How to make Theoretical Physics valid for the longest

Article • June 2019

Some of the authors of this publication are also working on these related projects:Great table of elementary particles. View projectHow to make Theoretical Physics valid for the longest View project

How to make Theoretical Physics valid for the longest.

„The first principle is that you must not fool yourself and you are the easiest person to fool."
R. P. FEYNMAN
"The difference between a good experiment and a good theory is in the fact that the theory gets old quickly and it is replaced by another one, based on more perfect ideas. It will be forgotten quickly.
The experiment is something else. The experiment, which has been thought well and performed carefully, will step in the science forever. It will become its part. It is possible to explain such experiment differently in different periods of times."

We will review the experiments of Fizeau, Harress, Kaufmann, Michelson - Morley, which led to the emergence of Einstein's special and general relativity theory. ensten, A. Sobranie nuữych trudovv ceetrech tomach pod

 redakciej I. E. TAMMA, Ja. A. SMORODINSKOGO, B. G. KUZNECOVA, Izdatel'stvo "Nauka", Moskva 1966- Nobel laureates in physics are mostly physicists, who mainly create and defend physics. Einstein never received a Nobel prize for relativity...
- Why Einstein's theory of relativity is not generally accepted as correct even after 100 years.
- Why it nevertheless no one truly understand.
- For nearly 100 years ago have been Nobel Prize winners said:
- ,,- Die Relativitätstheorie ist eine mathematische und keine physikalische Theorie.
- - Die Theorie ist bei weitem noch nicht experimentell abgesichert, die Meßergebnisse der Sonnenfinsternisexpeditionen lassen noch andere Deutungen zu.
- - Das Relativitätsprinzip ist nur für masseabhängige Bewegungen gültig
- - Die Relativitätstheorie widerspricht den fundamentalen Vorstellungen über Raum und Zeit: der euklidische Raum und die üblichen Zeitvorstellungen müssen verbindlich bleiben.
- Speziell bei Lenard kamen dann noch die Bedeutung der Anschaulichkeit in einer Theorie und die entscheidende Rolle des „gesunden Menschenverstandes" hinzu."
- "- The theory of relativity is a mathematical and not a physical theory.
- - The theory is far from being confirmed experimentally, the results of the solar eclipse expeditions allow other interpretations.
- - The principle of relativity is only valid for mass-dependent movements
- - The theory of relativity contradicts the fundamental ideas about space and time: the Euclidean space and the usual concepts of time must remain binding.
- Especially with Lenard, the importance of clarity in a theory and the decisive role of "common sense" were added. "
- (Math has no EXPERIMENT, only definitions., Assumptions)

Linear form of the interference field Fresnel: $\quad \alpha=0.44, v-\alpha u, v+\alpha u, u=7.059 \mathrm{~m} / \mathrm{s}$

Theory must use drag coefficient α and aether.

Fizeau's Experiment

Non linear form of the interference field

Fizeau's Experiment

We do not need any drag coefficient α. \{ or $\alpha=1\}$
Fizeau's experiment confirms also that the interference field has a non-linear form.

Harress's Experiment

KNOPF, O.: Annalen der Physik, Vierte folge, Band 62, 1920 :
"Die Versuche von F. Harress uber die Geschwindigkeit des Lichtes in bewegten Korpern, von O. Knopf. p. 391 - 447

This is simultaneously proves that the drag coefficient always equals one and the interference field has a non-linear form. Consequently, the interference fields are identical only for the shift of the interference fringes about 0 and/or 100 and 50 divisions.

FIZEAU, M. H.: Sur les hypothéses relatives a l'éther lumineux. Ann. de Chim. et de Phys., 3e série, T. LVII. (Décembre 1859) Présente á l'Academie des Sciences dans sa séance du 29 septembre 1851

Kaufmann's Experiment

(1)Annalen der Physik, Vierte Folge, Band 19, Leipzig 1906, Verlag von Johann Ambrosius Barth, page 487-552

Kaufmann's Experiment - diagram

Asymmetrical Form of Intensity of the Moving Charge Electric and

Magnetic Field Fig. 2.7, 2.8., 2.9. 2.10 At level (\mathbf{x}, \mathbf{y}) section of the "hyperoloid" of the intensity for various speeds of the moving charge have a shape of all types of Pascal's screw stocks with charge at the beginning of the coordinates

Intensity of the Moving Charge Electric Field

$$
E_{\operatorname{mov}}=E_{\sin }\left(1-\frac{v}{c} \cos \vartheta\right)^{2}
$$

system of coordinates ($\mathbf{x}, \mathbf{y}, \mathbf{z}$) connected with the medium causing propagation of light.

$$
\oplus_{\mathrm{id}}=v \cdot \Delta t_{\mathrm{id}}=\frac{v(r-v t)}{c-v}=\frac{v}{c-v} r^{\prime}
$$

$$
\oplus_{\mathrm{ad}}=v \cdot \Delta t_{\mathrm{ad}}=\frac{v}{c+v}(v \cdot t-r)=\frac{-v}{c+v} r^{\prime}
$$

$$
\begin{aligned}
& \frac{E_{\text {mor }}^{\text {id }}\left(r^{\prime}\right)}{E_{\text {still }}^{\left(r^{\prime}\right)}}=\frac{r^{\prime 2}}{\left(r^{\prime}+\oplus_{\mathrm{id}}\right)^{2}}=\left(1-\frac{v}{c}\right)^{2} \\
& E_{\text {mor }}^{\text {id }}=E_{\text {still }}\left(1-\frac{v}{c}\right)^{2} \\
& \frac{E_{\text {mom }}^{\mathrm{ad}}\left(r^{\prime}\right)}{E_{\text {still }}\left(r^{\prime}\right)}=\frac{\mathrm{r}^{\prime 2}}{\left(r^{\prime}+\oplus_{\mathrm{ad}}\right)^{2}}=\left(1+\frac{v}{c}\right)^{2} \\
& E_{\text {mor }}^{\mathrm{xd}}=E_{\text {still }}\left(1+\frac{v}{c}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
E_{\text {mor }}^{\mathrm{id}}\left(r^{\prime}\right)=E_{\text {still }}\left(r^{\prime}+\oplus_{\mathrm{id}}\right) \\
E_{\text {still }}\left(r^{\prime}+\oplus_{\mathrm{id}}\right)=\text { const } \frac{1}{\left(r^{\prime}+\oplus_{\mathrm{id}}\right)^{2}} \\
E_{\text {stidl }}\left(r^{\prime}\right)=\text { const } \frac{1}{r^{\prime 2}} \\
E_{\text {mor }}^{\mathrm{idd}}\left(r^{\prime}\right)=\text { const } \frac{1}{\left(r^{\prime}+\oplus_{\mathrm{id}}\right)^{2}}
\end{gathered}
$$

Calculation of the kinetic energy of a body moving at the velocity of v

Analogically for the intensity of the gravitational field one could write: $g_{\mathbb{I} \mathbb{I} \pi}=g_{\sin }\left(1-\frac{v}{c} \cos \theta\right)^{2}$
For the potential energy: $d W_{\mathrm{F}}=m g_{g: t l} d h \quad$ For the potential energy: $T_{\sin }=\int d W_{y}=\int_{0}^{h} m g_{\operatorname{tin}} d h=\int_{0}^{h} m \frac{g_{m o v}}{\left(1-\frac{v}{c} \cos v\right)^{2}} d h$
By substituting $\quad g_{\text {IUT }}=\frac{\mathrm{d} v}{\mathrm{~d} t}$ and $\frac{\mathrm{d} h}{\mathrm{~d} t}=v$ we get: $T_{\text {kin }}=m \int_{0}^{v} \frac{v d v}{\left(1-\frac{v}{c} \cos \varepsilon\right)^{2}}$
Solving by substitution $1-\frac{v}{c} \cos \vartheta=z$
we get:

$$
T_{\mathrm{kin}}=\frac{m c^{2}}{\cos ^{2} \vartheta}\left[\ln \left|1-\frac{v}{c} \cos \vartheta\right|+\frac{\frac{v}{c} \cos \vartheta}{1-\frac{v}{c} \cos \vartheta}\right]
$$

For $\forall=0^{\circ}$ we have the kinetic energy in the direction of motion

$$
T_{\mathrm{kind}}=m c^{2}\left[\ln \left|1-\frac{v}{c}\right|+\frac{\frac{v}{c}}{1-\frac{v}{c}}\right]
$$

For $\vartheta=180^{\circ}$ we have the kinetic energy against the direction of motion

$$
T_{\mathrm{kink}}=m c^{2}\left[\ln \left|1+\frac{v}{c}\right|-\frac{\frac{v}{c}}{1+\frac{v}{c}}\right]
$$

$$
\text { If } 0<\frac{v}{c}=x \ll 1 \quad \text { utilizing the series } \begin{aligned}
& \ln (1 \pm x) \\
& (1 \pm x)^{-1}
\end{aligned} \quad T_{\mathrm{ki}_{\mathrm{hd}}}=T_{\mathrm{kin}_{\mathrm{hu}}}=\frac{1}{2} m v^{2}
$$

Corrected Newton's Laws of Motion

- First law:
"Every mass (atom, molecule, particle, body, vacuum, transmission medium) persists in the status of the quasi-rest or quasiuniform motion in a quasi-circle, or quasi- elipse (excentricity e $\rightarrow 0$) as far as it the external forces do not force it to change its status. (This notion is called the generalized law of inertia)."
- Third law:

All movements in physics are based on principle of action - reaction and on velocity of stable particles ($\mathbf{e}-, \mathrm{p}+, \mathrm{nO}, \mathrm{D}, \mathrm{He}-\mathbf{3}, \boldsymbol{\alpha}$). - Action, as a motion of stable particles ($e-p+, \mathrm{nO}, \mathrm{D}, \mathrm{He}-3, \boldsymbol{\alpha}$), is characterized by alternating acceleration and deceleration motion in the source, along ellipse or quasi- elipse (excentricity e $\rightarrow 0$).

Stable particles of various speed (leptons $\boldsymbol{\mu -}, \boldsymbol{\tau}$-, baryons, mesons), bosons $\mathbf{W}+\mathbf{W}-\mathbf{Z}$ ($\boldsymbol{\beta}$ electrons) are characterized by kinetic energy in direction of motion as particle Tkin id $=m c^{\wedge} 2[\ln |1-v / c|+(v / c) /(1-v / c)]$

- Reaction creates in the transmission medium, electromagnetic waves, as unstable "particles" neutrinos ve, $v \mu, v \pi$, mesons $\boldsymbol{\pi} 0, \pi+, \pi-, \eta, K$ and gamma rays ($f>10^{\wedge} 19 \mathrm{~Hz}$) are characterized by kinetic against direction of motion as wave Tkin ad=m$c^{\wedge} 2[\ln |1+v / c|-(v / c) /(1+v / c)]$
- Accompanying activity of reaction on movement of stable particles in the transmission medium are waves, or "unstable particles" i.e. neutrinos and mesons.

CONFINEMENT OF QUARKS

- What is Quark?
- Two energies, which are measured in opposite directions, and we consider them as quarks are actually two different kinetic energy of a single proton,
the first in the direction of its movement,
and the second in the opposite direction.
Quarks are actually locked (confinement) in proton, as is clear from the individual tables.
- QUARKS = proton of different speeds
- A pair of quarks of one generation = one speed of proton:
- u,d quarks are in the proton at speed of proton: from $\mathbf{v}=\mathbf{0 . 0 5 8 7 5 c}$ to $\mathbf{v}=\mathbf{0 . 1 0 5 0 6 5} \mathbf{c}$
- c,s quarks are in the proton at speed of proton from $\mathbf{v}=0.713 c$ to $\mathbf{v}=0.7805 c$
- t quark is in the proton (neutron) at speed of proton (neutron):
v= 0.994637c for top quark: 169 100MeV
v= 0.994766c for top quark: 173 400MeV/c2
- b quark is in the proton (neutron) at speed of proton (neutron): $\mathbf{v = 0 . 8 6 6 5 c}$ for $\mathbf{4 . 2} \mathbf{~ G e V}$ bottom quark

CONFINEMENT OF QUARKS Up - Down

| v/c | Tkin id = mo^2[In \|1-v/c|+ (v/c)/(1-v/c)] | Tkin $a d=m c^{\wedge} 2[\ln \|1+\nu / c\|-(\nu / c) /(1+\nu / c)]$ |
| :---: | :---: | :---: |
| 0.05875 | $\begin{aligned} & \text { Down quark Tkin id }=1.7550 \mathrm{MeV} / \mathrm{p} \text { : } \\ & {[]=0.0018704988039450329861777626124876} \end{aligned}$ | $\begin{aligned} & \text { Up quark Tkin ad }=1.5 \mathrm{MeV} / \mathrm{p} \text { : } \\ & {[\text {] = } 0.0015986835148543461794415692315} \end{aligned}$ |
| 0.075 | $\begin{aligned} & \text { Down quark Tkin id = } 2.92697671 \mathrm{MeV} / \mathrm{p} \text { : } \\ & {[\text {] = } 0.0031195396113692225967210545118109} \end{aligned}$ | $\begin{aligned} & \text { Up quark Tkin } a d=\mathbf{2 . 4} \mathbf{M e V} / \mathrm{p} \text { : } \\ & {[\text {] = } 0.002553219719161004341317048303} \end{aligned}$ |
| 0.081622 | Down quark Tkin id $=3.5 \mathrm{MeV} / \mathrm{p}$: [] = 0.0037302615346601410853636615401917 | Up quark Tkin ad $=\mathbf{2 . 8 1 4 0 4 1 0 6 8 7 1 ~ M e V ~ / ~ p : ~}$
 [] = 0.0029991740444424494322328316937 |
| 0.08878 | Down quark \boldsymbol{T} kin id $=\mathbf{4 . 1 8 3 6 6 2 3 5 ~ M e V ~ / ~ p : ~}$ [] = 0.0044589013511482922312132108807756 | Up quark Tkin ad =3.3 MeV / p:
 [] = 0.0035171037326795615947714523093 |
| 0.094686 | $\begin{aligned} & \text { Down quark Tkin id }=4.8 \mathrm{MeV} / \mathrm{p} \text { : } \\ & {[\text {] = } 0.0051156918494022662432562213837619} \end{aligned}$ | $\begin{aligned} & \text { Up quark Tkin ad }=3.72637 \mathrm{MeV} / \mathrm{p} \text { : } \\ & {[\text { [= } 0.0039715278483606256196473452168} \end{aligned}$ |
| 0.105065 | ```Down quark Tkin id = 6 MeV / p: [] = 0.0063947340594173847177662769260429``` | $\begin{aligned} & \text { Up quark Tkin ad }=4.530260 \mathrm{MeV} / \mathrm{p} \text { : } \\ & {[]=0.00482830150265965022910406573} \end{aligned}$ |
| | Quarks are actually locked (confinement) in proton | as is clear from the individual tables |

c,s quarks are in the proton at speed of proton : from $v=0.713 \mathrm{c}$ to $\mathrm{v}=0.73333 \mathrm{c}$

s quark $m 0=70-130 \mathrm{MeV} / \mathrm{c} 2,95+5-5 \mathrm{MeV} / \mathrm{c} 2$ [1]
$m 0=80-130 \mathrm{MeV} / \mathrm{c} 2$, Theorized Murray Gell-Mann (1964) George Zweig (1964) Discovered 1968, SLAC
[1] Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)
c quark Theorized Sheldon Glashow, John Iliopoulos, Luciano Maiani (1970)
Discovered Burton Richter et al. (SLAC)(1974) Samuel Ting et al. (BNL)(1974)
c quark $m 0=1.16-1.34 \mathrm{MeV} / \mathrm{c} 2, m 0=1.29+0.05-0.11 \mathrm{GeV} / \mathrm{c} 2[1]$ Decays into Strange quark (~95\%),
Down quark (~5\%)[2][3]

v/c	Tkin id = mc2[ln \|1-v/c/+ (v/c)/(1-v/c)]	Tkin $a d=m c 2[\ln \|1+v / c\|-(v / c) /(1+v / c)]$
0.713	charm quark Tkin id $=1.160 \mathrm{GeV} / \mathrm{p}$: $\text { [] = } 1.236047494268773255524413529431$	strange quark Tkin ad $=\mathbf{1 1 4 . 4 8 5 4 9 3 7 6 3 6 4 0 ~ M e V ~ / ~ p : ~}$ [] = 0.12201738104659464824870350196726
0.72585	charm quark Tkin id =1.270 GeV / p: [] = 1.353558277163014343783820940418	strange quark Tkin ad =117.41941 MeV / p: [] = 0.12514431408438967945446850497659
0.73333	$\begin{aligned} & \text { charm quark Tkin id }=1.340 \mathrm{GeV} / \mathrm{p} \text { : } \\ & \text { [] = } 1.428157273269882586967801846816 \end{aligned}$	strange quark Tkin ad = $119.1311 \mathrm{MeV} / \mathrm{p}$: [] = 0.12696860023316592749751861919307
	Quarks are actually locked (confinement) in proton	as is clear from the individual tables

v/c	Tkin id $=m c^{\wedge} 2[\ln \|1-v / c\|+(v / c) /(1-v / c)]$	Tkin $\mathrm{ad}=m c^{\wedge} 2[\ln \|1+\nu / c\|-(\nu / c) /(1+\nu / c)]$
0.994766	top quark Tkin id $=173.4 \mathrm{GeV} / \mathrm{p}$: [] = 184.8078143171624183434454	Tkin $a d=179.9968678 \mathrm{MeV} / \mathrm{p}$: [] = 0.191838683558878228973
0.994637	top quark Tkin id = $169.1 \mathrm{GeV} / \mathrm{p}$: [] = 180.2249215745799592957129	Tkin ad $=179.96660877927 \mathrm{MeV}$ [] = 0.191806433786441122906
0.8665	bottom quark Tkin id $=4.2 \mathrm{GeV} / \mathrm{p}$: [] = 4.476313841592169302436394	Tkin ad $=149,9613333459543879 \mathrm{MeV}$ [] = 0.159827140990503087217669575
0.73333	charm quark Tkin id $=1.340 \mathrm{GeV} / \mathrm{p}$: [] = 1.4281572732698825869678018	strange quark Tkin ad = $119.1311 \mathrm{MeV} / \mathrm{p}$: [] = 0.12696860023316592749751861919307
0.72585	charm quark Tkin id $=1.270 \mathrm{GeV} / \mathrm{p}$: [] = 1.3535582771630143437838209404184	strange quark Tkin ad $=117.41941 \mathrm{MeV} / \mathrm{p}$: [] = 0.12514431408438967945446850497659
0.713	charm quark Tkin id $=1.160 \mathrm{GeV} / \mathrm{p}$: [] = 1.236047494268773255524413529431	strange quark Tkin ad = $114.4854937636 \mathrm{MeV} / \mathrm{p}$: [] = 0.12201738104659464824870350196726
0.105065	Down quark Tkin id $=6 \mathrm{MeV} / \mathrm{p}$: [] = 0.006394734059417384717766276926	$\begin{aligned} & \text { Up quark Tkin ad }=4.530260 \mathrm{MeV} / \mathrm{p} \text { : } \\ & {[]=0.0048283015026596502291040657295924} \end{aligned}$
0.08878	Down quark Tkin id $=4.18366235 \mathrm{MeV} / \mathrm{p}$: [] = 0.004458901351148292231213210880775	Up quark Tkin ad = 3.3 MeV / p: [] = 0.003517103732679561594771452309324
0.05875	Down quark Tkin id $=1.7550 \mathrm{MeV} / \mathrm{p}$: [] = 0.0018704988039450329861777626125	$\begin{aligned} & \text { Up quark Tkin ad }=1.5 \mathrm{MeV} / \mathrm{p} \text { : } \\ & {[\text {] = } 0.0015986835148543461794415692315107} \end{aligned}$

- Leptons (electron, muon, tau), W +-Z bosons and neutrinos (electron neutrino, muon neutrino, tau neutrino) can be replaced with electron moving at different speeds from 0.001 c up to 0.999 .. c :
- Electron, electron neutrino are in the electron at speed of electron : from $v=0.001 \mathrm{c}$ to $\mathrm{v}=0.9 \mathrm{c}$
- Muon, muon neutrino are in the electron at speed of electron : $\mathrm{v}=0,995308032046 \mathrm{c}$
- Tauon, tauon neutrino are in the electron at speed of electron : $\mathbf{v = 0 , 9 9 9 7 1 3 1 6 6 7 4 c}$
- $\mathbf{W}+$ - boson and neutrino are in the β electron at speed of electron : $\mathrm{v}=0,99999364465781184 \mathrm{c}$
- Z boson and neutrino are in the β electron at speed of electron : $v=0,999994396590953 c$
- Higgs Boson $125300 \mathrm{MeV} / \mathrm{c}$ speed of proton : $\mathrm{v}=0,9928305 \mathrm{c} \beta$ electron is radiated from a neutron
- Hyperons, mesons and quarks can be replaced by proton and neutron ,or alpha particle respectively, moving at different speeds from 0.1 c up to 0.999.. c:
- Lambda hyperón $2286,46 \mathrm{MeV}$ and pion $\pi 0: 134.9766(6) \mathrm{MeV}$ are in the proton at speed of proton $v=0,8022863362 c$
- hyperon Chí c (2645)+ $2646,6 \mathrm{MeV}$ and pion $\pi \pm: 139.57018$ (35) MeV are in the proton at speed of proton $v=0,819183027 c$
- hyperon $6,165 \mathrm{GeV}$ and meson $\mathrm{K}-493.7 \mathrm{MeV}$ are in the alpha particle at speed of alpha particle $\mathrm{v}=0,7533 \mathrm{c}$

Radius of force reach of particles Heisenberg's uncertainty principle

"The bigger the impulse
(i. e. the higher speed, (i. e. the higher speed,
too) the shorter force range radius.,
"The smaller the impulse (the slower speed) the longer force range radius."

The higher the speed of particle, the shorter radius of its own force range (it is significant for $v>0,05 c$).
At the same time it is the explanation of the short radius of force range of the particles of strong fields.
Slow speed is accompanied by the long radius of force range.

v/c		$r\left(00^{\circ} \mathrm{l}\right.$ [m]	$r\left(180^{\circ} \mathrm{l}\right.$ fm]	d_{p} [fm]
10^-6	$(300 \mathrm{~m} / \mathrm{s})$			3.06.10^9
10^-3	(300km/s)			6.12.10^3 (6pm)
$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.06 \\ & 0.07 \end{aligned}$		$\begin{aligned} & 3.0719 \\ & 1.66934 \\ & 0.6917 \\ & 0.49045 \end{aligned}$	$\begin{aligned} & 3.75224 \\ & 2.1798 \\ & 1.0324 \\ & 0.78267 \end{aligned}$	$\begin{aligned} & 6.824 \\ & 3.8491 \\ & 1.7241 \\ & 1.27312 \end{aligned}$
0.1				0.6361
$\begin{aligned} & 0.11 \\ & 0.19 \end{aligned}$		$\begin{aligned} & 0.1716 \\ & 0.0421 \end{aligned}$	$\begin{aligned} & 0.35832 \\ & 0.1516 \end{aligned}$	$\begin{aligned} & 0.5299 \\ & 0.1937 \end{aligned}$
0.5				0.04895
0.7				0.0373
1	High speed is	accompanied by the short	radius of force range.	0.03168

The Universe is the Cathedral of Science.

Doubts are anteroom Cathedral of SCIENCE .

Confirming our theory in Universe.

1. Movement Principles of the Fast-Spinning Bodies

http://vixra.org/pdf/1404.0238v1.pdf
2. Nuclear Fusion
http://vixra.org/pdf/1404.0130v1.pdf
3. Neutrino Oscillations
http://vixra.org/pdf/1404.0369v1.pdf
4. Orbit Radius and Speed of the Sun
Around the Center of Gravity of the Solar System
http://vixra.org/pdf/1404.0253v1.pdf

Interesting: Einstein's Theory of Relativity Can not Explain ... http://vixra.org/pdf/1502.0184v1.pdf
Movement principles of the fast-spinning pulsars, Nuclear Fusion Wave - Particle Duality as Kinetic Energy Against and In Direction of Motion
the 4th Maxwell's equation, Lorentz equals without the help of Space-Time, Confinement of quarks, Great Table of Elementary Particles

Spectral line $\mathrm{H} \alpha$, Neutrino Oscillations, Non-linear Form of the interference field
Asymmetrical Form of Intensity of the Moving Charge Electric Field
Kinetic energy of a charge moving at the velocity of v has two different values:

$$
\text { against direction of motion as wave, } \mathrm{Tkin} \text { ad }=\mathrm{mc} \wedge 2,[\ln |1+\mathrm{v} / \mathrm{c}|-(\mathrm{v} / \mathrm{c}) /(1+\mathrm{v} / \mathrm{c})] \text {, }
$$

in direction of motion as particle Tkin id $=\mathrm{mc}^{\wedge} 2[\ln |1-\mathrm{v} / \mathrm{c}|+(\mathrm{v} / \mathrm{c}) /(1-\mathrm{v} / \mathrm{c})]$ Yukawa potential

5. Spectral line Ha

http://vixra.org/pdf/1404.0248v1.pdf
6. Great Table of Elementary Particles http://vixra.org/pdf/1404.0243v1.pdf

7. Corrected Newton's Laws of Motion

 http://vixra.org/pdf/1501.0199v1.pdf
$[\ln |1-\mathrm{v} / \mathrm{c}|+(\mathrm{v} / \mathrm{c}) /(1-\mathrm{v} / \mathrm{c})], \quad[\ln |1+\mathrm{v} / \mathrm{c}|-(\mathrm{v} / \mathrm{c}) /(1+\mathrm{v} / \mathrm{c})] \ldots .$. [] it is crucial for the correct quantitative values in most relationships.
 QUALITATIVE TRUTH verified by all physicists:
 1.Electron emits electromagnetic waves if and only if it is moving
 (alternately) accelerated and (decelerated) [after almost zero eccentricity ellipse].
 2.Moving charge creates not only electric but also magnetic field.
 We have a magnetic field if and only if we have moving charges
 https://biocoreopen.org/ijnme/ New-Trends-in-Physics-Extraordinary-proofs.pdf

QUANTITATIVE STATEMENTS then creates different theories from different authors. For example, Maxwell's electromagnetic theory, Bohr's atom model, Lorentz force ...
These quantitative statements can be improved over the centuries and become closer to the truth.

For example, using the asymmetric shape of the electric field of the moving charge, we can deduce:
a) 4. Maxwell's equation that Maxwell did not deduce. (p. 30 [1])
b) Calculating of the Lorentz relation for force from the relation for the electric field of a moving charge (p. 28 [1])
c) Gaussian Law (p. 29 [1])
d) Faraday's Law (p. 29 [1])
e) Kinetic energy in the direction of motion as Newton's - Einstein's kinetic energy of a particle moving in the transmissive medium and kinetic energy of waves (against direction of motion of a particle) that this particle is creating - leaving in transmissive medium - like Maxwell's energy.
What is also an elegant explanation of the 400-year-old dispute in physics: WAVE - PARTICLE DUALITY.

- Given this large number of new facts, it would be very desirable to create as many discussions as possible on the above topics, to approve or correct them as we correct some past claims - e.g.:

Bohr's electron skipping

from one energy level to another

is replaced by a fluent, very fast electron motion after an almost zero eccentricity ellipse,

- Einstein's relation for kinetic energy $\mathrm{ma}^{\wedge} 2-\mathrm{moc}^{\wedge} 2$

to replace with a relationship

mc ^2 $[\ln |1-\mathrm{v} / \mathrm{c}|+(\mathrm{v} / \mathrm{c}) /(1-\mathrm{v} / \mathrm{c})]$ for particle $\mathrm{mc}^{\wedge} 2[\ln |1+\mathrm{v} / \mathrm{c}|-(\mathrm{v} / \mathrm{c}) /(1+\mathrm{v} / \mathrm{c})]$ for wave
The faculty professors are fully engaged in their teaching duties. There is no time left for doubts in anteroom Cathedral of SCIENCE.

