boldsymbol{B}_{q}. It continues in this field in motion. According to Lorentz, the force acting on the moving charge in the electromagnetic field at speed v in the magnetic field of induction \boldsymbol{B} and in the electric field of the following intensity \boldsymbol{E} it is valid:

$$
F=F_{\mathrm{el}}+F_{\mathrm{m}}=Q E+\varrho(v \times B)
$$

Let us compare the equations (2.22) and (2.23).
Intensity \boldsymbol{E} of the electric field according to Lorentz equals to our intensity $\boldsymbol{E}_{\text {still }}$.

$$
F=F_{\mathrm{el}}+F_{\mathrm{II}}=Q E+Q(v \times B)
$$

CORRECTED Maswell's equations

Since the forces acting on the moving charge are the same, the equation applies

$$
\begin{equation*}
E_{\sin (2)}\left(2+\frac{v}{c} \sin \phi\right) \frac{v}{c} \sin \phi=v \times B \tag{2.24}
\end{equation*}
$$

With regard to the fact that both the direction $\boldsymbol{E}_{\text {still }}$ and the direction of the vector $\boldsymbol{v} \times \boldsymbol{B}$ are identical, for the absolute values it is possible to write

$$
E_{\operatorname{sinin}}\left(2+\frac{v}{c} \sin \phi\right) \frac{v}{c} \sin \phi=v \cdot B \cdot \sin \phi
$$

$$
\begin{aligned}
\text { i.e. } B= & \frac{E_{\text {siil }}}{c}\left(2+\frac{v}{c} \sin \phi\right) \quad v \times B=E_{\text {mid }}-E_{\text {sill }} \\
& E_{\text {mod }}=E_{\text {still }}+v \times B
\end{aligned}
$$

The intensity of moving charge comprises in itself also the magnetic field induction B created by the charge moving at speed v.

Based on $E_{\text {mior }}=E_{\text {siill }}+\boldsymbol{v} \times B$

Maxwell's equations which are always valid (not only in static) acquire the form:

$$
\nabla \times E_{\operatorname{moT}}=-\frac{\partial B}{\partial t}
$$

Faraday's law
Amper's law in statics: $c^{2} \nabla \times B_{\text {stat }}=\frac{j}{\varepsilon_{0}} \quad$ Total magnetic field: $B_{\text {dam }}=B_{\text {stat }}+B_{0}$

$$
B_{\mathrm{dtm}}=B_{\mathrm{statI}}+\left(B_{\mathrm{dgn}}-B_{\mathrm{stat}}\right)=B_{\mathrm{stat}}+B_{\mathrm{Q}}
$$

The 4th Maxwell's equation:

$$
c^{2} \nabla \times B_{\mathrm{dym}}=\frac{\dot{j}}{\varepsilon_{0}}+\frac{\partial E_{\mathrm{mo} \mathrm{\pi}}}{\partial t}
$$

$$
\frac{\partial E_{\text {sill }}}{\partial t}=0
$$

$$
\begin{aligned}
& c^{2} \nabla \times B_{\text {dyn }}=c^{2} \nabla \times B_{\text {stat }}+c^{2} \nabla \times B_{Q} \quad c^{2} B_{Q}=\left(v \times B_{0}\right) \times v \\
& \nabla \times\left[\left(\boldsymbol{v} \times \boldsymbol{B}_{Q}\right) \times \boldsymbol{v}\right]=\left(\boldsymbol{v} \times \boldsymbol{B}_{Q}\right)(\nabla \boldsymbol{v})-\boldsymbol{v}\left[\nabla\left(\boldsymbol{v} \times \boldsymbol{B}_{q}\right)\right]= \\
& c^{2} \nabla \times B_{s t a t}=\frac{j}{\varepsilon_{0}} \\
& \begin{array}{l}
\nabla \times\left(\left[\boldsymbol{v} \times B_{Q}\right) \times \boldsymbol{v}\right]=\left(\boldsymbol{v} \times B_{Q}\right)(\nabla \boldsymbol{v})-\boldsymbol{v}\left[\nabla\left(\boldsymbol{v} \times B_{Q}\right)\right]= \\
=\frac{\partial\left(\boldsymbol{v} \times B_{Q}\right)}{\partial t}=\frac{\partial\left(E_{\text {mov }}-E_{\text {siill }}\right)}{\partial t}=\frac{\partial E_{\text {mor }}}{\partial t}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla E_{\text {mod }}=\nabla\left(E_{\text {still }}+\boldsymbol{v} \times \boldsymbol{B}\right)=\nabla E_{\text {still }}+\nabla(\boldsymbol{v} \times \boldsymbol{B})=\frac{\rho}{\varepsilon_{0}} \quad \text { Gauss law }\left(\nabla E_{\text {still }}=\frac{\rho}{\varepsilon_{0}}\right) \quad \nabla \boldsymbol{B}=0 \text { are no magnetic charges, } \\
& \text { in statics: } \nabla \times E_{\text {still }}=0 \\
& \nabla \times E_{\text {mor }}=\nabla \times\left[E_{\text {sitl }}+(\boldsymbol{v} \times \boldsymbol{B})\right]=\nabla \times E_{\text {still }}+\nabla \times(\boldsymbol{v} \times \boldsymbol{B}) \\
& \nabla \times(\boldsymbol{v} \times B)=\boldsymbol{v}(\nabla \boldsymbol{B})-\boldsymbol{B}(\nabla \boldsymbol{v}) \\
& \nabla \times E_{\text {still }}=0 \\
& \nabla \cdot v=\frac{\partial}{\partial t}
\end{aligned}
$$

The intensity of moving charge comprises in itself also the magnetic field induction B created by the charge moving at speed v.

Based on $E_{\text {miv }}=E_{\text {sitill }}+v \times B$

Maxwell's equations which are always valid (not only in static) acquire the form:

$$
\nabla \times E_{\operatorname{mor}}=-\frac{\partial B}{\partial t}
$$

Faraday's law
Amper's law in statics: $\quad c^{2} \nabla \times B_{\text {stat }}=\frac{j}{E_{0}}$ Total magnetic field: $\quad B_{\text {dath }}=B_{\text {stat }}+B_{\text {Q }}$

$$
B_{\mathrm{dyn}}=B_{\mathrm{staIt}}+\left(B_{\mathrm{dgn}}-B_{\mathrm{stat}}\right)=B_{\mathrm{stat}}+B_{0}
$$

$$
\begin{aligned}
c^{2} \nabla \times \boldsymbol{B}_{\text {dat }}=c^{2} \nabla \times B_{\text {stat }}+ & c^{2} \nabla \times B_{Q} \quad c^{2} B_{Q}=\left(\boldsymbol{v} \times \boldsymbol{B}_{Q}\right) \times \boldsymbol{v} \\
c^{2} \nabla \times B_{\text {stut }}=\frac{j}{\varepsilon_{0}} \quad & \nabla \times\left[\left(\boldsymbol{v} \times \boldsymbol{B}_{Q}\right) \times \boldsymbol{v}\right]=\left(\boldsymbol{v} \times B_{Q}\right)(\nabla \boldsymbol{v})-\boldsymbol{v}\left[\nabla\left(\boldsymbol{v} \times B_{Q}\right)\right]= \\
& =\frac{\partial\left(\boldsymbol{v} \times B_{Q}\right)}{\partial t}=\frac{\partial\left(E_{\text {mor }}-E_{\text {stiul }}\right)}{\partial t}=\frac{\partial E_{\text {mor }}}{\partial t}
\end{aligned}
$$

The 4th Maxwell's equation:

$$
c^{2} \nabla \times B_{\mathrm{dgn}}=\frac{\dot{j}}{\varepsilon_{0}}+\frac{\partial E_{\mathrm{mor}}}{\partial \mathrm{t}}
$$

$$
\begin{aligned}
& \nabla E_{\text {mor }}=\nabla\left(E_{\text {sitl }}+\boldsymbol{v} \times \boldsymbol{B}\right)=\nabla E_{\text {sidl }}+\nabla(\boldsymbol{v} \times \boldsymbol{B})=\frac{\rho}{\varepsilon_{0}} \text { Gauss law }\left(\nabla E_{\text {still }}=\frac{\rho}{\varepsilon_{0}} \quad \nabla \boldsymbol{B}=0\right. \text {, re no magnetic charges, } \\
& \text { in statics: } \nabla \times E_{\text {still }}=0 \\
& \nabla \times E_{\text {mov }}=\nabla \times\left[E_{\text {still }}+(v \times B)\right]=\nabla \times E_{\text {still }}+\nabla \times(\boldsymbol{v} \times \boldsymbol{B}) \\
& \nabla \times E_{\text {still }}=0 \\
& \nabla \times(\boldsymbol{v} \times \boldsymbol{B})=\boldsymbol{v}(\nabla \boldsymbol{B})-\boldsymbol{B}(\nabla \boldsymbol{v}) \\
& \nabla \cdot v=\frac{\partial}{\partial t}
\end{aligned}
$$

4. Corrected Newton's Laws of Motion

- First law:

"Every mass (atom, molecule, particle, body, vacuum, transmission medium) persists in the status of the quasi-rest or quasiuniform motion in a quasi-circle, or quasi- elipse (excentricity e $->0$) as far as it the external forces do not force it to change its status. (This notion is called the generalized law of inertia)."

- Third law:

All movements in physics are based on principle of action - reaction and on velocity of stable particles ($e-, p+, n 0, D, H e-3, \boldsymbol{\alpha})$. - Action, as a motion of stable particles (e-, p+, $\mathrm{nO}, \mathrm{D}, \mathrm{He}-\mathbf{3}, \boldsymbol{\alpha}$), is characterized by alternating acceleration and deceleration motion in the source, along ellipse or quasi- elipse (excentricity e $->0$).

Stable particles of various speed (leptons $\boldsymbol{\mu}-$, τ-, baryons, mesons), bosons $\mathbf{W}+, \mathbf{W}-, \mathbf{Z}$ ($\boldsymbol{\beta}$ electrons) are characterized by kinetic energy in direction of motion $\quad T_{\text {kin id }}=m c^{2}[\ln |1-v / c|+(v / c) /(1-v / c)]$

- Reaction creates in the transmission medium, electromagnetic waves, as unstable "particles" neutrinos ve, $v \mu$, $v \tau$, mesons $\pi 0, \pi+, \pi-, \eta, K$ and gamma rays ($f>\mathbf{1 0}^{\wedge} \mathbf{1 9} \mathrm{Hz}$) are characterized by kinetic against direction of motion as wave $\quad T_{k i n a d}=m c^{2}[\ln |1+v / c|-(v / c) /(1+v / c)]$

Accompanying activity of reaction on movement of stable particles in the transmission medium are waves, or "unstable particles" i.e. neutrinos and mesons.

4. Corrected Newton's Laws of Motion

Consequences

Physics is Easy
Leptons (electron, muon, tau), W +-Z bosons and neutrinos (electron neutrino , muon neutrino, tau neutrino) can be replaced with electron moving at different speeds from 0.001c up to 0.999.. c :
Electron, electron neutrino are in the electron at speed of electron : from $\mathbf{v = 0 . 0 0 1} \mathbf{c}$ to $\mathbf{v = 0 . 9} \mathbf{c}$
Muon, muon neutrino are in the electron at speed of electron : v=0,995308032046c
Tauon, tauon neutrino are in the electron at speed of electron : $\mathbf{v}=\mathbf{0 , 9 9 9 7 1 3 1 6 6 7 4} \mathbf{c}$
$\mathbf{W}+\boldsymbol{-}$ boson and neutrino are in the β electron at speed of electron : $\mathbf{v}=\mathbf{0 , 9 9 9 9 9 3 6 4 4 6 5 7 8 1 1 8 4 c}$
\mathbf{Z} boson and neutrino are in the β electron at speed of electron : $\mathbf{v}=\mathbf{0 , 9 9 9 9 9 4 3 9 6 5 9 0 9 5 3 c}$
Higgs Boson $125300 \mathrm{MeV} / \mathrm{c} 2$ speed of proton : $\mathbf{v = 0 , 9 9 2 8 3 0 5 c} \beta$ electron is radiated from a neutron
Hyperons, mesons and quarks can be replaced by proton and neutron ,or alpha particle respectively, moving at different speeds from 0.1c up to 0.999.. c:

Lambda hyperón $2286,46 \mathrm{MeV}$ and pion $\pi 0: 134.9766(6) \mathrm{MeV}$ are in the proton
at speed of proton $v=0,8022863362 c$
hyperon Chí c (2645)+ 2646,6MeV and pion $\pi \pm: 139.57018(35) \mathrm{MeV}$ are in the proton
at speed of proton $v=0,819183027 c$
hyperon $6,165 \mathrm{GeV}$ and meson $\mathrm{K}-493.7 \mathrm{MeV}$ are in the alpha particle
at speed of alpha particle $v=0,7533 c$

4. Corrected Newton's Laws of Motion

-Consequences

- What is Quark?

Two energies, which are measured in opposite directions, and we consider them as quarks are actually two different kinetic energy of a single proton, the first in the direction of its movement, and the second in the opposite direction. Quarks are actually locked (confinement) in proton, as is clear from the individual tables.
-QUARK = proton of different speeds
A pair of quarks of one generation = one speed of proton:
\mathbf{u}, d quarks are in the proton at speed of proton : from $\mathbf{v = 0 , 0 5 8 7 5 c}$ to $\mathbf{v = 0 , 1 0 5 0 6 5 c}$
\mathbf{c}, s quarks are in the proton at speed of proton from $\mathrm{v}=\mathbf{0 , 7 1 3} \mathrm{c}$ to $\mathrm{v}=\mathbf{0 , 7 8 0 5 c}$
t quark is in the proton (neutron) at speed of proton (neutron):
$\mathrm{v}=0,994637 \mathrm{c}$ for top quark: 169100 MeV

b quark is in the proton (neutron) at speed of proton (neutron): $\mathbf{v = 0 , 8 6 6 5 c}$ for $\mathbf{4 , 2} \mathbf{~ G e V}$ bottom quark

Consequences

A pair of quarks of one generation = one speed of proton:
u, d quarks are in the proton at speed of proton : from $\mathrm{v}=\mathbf{0 . 0 5 8 7 5 \mathrm { c }}$ to $\mathrm{v}=\mathbf{0 . 1 0 5 0 6 5} \mathrm{c}$
c, s quarks are in the proton at speed of proton from $\mathrm{v}=0,5111 \mathrm{c}$ to $\mathrm{v}=0,7805 \mathrm{c}$
t quark is in the proton (neutron) at speed of proton (neutron):
$v=0,994637 \mathrm{c}$ for top quark: 169100 MeV
v=0,994766c for top quark: 173 400MeV/c2
b quark is in the proton (neutron) at speed of proton (neutron): $\mathbf{v = 0 , 8 6 6 5 c}$ for $\mathbf{4 , 2} \mathbf{~ G e V}$ bottom quark

u, d quarks are in the proton at speed of proton : from $v=0.05875 c$ to $v=0.105065 c$

V / c	$\boldsymbol{T}_{\text {kin id }}=m c^{2}[\ln / 1-\mathrm{v} / \mathrm{c} /+(\mathrm{V} / \mathrm{c}) /(1-\mathrm{v} / \mathrm{c})]$	$T_{\text {kin ad }}=m c^{2}[\ln \|1+\mathrm{v} / c\|-(\mathrm{v} / \mathrm{c}) /(1+\mathrm{v} / \mathrm{c})]$

from $v=0.713 \mathrm{c}$ to $\mathrm{v}=0.73333 \mathrm{C}$ squark $\boldsymbol{m}_{0}=70-130 \mathrm{MeV} / \mathrm{c} 2,95+5-5 \mathrm{Mev} / \mathrm{c}[1]$

$m_{0}=80-130 \mathrm{MeV} / \mathrm{c} 2$, Theorized Murray Gell-Mann (1964) George Zweig (1964) Discovered 1968, SLAC [1] Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)
c quark Theorized Sheldon Glashow, John Iliopoulos, Luciano Maiani (1970)
Discovered Burton Richter et al. (SLAC)(1974) Samuel Ting et al. (BNL)(1974)
c quark $m_{0}=1.16-1.34 \mathrm{MeV} / \mathrm{c} 2, m_{0}=1.29+0.05-0.11 \mathrm{GeV} / \mathrm{c2}[1]$ Decays into Strange quark ($\sim 95 \%$), Down quark ($\sim 5 \%$)[2][3]

v/c	$T_{\text {kin } i d}=m c^{2}[\ln \|1-v / c\|+(v / c) /(1-v / c)]$	$T_{\text {kin } a d}=m c^{2}[\ln \|1+v / c\|-(\nu / c) /(1+v / c)]$
0.713	$\begin{aligned} & \text { charm quark } T_{\text {kin id }}=1.160 \mathrm{GeV} / \mathrm{p} \text { : } \\ & {[]=1.236047494268773255524413529431} \end{aligned}$	strange quark $T_{\text {kin ad }}=\mathbf{1 1 4 . 4 8 5 4 9 3 7 6 3 6 4 0 ~ M e V ~ / ~ p : ~}$ [] = 0.12201738104659464824870350196726
0.72585	$\begin{aligned} & \text { charm quark } T_{\text {kin id }}=1.270 \mathrm{GeV} / \mathrm{p} \text { : } \\ & {[\text {] }=1.3535582771630143437838209404184} \end{aligned}$	strange quark $T_{\text {kin ad }}=117.41941 \mathrm{MeV} / \mathrm{p}$: [] = 0.12514431408438967945446850497659
0.73333	$\begin{aligned} & \text { charm quark } T_{\text {kin id }}=1.340 \mathrm{GeV} / \mathrm{p} \text { : } \\ & {[\text {] = } 1.4281572732698825869678018468163} \end{aligned}$	$\begin{aligned} & \text { strange quark } T_{\text {kin ad }}=119.1311 \mathrm{MeV} / \mathrm{p}: \\ & {[]=0.12696860023316592749751861919307} \end{aligned}$

Quarks are actually locked (confinement) in proton

t quark to b quark are in the proton at speed of proton :

from $V=\ldots C$ to $V=0 \ldots \ldots . C$ t quark $m_{0}=172.44 \pm 0.13$ (stat) ± 0.47 (syst) $\underline{G e V} / c^{2[1]}$,
$m_{0}=173.4 \mathrm{MeV} / \mathrm{c2}$, Theorized Makoto Kobayashi and Toshihide Maskawa (1973) Discovered CDF and D \emptyset collaboratic Decays into : bottom quark (99.8\%), strange quark (0.17%), down quark (0.007%)

v/c	$T_{\text {kin id }}=m c^{2}[\ln \|1-v / c\|+(v / c) /(1-v / c)]$	$T_{\text {kin ad }}=m c^{2}[\ln \|1+v / c\|-(v / c) /(1+v / c)]$
0.994766	$\begin{aligned} & \text { top quark } T_{\text {kin id }}=173.4 \mathrm{GeV} / \mathrm{p}: \\ & {[]=184.8078143171624183434454} \end{aligned}$	$\begin{aligned} & T_{\text {kin ad }}=179.9968678 \mathrm{MeV} / \mathrm{p}: \\ & {[]=0.191838683558878228973} \end{aligned}$
0.994637	$\begin{aligned} & \text { top quark } T_{\text {kin id }}=169.1 \mathrm{GeV} / \mathrm{p}: \\ & {[]=180.2249215745799592957129} \end{aligned}$	$\begin{aligned} & T_{\text {kin ad }}=179.96660877927 \mathrm{MeV} \\ & {[]=0.191806433786441122906} \end{aligned}$
0.8665	bottom quark $T_{\text {kin id }}=4.2 \mathrm{GeV} / \mathrm{p}$: [] = 4.476313841592169302436394	$\begin{aligned} & T_{\text {kinad }}=149,9613333459543879 \mathrm{MeV} \\ & {[]=0.159827140990503087217669575} \end{aligned}$
	t -> b -> c -> s >> u <-> d This decay of quarks actually means a reduction of the speed of proton	

$T_{\text {kin id }}=m c^{2}[\ln |1-v / c|+(v / c) /(1-v / c)]$

$$
T_{\text {kin } a d}=m c^{2}[\ln |1+v / c|-(v / c) /(1+v / c)]
$$

0.994766	top quark $T_{\text {kin id }}=173.4 \mathrm{GeV} / \mathrm{p}:$ []$=184.8078143171624183434454$	$T_{\text {kin ad }}=179.9968678 \mathrm{MeV} / \mathrm{p}:$ []$=0.191838683558878228973$
0.994637	top quark $T_{\text {kin id }}=169.1 \mathrm{GeV} / \mathrm{p}:$ []$=180.2249215745799592957129$	$T_{\text {kin ad }}=179.96660877927 \mathrm{MeV}$ []$=0.191806433786441122906$

0.8665 bottom quark $T_{\text {kin id }}=4.2 \mathrm{GeV} / \mathrm{p}: \quad T_{\text {kin ad }}=149,9613333459543879 \mathrm{MeV}$ [] = 4.476313841592169302436394 [] = 0.159827140990503087217669575
0.73333 charm quark $T_{\text {kin id }}=1.340 \mathrm{GeV} / \mathrm{p}: \quad$ strange quark $T_{\text {kin ad }}=119.1311 \mathrm{MeV} / \mathrm{p}:$ [] = 1.4281572732698825869678018
[] = 0.12696860023316592749751861919307
0.72585 charm quark $T_{\text {kin }}=1.270 \mathrm{GeV} / \mathrm{p}: \quad$ strange quark $T_{\text {kin ad }}=117.41941 \mathrm{MeV} / \mathrm{p}:$
[] = 1.3535582771630143437838209404184
[] = 0.12514431408438967945446850497659
0.713 charm quark $T_{\text {kin id }}=1.160 \mathrm{GeV} / \mathrm{p}:$ [] = 1.236047494268773255524413529431
strange quark $T_{\text {kin ad }}=114.485493763640 \mathrm{MeV} / \mathrm{p}$: [] = 0.12201738104659464824870350196726
0.105065 Down quark $T_{\text {kin id }}=6 \mathrm{MeV} / \mathrm{p}: \quad$ Up quark $T_{\text {kin ad }}=4.530260 \mathrm{MeV} / \mathrm{p}$: [] = 0.0063947340594173847177662769260429
[] = 0.0048283015026596502291040657295924
0.08878 Down quark $\boldsymbol{T}_{\text {kin id }}=4.18366235 \mathrm{MeV} / \mathrm{p}: \quad$ Up quark $\boldsymbol{T}_{\text {kin ad }}=3.3 \mathrm{MeV} / \mathrm{p}$: [] = 0.0044589013511482922312132108807756
[] = 0.003517103732679561594771452309324

