Infinity and Pythagorean theorem

July 27, 2019
Yuji Masuda
(y_masuda0208@yahoo.co.jp)

Introducing infinity into the Pythagorean theorem provides the Pythagorean theorem even for

 triangles that are not right triangles.First, the Pythagorean theorem holds for the three sides of a right triangle.

Second, As shown in the figure, the positions of the intersections of the side a and the side b are moved sufficiently large upward while maintaining the lengths of c and d. Due to the relationship of this paper, keep it at a fixed length.

By using the relation shown from the first figure,

$$
\begin{aligned}
& k^{2}-i^{2}=(f+g)^{2}-(g-h)^{2} \\
& l^{2}-g^{2}=(i+j)^{2}-i^{2} \\
& k^{2}-(i+j)^{2}=(c-e)^{2}
\end{aligned}
$$

$$
\text { Then }(\mathrm{i}+\mathrm{j})=\infty \rightarrow \mathrm{h}=0
$$

The following relationship is obtained from the above three

$$
\begin{gather*}
\text { equations. } \tag{1}\\
(f+g)^{2}=l^{2}+(c-e)^{2}
\end{gather*}
$$

From the above equation, by introducing ∞ into a right triangle, the Pythagorean theorem holds for triangles that are not strictly right triangles.

【Proof】

Then introduce ∞ including imaginary numbers and compare.
First, $\pm \infty$ is constant at any observation point (position).
If a set of real numbers is R,then,

$$
\begin{aligned}
& R \times(\pm \infty)= \pm \infty \\
& R+(\pm \infty)= \pm \infty \\
& (-1) \times(\pm \infty) \neq \mp \infty
\end{aligned}
$$

On the other hand, when $x(\in R)$ is taken on a number line, the absolute value X becomes larger toward $\pm \infty$ as the absolute value X is expanded.
Similarly, as the size decreases, the absolute value X decreases toward 0 .Furthermore, $x(-1)$ represents the reversal of the direction of the axis.

$$
\begin{aligned}
& \frac{1}{ \pm \infty}=(-1) \cdot(\pm \infty)=i \\
& (\pm \infty) \cdot i-1=0
\end{aligned}
$$

$(-1) \cdot(\pm \infty)=\frac{1}{ \pm \infty}$
$i^{2}=(\pm \infty)^{2} \rightarrow i= \pm(\pm \infty)$
$\therefore i=-(\pm \infty)=(-1)(\pm \infty)=\frac{1}{ \pm \infty},(\because i \neq+(\pm \infty))$
Next,
$\pi=\frac{2}{\pi}+2 \arctan \left(\frac{1}{\tan \left(\frac{1}{x}\right)}\right),\left(\because x \geq \frac{1}{\pi}\right)$

$$
x=\frac{2}{x}\left(\geq \frac{1}{x}\right)
$$

$$
\pi=\frac{2}{\left(\frac{2}{\pi}\right)}+2 \arctan \left(\frac{1}{\tan \left(\frac{\pi}{2}\right)}\right)=\pi+2 \arctan \left(\frac{1}{ \pm \infty}\right)
$$

$$
\arctan \left(\frac{1}{ \pm \infty}\right)=\arctan (i)=0
$$

$$
\therefore \tan 0=\frac{1}{ \pm \infty}=(-1)(\pm \infty)=i
$$

From the above figure,

$$
\begin{equation*}
0^{2}+0^{2}=(i+(\pm \infty))^{2}=0 \tag{2}
\end{equation*}
$$

Therefore, it shows that Equation (1) holds in a special triangle in geometry that introduces ∞ and an imaginary number ito the Pythagorean theorem.

