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Abstract 
In quantum mechanics, there is a profound distinction between orbital angu-
lar momentum and spin angular momentum in which the former can be as-
sociated with the motion of a physical object in space but the latter cannot. 
The difference leads to a radical deviation in the formulation of their corres-
ponding dynamics in which an orbital angular momentum can be described 
by using a coordinate system but a spin angular momentum cannot. In this 
work, we show that it is possible to treat spin angular momentum in the same 
manner as orbital angular momentum by formulating spin dynamics using 
Schrödinger equation in an intrinsic coordinate system. As an illustration, we 
apply the formulation to the dynamics of a hydrogen atom and show that the 
intrinsic spin angular momentum of the electron can take half-integral values 
and, in particular, the intrinsic mass of the electron can take negative values. 
We also consider a further extension by generalising the formulation so that 
it can be used to describe other intrinsic dynamics that may associate with a 
quantum particle, for example, when a hydrogen atom radiates a photon, the 
photon associated with the electron may also possess an intrinsic dynamics 
that can be described by an intrinsic wave equation that has a similar form to 
that for the electron. 
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1. Introduction 

In quantum physics, together with the wave-particle duality, spin angular mo-
mentum of an elementary particle is a novel dynamical feature that makes 
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quantum mechanics stand out and be distinguished from those that are estab-
lished in classical mechanics, such as the familiar orbital angular momentum. 
We will show in Section 2 that the profound distinction between orbital angular 
momentum and spin angular momentum is that the former can be associated 
with the motion of a physical object in space but the latter can only be formu-
lated in terms operators that are used to formulate the mathematical background 
for quantum physics. The difference leads to a radical deviation in the formula-
tion of their corresponding dynamics in which an orbital angular momentum 
can be described by using a coordinate system but a spin angular momentum 
cannot. In this work, we show that it is possible to treat spin angular momentum 
in the same manner as orbital angular momentum by representing a formulation 
of spin dynamics using Schrödinger equation in an intrinsic coordinate system. 
As an illustration, we will apply the formulation that is established in Section 4 
to the dynamics of a hydrogen atom and show that the intrinsic spin angular 
momentum of the electron can take half-integral values when the dynamics is 
described by Schrödinger equation in two-dimensional space. However, in order 
to show that such space can in fact exist, we show in Section 3 a formulation of 
two-dimensional dynamics of a quantum particle using Dirac equation. In Sec-
tion 5, we will generalise the formulation so that it can be used to describe other 
intrinsic dynamics that may associate with a quantum particle, and as an another 
illustration, we will consider the physical process in which when a hydrogen 
atom radiates a photon, the photon associated with the electron may also possess 
an intrinsic dynamics that can be described by an intrinsic wave equation that 
has a similar form to the wave equation that describes the dynamics of the elec-
tron. 

2. Dynamical Nature of Spin Angular Momentum in  
Quantum Mechanics 

In quantum mechanics, despite the fact that spin angular momentum has been 
shown to play an almost identical role to orbital angular momentum, especially 
in relation to interaction with magnetic fields, spin has distinctive properties that 
make it profoundly different from the normal orbital angular momentum. And, 
probably, the most prominent feature that establishes the seemingly true quan-
tum character of spin is that it cannot be described in terms of the classical dy-
namics because there is no such classical analogue. Since the main topic that we 
will discuss in this work involves the concepts of both orbital and spin angular 
momentum in quantum mechanics and accordingly the application of Schrödinger 
equation to formulate spin dynamics therefore we now show more details how 
these two concepts have been introduced and formulated in quantum mechanics. 
Besides the fundamental concepts, the general results obtained in this section 
will also be implemented to different applications in later sections of this work. 
In classical mechanics, the orbital angular momentum L  of a particle is de-
fined as = ×L r p , where r  and p  are the position and momentum of the 
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particle, respectively. In quantum mechanics, however, the orbital angular mo-
mentum is interpreted as an operator in which the momentum is defined via a 
differential operator in the form i= −p ∇ , hence the orbital angular momen-
tum can be rewritten as ( )i= − ×L r ∇ . The Cartesian components of the or-
bital angular momentum are obtained as ( )xL i y z z y= − ∂ ∂ − ∂ ∂ ,  

( )yL i z x x z= − ∂ ∂ − ∂ ∂ , ( )zL i x y y x= − ∂ ∂ − ∂ ∂ . Even though they do not 
mutually commute, therefore they cannot be assigned definite values simulta-
neously, the Cartesian components of the orbital angular momentum commute 
with the operator 2L  and this allows a construction of simultaneous eigenfunc-
tions for 2L  and one of the Cartesian components of the orbital angular mo-
mentum L  [1]. Similarly, the spin angular momentum can be introduced into 
quantum mechanics as an operator with the same mathematical formulation as 
the orbital angular momentum, except for the fact that the spin angular mo-
mentum does not have a comparable object in classical physics therefore it can-
not be depicted as spinning around an axis or associated with some form of mo-
tion in space. Since spin angular momentum is considered as a truly quantum 
mechanical intrinsic property associated with most of elementary particles, it has 
been suggested that spin must possess some form of intrinsic physical property 
that is needed to be explained, and one possibility for its explanation is to use a 
non-local hidden variable theory [2]. The most distinctive property that makes 
spin different from the normal orbital angular momentum is that spin quantum 
numbers can take half-integral values. It is also believed that the internal degrees 
of freedom associated with the spin angular momentum cannot be described 
mathematically in terms of a wavefunction. In order to incorporate the spin an-
gular momentum of a quantum particle into quantum mechanics, Dirac devel-
oped a relativistic wave equation that admits solutions in the form of mul-
tiple-component wavefunctions as imµ

µγ ψ ψ∂ = − . Dirac equation is a system 
of complex linear first order partial differential equations [3]. Even though Dirac 
equation has been regarded as a quantum wave equation that is used to describe 
spinor fields of half-integral values, we have shown that in fact Dirac equation, 
as well as Maxwell field equations of the electromagnetic field, can be derived 
from a system of linear first order partial differential equations therefore Dirac 
equation can be used to describe classical fields when it is rewritten as a system 
of real equations. In fact, we have also shown that many fundamental potential 
forms that involve weak and strong interactions can be deduced from Dirac eq-
uation [4]. To avoid confusion, in this work whenever we mention Maxwell or 
Dirac equation we mean a Maxwell-like or Dirac-like equation that can be de-
rived from a system of linear first order partial differential equations. 

Now, contrary to the belief that the spin angular momentum cannot be de-
scribed mathematically in terms of a wavefunction, we will show in Section 4 
that spin angular momentum with half-integral values can be formulated similar 
to the case of orbital angular momentum by simply using Schrödinger equation 
in quantum mechanics. Since the following method and results will be used in 
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later sections therefore we need to give a brief account how the Schrödinger eq-
uation is applied to the hydrogen atom. Normally Schrödinger equation is writ-
ten as a single wave equation with respect to a particular coordinate system that 
describes a spinless particle with no intrinsic properties, except for their charge 
and mass. The time-independent Schrödinger wave equation for a point-like 
particle of mass m and charge q moving in a potential ( )V r  in  
three-dimensional Euclidean space R3 is given as follows 

( ) ( ) ( ) ( )
2

2

2
V Eψ ψ ψ

µ
− ∇ + =r r r r                  (1) 

where µ  is the reduced mass in the centre of mass coordinate system [5]. In 
the three-dimensional continuum, if the potential ( )V r  is spherically symme-
tric, then Equation (1) can be written in the spherical polar coordinates ( ), ,r θ φ  
as [6] 

( ) ( ) ( ) ( )
2 2

2
2 2

1
2

r V E
r rr r

ψ ψ ψ
µ
 ∂ ∂ − − + =  ∂ ∂  

L r r r r          (2) 

where the orbital angular momentum operator 2L  is given by 
2

2 2
2 2

1 1sin
sin sin

θ
θ θ θ θ φ

 ∂ ∂ ∂ = − +  ∂ ∂ ∂  
L 

              (3) 

Solutions to Equation (2) can be found using the separable form  
( ) ( ) ( ),El El lmR r Yψ θ φ=r  where ElR  is radial function and lmY  is spherical 

harmonic. Then the wave equation given in Equation (2) is reduced to the fol-
lowing system of equations 

( ) ( ) ( )2 2, 1 ,lm lmY l l Yθ φ θ φ= +L                     (4) 

( ) ( ) ( ) ( )
22 2

2 2

1d 2 d
2 dd 2 El El

l l
V r R r ER r

r rr Drµ
 + 
− + + + =     



          (5) 

In the case of the hydrogen atom for which ( ) 2
04V r Zq rεπ= , solutions to 

Equations (4) and (5) can be obtained, respectively, as follows 

( ) ( ) ( )( )
( ) ( )

1
22 1

, 1 cos e
4 !

m m im
lm l

l l m
Y P

l m
φθ φ θ

 + −
= −   + π

           (6) 

( ) ( )2 2 1e l l
nl n lR r C Lρ ρ ρ− +

+= −                   (7) 

where ( )cosm
lP θ  is Legendre functions, ( )1 228DE rρ = −  , ( )2 1l

n lL ρ+
+  is the  

associated Laguerre polynomial. The bound state energy spectrum is also found 
as 

22

2 2
0

1
42n
ZqE

n
µ

επ
 

= −  
 

                   (8) 

According to the present formulation of quantum mechanics, the energy dif-
ference between the two levels of the energy spectrum equals the energy of the 
photon that is emitted or absorbed by a hydrogen atom, and the radiating 
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process is due to an instantaneous quantum transition of the corresponding 
electron that interacts with the photon. We will show in Section 5 that the 
process of radiation of photons may also be accompanied by an intrinsic dy-
namics similar to the process of spin dynamics that we will discuss in Section 4. 
However, we will also show that such spin dynamics can be observable only if 
the photon has an inertial mass. 

As being shown in Section 4, the most important feature that relates to our 
discussion on the formulation of spin dynamics by using Schrödinger equation 
is the quantisation of an orbital angular momentum in a two-dimensional Euc-
lidean space. In spherical coordinates ( ), ,r θ φ , simultaneously to the equation 
given in Equation (4), the operator zL  and its corresponding normalised ei-
genfunctions ( )φΦ  can be found as follows 

( ) 1, e
2

im
z mL i φφ

φ
∂

= − Φ
π

=
∂
                   (9) 

where , 1, , 1,m l l l l= − − + −  with the quantum numbers l are integers. As a 
consequence, the quantum number m can only take integer values. However, 
there are many physical phenomena that involve the magnetic moment of a 
quantum particle cannot be explained using the quantisation of orbital angular 
momentum with integer values. For example, in order to interpret the 
Stern-Gerlach experiment the quantum number m must be assumed to take 
half-integral values, and this is inconsistent with other experimental results that 
can be explained by assuming integral values for the orbital angular momentum. 
Therefore, the spin angular momentum operator S  was introduced similar to 

Equation (4) for the orbital angular momentum as ( )2 21
s ssm smS s sχ χ= +  , in  

which the spin angular momentum s takes half-integral values. However, unlike 
the orbital angular momentum, the spin angular momentum has no direct rela-
tionship with the coordinates that define the coordinate system for mathematical 
investigations. 

3. Formulating Two-Dimensional Dynamics Using Dirac  
Equation 

In this section we show that the spin dynamics of a quantum particle may also 
have a classical character by recalling our work on the fluid state of Dirac quan-
tum particles that Dirac equation can in fact be derived from a general system of 
linear first order partial differential equations, and from Dirac equation we can 
obtain a physical structure for quantum particles that can be endowed with a 
spin angular momentum that takes half-integral values [7]. As a general remark, 
it should be mentioned here that normally in formulating physical theories in 
classical physics we either apply purely mathematical equations into physical 
problems or formulate mathematical equations according to dynamical laws es-
tablished from experiments. It may be said that this mutual relationship between 
mathematics and physics was initiated by Newton’s work on classical mechanics 
when he himself invented the mathematics of differential calculus to describe the 
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dynamics of natural laws in his three books on the mathematical principles of 
natural philosophy [8]. It has been known that Maxwell field equations of the 
electromagnetic field were derived mainly from experimental laws. On the other 
hand, it can be said that essentially Dirac derived his relativistic equation to de-
scribe the dynamics of quantum particles from an established physical law which 
is a consequence of Einstein’s theory of special relativity [9]. In general, a com-
mon method in mathematical physics is to apply the same differential equation, 
such as Laplace or Poisson’s equation, into different physical systems, and by 
following this method we have shown in our works on formulating Maxwell and 
Dirac equations that both Maxwell and Dirac equations can be derived from an 
established system of mathematical equations instead of experimental laws or 
established physical theories [10] [11]. The established system of mathematical 
equations in our formulation is a general system of linear first order partial dif-
ferential equations given as follows 

1 2
1 1 1

, 1, 2, ,
n n n

r r ri
ij l l

i j lj

a k b k c r n
x
ψ

ψ
= = =

∂
= + =

∂∑∑ ∑ 

           (10) 

The system of equations given in Equation (10) can be rewritten in a matrix 
form as 

1 2
1

n

i
i i

A k k J
x

ψ σψ
=

 ∂
= + ∂ 

∑                   (11) 

where ( )T
1 2, , , nψ ψ ψ ψ=  , ( )T

1 2, , ,i i i n ix x x xψ ψ ψ ψ∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂ , iA , 
σ  and J are matrices representing the quantities k

ija , r
lb  and rc , and 1k  and 

2k  are undetermined constants. Now, if we apply the operator 

1
n

i ii A x
=

∂ ∂∑  on the left on both sides of Equation (11) then we obtain 

( )1 2
1 1 1

n n n

i j i
i j ii j i

A A A k k J
x x x

ψ σψ
= = =

    ∂ ∂ ∂
= +     ∂ ∂ ∂    

∑ ∑ ∑          (12) 

If we assume further that the coefficients k
ija  and r

lb  are constants and 

i iA Aσ σ= , then Equation (12) can be rewritten in the following form 

( )
2 2

2 2 2
1 1 2 22

1 1 1

n n n n

i i j j i i
i i j i ii j ii

JA A A A A k k k J k A
x x xx

ψ σ ψ σ
= = > =

 ∂ ∂ ∂
+ + = + +  ∂ ∂ ∂∂ 

∑ ∑∑ ∑ (13) 

In order for the above systems of partial differential equations to be used to 
describe physical phenomena, the matrices iA  must be determined. It is ob-
served that in order to obtain Maxwell and Dirac equations the matrices iA  
must take a form so that Equation (13) reduces to the following equation 

2
2 2 2

1 1 2 22
1 1

n n

i i
i i ii

JA k k k J k A
xx

ψ σ ψ σ
= =

 ∂ ∂
= + + 

∂∂ 
∑ ∑              (14) 

To obtain an equation similar to Dirac equation for free quantum particles, we 
identify the matrices iA  with the gamma matrices iγ  given as 

https://doi.org/10.4236/jmp.2019.1011091


V. B. Ho 
 

 

DOI: 10.4236/jmp.2019.1011091 1380 Journal of Modern Physics 
 

1 2

3 4

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

,
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

,
0 0 0 1 0 0 0

0 0 0 0 1 0 0

i
i

i
i

γ γ

γ γ

   
   
   = =
   − −
   

− −   
−   

   −   = =
   −
   
−   

            (15) 

If we set 1k imσ = −  and 2 0k J =  then Equation (11) reduces to Dirac equ-
ation [12] 

( ) 0i mµ
µγ ψ∂ − =                      (16) 

For references and to show that Maxwell field equations of the electromagnet-
ic field can also be derived from a system of linear first order partial differential 
equations, in the appendix we give a detailed formulation of Maxwell field equa-
tions with specified forms of the matrices iA . Now, by expanding Equation (16) 
using Equation (15), we obtain 

31
1 4im i

t x y z
ψψ

ψ ψ
∂ ∂ ∂ ∂

− − = − + ∂ ∂ ∂ ∂ 
                 (17) 

2 4
2 3im i

t x y z
ψ ψ

ψ ψ
 ∂ ∂∂ ∂

− − = + − ∂ ∂ ∂ ∂ 
                (18) 

3 1
3 2im i

t x y z
ψ ψ

ψ ψ
∂   ∂∂ ∂

− = − + − ∂ ∂ ∂ ∂ 
                 (19) 

4 2
4 1im i

t x y z
ψ ψ

ψ ψ
 ∂ ∂∂ ∂

− = − − + ∂ ∂ ∂ ∂ 
                 (20) 

From the form of the field equations given in Equations (17-20), we may in-
terpret that the change of the field ( )1 2,ψ ψ  with respect to time generates the 
field ( )3 4,ψ ψ , similar to the case of Maxwell field equations in which the 
change of the electric field generates the magnetic field. With this observation it 
may be suggested that, like the Maxwell electromagnetic field, which is com-
posed of two essentially different physical fields, the Dirac field of massive par-
ticles may also be viewed as being composed of two different physical fields, 
namely the field ( )1 2,ψ ψ  and the field ( )3 4,ψ ψ . The similarity between 
Maxwell field equations and Dirac field equations can be carried further by 
showing that it is possible to reformulate Dirac equation as a system of real equ-
ations. When we formulate Maxwell field equations from a system of linear first 
order partial differential equations we rewrite the original Maxwell field equa-
tions from a vector form to a system of first order partial differential equations 
by equating the corresponding terms of the vectorial equations. Now, since, in 
principle, a complex quantity is equivalent to a vector quantity therefore in order 
to form a system of real equations from Dirac complex field equations we equate 
the real parts with the real parts and the imaginary parts with the imaginary 
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parts. In this case Dirac equation given in Equations (17-20) can be rewritten as 
a system of real equations as follows 

3 31 4 2 4,
t x z t x z

ψ ψψ ψ ψ ψ∂ ∂∂ ∂ ∂ ∂
− = + − = −

∂ ∂ ∂ ∂ ∂ ∂
              (21) 

3 2 1 4 1 2,
t x z t x z
ψ ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂

− = + − = −
∂ ∂ ∂ ∂ ∂ ∂

             (22) 

34 2 1
1 2 3 4, , ,m m m m

y y y y
ψψ ψ ψ

ψ ψ ψ ψ
∂∂ ∂ ∂

= = − = − =
∂ ∂ ∂ ∂

        (23) 

If the wavefunction ( )T
1 2 3 4, , ,ψ ψ ψ ψ ψ=  satisfies Dirac field equations given 

in Equations (21-23) then we can derive the following system of equations for all 
components 

2
2

2 0i
im

y
ψ

ψ
∂

− =
∂

                       (24) 

2 2 2

2 2 2 0i i i

t x z
ψ ψ ψ∂ ∂ ∂

− − =
∂ ∂ ∂

                    (25) 

Solutions to Equation (24) are 

( ) ( )1 2, e , emy my
i i ic x z c x zψ −= +                    (26) 

where 1ic  and 2ic  are undetermined functions of ( ),x z . The solutions given 
in Equation (26) give a distribution of a physical quantity along the y-axis. On 
the other hand, Equation (25) can be used to describe the dynamics, for example, 
of a vibrating membrane in the ( ),x z -plane. If the membrane is a circular 
membrane of radius a then the domain D is given as { }2 2 2D x z a= + < . In the 
polar coordinates given in terms of the Cartesian coordinates ( ),x y  as 

cosx r θ= , sinz r θ= , the two-dimensional wave equation given in Equation 
(25) becomes 

2 2 2

2 2 2 2 2

1 1 1 0
r rc t r r

ψ ψ ψ ψ
θ

∂ ∂ ∂ ∂
− − − =

∂∂ ∂ ∂
                 (27) 

The general solution to Equation (27) for the vibrating circular membrane 
with the condition 0ψ =  on the boundary of D can be found as [13] 

( ) ( )( )

( )( ) ( )( )
0 0 0 0 0 0

1

, 1

, , cos sin

cos sin cos sin

m m m m m
m

n nm nm nm nm nm nm nm
m n

r t J r C ct D ct

J r A n B n C ct D ct

ψ θ λ λ λ

λ θ θ λ λ

∞

=

∞

=

= +

+ + +

∑

∑
(28) 

where ( )n nmJ rλ  is the Bessel function of order n and the quantities nmA , 

nmB , nmC  and nmD  can be specified by the initial and boundary conditions. It 
is also observed that at each moment of time the vibrating membrane appears as 
a 2D differentiable manifold which is a geometric object whose geometric struc-
ture can be constructed using the wavefunction given in Equation (28). Even 
though elementary particles may have the geometric and topological structures 
of a 3D differentiable manifold, it is seen from the above descriptions via the 
Schrödinger wave equation and Dirac equation that they appear as 3D physical 
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objects embedded in three-dimensional Euclidean space. Interestingly, we have 
shown that the solution given in Equation (28) can be used to describe a stand-
ing wave in a fluid due to the motion of two waves in opposite directions. At its 
steady state in which the system is time-independent, the system of equations 
given in Equations (21-22) reduces to the following system of equations 

2 1 1 20, 0
x z x z
ψ ψ ψ ψ∂ ∂ ∂ ∂

+ = − =
∂ ∂ ∂ ∂

                  (29) 

3 34 40, 0
x z x z

ψ ψψ ψ∂ ∂∂ ∂
+ = − =

∂ ∂ ∂ ∂
                  (30) 

In this case Dirac equation for steady states consisting of the field ( )1 2,ψ ψ  
and the field ( )3 4,ψ ψ  satisfies the Cauchy-Riemann equations in the ( ),x z
-plane. We have shown in our work on the fluid state of Dirac quantum particles 
that it is possible to consider Dirac quantum particles as physical systems which 
exist in a two-dimensional fluid state as defined in the classical fluid dynamics. 
In the next section we will show that when Schrödinger wave equation is applied 
into the dynamics of a physical system in two-dimensional space the angular 
momentum associated with the system can take half-integral values which may 
be identified with the intrinsic spin angular momentum of a quantum particle. 
The results also show that the spin angular momentum can also be introduced 
through a coordinate system, similar to that of the orbital angular momentum. 

4. Formulating Intrinsic Spin Dynamics Using Schrödinger 
Equation 

As we have discussed in the previous sections that the profound difference be-
tween orbital angular momentum and spin angular momentum is that the for-
mer can be associated with the motion of a physical object in space but the latter 
cannot. This difference has led to another profound difference in the formula-
tion of their corresponding dynamics in which an orbital angular momentum 
can be described by using a coordinate system but a spin angular momentum 
cannot. In this section we show that it is possible to treat spin angular momen-
tum in the same manner as orbital angular momentum by introducing a coor-
dinate system to describe spin angular momentum. However, it is obvious that 
the coordinate system that is used to describe a spin angular momentum must 
be an intrinsic coordinate system which is independent of the coordinate system 
that is used to describe an orbital angular momentum. Therefore, instead of in-
troducing a spin operator, we introduce a differential operator that depends on 
an intrinsic coordinate system and can be used to formulate a spin dynamics. 
Furthermore, since spin angular momentum and orbital angular momentum are 
similar in nature therefore it is possible to suggest that the spin operator in the 
intrinsic coordinate system should also have similar form to that of the orbital 
angular momentum operator formulated in quantum mechanics. From this 
perspective we now write a Schrödinger wave equation that is used to describe 
both the orbital and spin dynamics as follows 
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( ) ( ) ( ) ( ) ( ) ( )

( )

2 2
2 2, , , ,

2 2
,

s s s s s s s
s

s

V V

E
µ µ

− ∇ Ψ + Ψ − ∇ Ψ + Ψ

= Ψ

r r r r r r r r r r

r r

 

  (31) 

The quantity µ  can be identified with a reduced mass. However, since we 
are treating spin angular momentum as a particular case of angular momentum 
therefore we retain the Planck constant and the quantity sµ  also retains the 
dimension of mass. We call the quantity sµ  an intrinsic mass and it could be 
related to the curvature that determines the differential geometric and topologi-
cal structure of a quantum particle, as in the case of Bohr model, or charge. On 
the other hand, while the quantity ( )V r  can be identified with a normal po-
tential, such as Coulomb potential, the quantity ( )s sV r  represents an intrinsic 
potential that depends on intrinsic physical properties associated with the spin 
angular momentum of a quantum particle. Since the two dynamics are inde-
pendent, the wave equation given in Equation (31) is separable and the total wa-
vefunction ( ), sΨ r r  can be written as a product of two wavefunctions as 

( ) ( ) ( ), s sψ χΨ =r r r r . Then Equation (31) is separated into two equations as 
follows 

( ) ( ) ( ) ( )
2

2
02

V Eψ ψ ψ
µ

− ∇ + =r r r r               (32) 

( ) ( ) ( ) ( )
2

2
12 s s s s s s

s

V Eχ χ χ
µ

− ∇ + =r r r r              (33) 

where 0 1E E E+ = . 
Now, we consider the particular case in which the Schrödinger equation given 

in Equation (32) describes the dynamics of a hydrogen atom and the Schrödin-
ger equation given in Equation (33) describes the spin dynamics of the electron 
of the hydrogen atom. In this case the wavefunctions and the corresponding 
energy spectrum for Equation (32) have been obtained and given in Section 2 
therefore we only need to show how half-integral values for the spin angular 
momentum can be obtained from Equation (33). In fact we have shown in our 
previous works that elementary particles possess an intrinsic angular momen-
tum that can take half-integral values by considering Schrödinger wave equation 
in two-dimensional Euclidean space in which a quantum particle can be viewed 
as a planar system whose configuration space is multiply connected [14] [15] 
[16]. If we also assume that the potential ( )s sV r  that holds the quantum par-
ticle together has the form ( )s s s sV A r=r , where sA  is a physical constant 
that is needed to be determined, then using the planar polar coordinates in an 
intrinsic two-dimensional space, the Schrödinger wave equation given in Equa-
tion (33) takes the form 

( ) ( ) ( )
2 2

12 2

1 1 , , ,
2

s

s

A
r r r E r

r r r rr
χ φ χ φ χ φ

µ φ
 ∂ ∂ ∂ − + − =  ∂ ∂ ∂  

       (34) 

For simplicity in Equation (34) we have written r instead of sr  as indicated 
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in Equation (33). Solutions of the form ( ) ( ) ( ),r R rχ φ φ= Φ  reduce Equation 
(34) to two separate equations for the functions ( )φΦ  and ( )R r  as follows 

2
2

2

d 0
d sm
φ
Φ
+ Φ =                          (35) 

22

12 2 2

2d 1 d 0
dd

s s sm AR R R E R
r r rr r

µ  + − + + = 
 

             (36) 

where sm  is identified as the intrinsic angular momentum of the quantum par-
ticle. Equation (35) has solutions of the form 

( ) e simC φφΦ =                           (37) 

where C is a constant. Normally, the intrinsic angular momentum sm  must 
take integral values for the single-valuedness condition to be satisfied. However, 
if we consider the configuration space of the quantum particle to be multiply 
connected and the polar coordinates have singularity at the origin then the use 
of multivalued wavefunctions is allowable. As shown below, in this case, the in-
trinsic angular momentum sm  can take half-integral values. If we define, for 
the case 1 0E < , 

( )
( )

1 21 2
1

2 2
1

8
,

2
s s sE A

r
E

µ µ
ρ λ

 − 
= =     −    

                (38) 

then Equation (36) can be re-written in the following form 
22

2 2

d 1 d 1 0
d 4d

smR R R R Rλ
ρ ρ ρρ ρ

+ − + − =                    (39) 

If we seek solutions for ( )R ρ  in the form ( ) ( ) ( )exp 2 smR Sρ ρ ρ ρ= −  
then we obtain the following differential equation for the function ( )S ρ  

2

2

1
2 1d d 21 0

dd

s
s

mmS S S
λ

ρ ρ ρρ

 − − + 
+ − + =  
    

 

               (40) 

Equation (40) can be solved by a series expansion of ( )S ρ  as  

( ) 0
s

s

n
nnS aρ ρ∞

=
= ∑  with the coefficients na  satisfying the recursion relation 

( )( )1

1
2

1 2 1s s

s s

n n
s s s

n m
a a

n n m

λ
+

+ + −
=

+ + +
                   (41) 

The energy spectrum 1E  obtained from Equation (38) can be written expli-
citly as follows 

1 2
2 12

2

s s

s s

A
E

n m

µ
= −

 + + 
 



                      (42) 

Even though it is not possible to specify the actual values of the intrinsic an-
gular momentum sm , however, if the result given in Equation (42) can also be 
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applied to the hydrogen-like atom in two-dimensional physical system similar to 
Bohr model of the hydrogen atom then the intrinsic angular momentum sm  
must take half-integral values. For the case of the hydrogen atom then the total 
energy spectrum can be found as the sum of two energy spectra given in Equa-
tions (8) and (42) as 

( )
22

2 2 2
0 2

1, ,
42 12

2

s s
s s

s s

AZqE n n m
n

n m

µµ
ε

 
= − − 

   + + 


π







          (43) 

It is seen that the total energy spectrum has a fine structure depending on the 
intrinsic quantum numbers sn  and sm . Furthermore, the total energy spec-
trum also depends on the undetermined physical quantities sµ  and sA  that 
define the intrinsic properties of a quantum particle, which is the electron in this 
case. Without restriction, the quantity sµ  can take zero, positive or negative 
values. Then, we can have three different levels of energy as follows 

0sµ = , ( )
22

2 2
0

1, ,
42s s
ZqE n n m

n
µ

ε
 

= −  
 π

           (44) 

0sµ > , 0sn = , 
1
2sm = , ( )

22

2 2 2
0

1, ,
42 2

s s
s s

AZqE n n m
n

µµ
ε

 
= − − π  

  (45) 

0sµ < , 1sn = , 
1
2sm = − , ( )

22

2 2 2
0

1, ,
42 2

s s
s s

AZqE n n m
n

µµ
ε

 
= − + π  

 (46) 

If we assume the splitting energy is the Zeeman effect caused by the interac-
tion between the magnetic moment associated with the spin of the electron and 
an external magnetic field B, which results in a magnetic potential energy of 

2BU g Bµ= ± , where g is the electron g-factor and 2B ee mµ =   is the Bohr 
magneton, then the quantity sA  can be determined by the following identifying 
relation 

2

1
2 42

s s
B

e

A geg B B
m

µ
µ= =





                   (47) 

As shown in Figure 1, the splitting of energy levels due to the intrinsic dy-
namics is similar to the Zeeman effect with the energy difference of 

BU g Bµ∆ = . 
Furthermore, if we also identify the intrinsic mass with the inertial mass of the 

electron, s emµ = , then the quantity sA  can be determined by all known 
physical quantities as 

3

22s
e

ge BA
m

=
                        (48) 

The quantity sA  depends not only on the intrinsic properties associated with 
the electron but also on the external magnetic field B. This result shows that, un-
like the elementary charge, the intrinsic quantity sA  is a dependent property of 
a quantum particle which changes its magnitude when the particle interacts with  
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Figure 1. Splitting of energy levels by intrinsic spin dynamics. 

 

an external field. The dependence of quantity sA  on an external field is similar 
to the case of the inertial mass of an elementary particle that depends on the 
speed of the particle relative to a coordinate system formulated in Einstein’s spe-
cial relativity as 2 2

0 1m m v c= − . It is interesting to mention here that in 
fact we have shown in our work on the fluid state of an electromagnetic field that 
the electric field and the magnetic field can also be identified as velocity fields of 
a fluid [17]. 

5. A Generalised Formulation of Intrinsic Dynamics Using 
Schrödinger Equation 

From our discussion of the possibility to describe the spin angular momentum 
of a quantum particle as an intrinsic dynamics using the Schrödinger wave equa-
tion, we may consider further extension by generalising the equation given in 
Equation (31) to a more general form so that it can be used to describe other in-
trinsic dynamics that associate with a quantum particle, such as when a hydro-
gen atom absorbs a photon, the photon may be considered to be correlated with 
the electron and accordingly behaves as an intrinsic dynamics of the electron. A 
general equation that include possible intrinsic dynamics associated with an 
elementary particle can be written as 

( ) ( ) ( )

( ) ( ) ( )

( )

2
2

1 1

2
2

1 1
1

1

, , , ,
2

, ,

, ,

, ,, ,

, ,

2

,

n n

N

s n s s n
s s

n

V r

V

E

µ

µ=

− ∇ Ψ + Ψ

 
+ − ∇ Ψ + Ψ 

 
= Ψ

∑

r r r r r r

r r r r r r r

r r r

 

 





          (49) 

where each potential ( )s sV r  is needed to be determined for a particular dy-
namics associated with the quantum particle under investigation. Even though 
the quantities sm  have the dimension of mass they should be considered as 
parameters of the equation because they are related to the intrinsic dynamics 
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that must be determined based on the characteristics of the motion under con-
sideration. If all intrinsic dynamics are independent then Equation (49) can be 
separated into a system of equations as follows 

( ) ( ) ( ) ( )
2

2
02

V Eψ ψ ψ
µ

− ∇ + =r r r r                (50) 

( ) ( ) ( ) ( )
2

2
1 1 1 1 1 1 1

12
V Eχ χ χ

µ
− ∇ + =r r r r               (51) 

  

( ) ( ) ( ) ( )
2

2

2 N N N N N N N
N

V Eχ χ χ
µ

− ∇ + =r r r r            (52) 

where 1 2 NE E E E+ + + = . For example, if we assume that there are 1N  
two-dimensional and 2N  three-dimensional intrinsic dynamics so that 

1 2N N N+ = , and all intrinsic dynamics have the intrinsic potentials of the form 
( )s s s sV A r=r  then using Equations (8) and (42) we would obtain an expres-

sion for the total energy spectrum as 

( )
1 2

2 2 22

2 2 2 2 2
1 10 2

1, ,
42 212

2

N N
s s s s

s s
s s s

s s

A AZqE n n m
n n

n m

µ µµ
ε = =

 
= − − − 

   + +
π

 
 

∑ ∑
 



   (53) 

As an example for the case of a three-dimensional intrinsic dynamics, let us 
consider an intrinsic dynamics that can be described as a spin dynamics of a 
photon when it is absorbed and then emitted from a hydrogen atom. If the pho-
ton exhibits a three-dimensional intrinsic dynamics then we would obtain not 
only the normal three-dimensional Schrödinger wave equation for the hydrogen 
atom but also an intrinsic three-dimensional Schrödinger wave equation for the 
photon, similar to the system of equations given in Equations (32) and (33). In 
this case the total energy spectrum can be found as 

( )
2 22

2 2 2 2
0

1,
42 2

s s
s

s

AZqE n n
n n

µµ
ε

 
= − − π  

               (54) 

When the electron of the hydrogen atom at the energy level 𝑛𝑛 absorbs a 
photon and moves to a higher energy level n′ , we may suggest that the photon 
also changes its energy levels from the level sn  to the level sn′ . We then obtain 
the new total energy level 

( )
( ) ( )

2 22

2 2 22
0

1,
42 2

s
s

s sAZqE n n
n n

µµ
ε

 
′ ′ = − − 

′π ′ 



              (55) 

If we also assume that the energy difference ( ) ( ), ,s sE n n E n n′ ′ −  equals the 
Planck energy hν  then we obtain 

( ) ( )

2 22

2 2 2 2 2 2
0

1 1 1 1
42 2 s s

s sAZqh
n nn n

µµν
ε

   
  = − + −     ′ ′    π  

         (56) 

The quantity sµ  may be identified with the mass of a photon. It is seen that, 
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unless the photon is massive, i.e. 0sµ ≠ , Equation (56) reduces to the familiar 
energy spectrum of the hydrogen atom as shown in quantum mechanics. 

6. Conclusion 

We have shown in this work the possibility to formulate the spin dynamics asso-
ciated with a quantum particle using Schrödinger equation in quantum me-
chanics. Contrary to the general assumption that spin dynamics belongs to the 
domain of relativistic quantum mechanics that cannot be represented by a wa-
vefunction, we have shown that spin dynamics can be formulated by a 
non-relativistic Schrödinger wave equation by considering possible intrinsic dy-
namics conferred on quantum particles. Similar to the normal dynamics, intrin-
sic dynamics can also be expressed in terms of Schrödinger wave equation by 
using intrinsic coordinates. Since intrinsic coordinates are independent to ex-
ternal coordinates, the total Schrödinger wave equation can be separated into a 
system of Schrödinger wave equations each of which can be solved separately to 
obtain exact solutions and their corresponding eigenvalues for the energy. To il-
lustrate, we have applied the formulations to the spin angular momentum for 
the electron of a hydrogen atom and shown that the quantum numbers asso-
ciated with the spin angular momentum can take half-integral values, and these 
results can be used to explain the Stern-Gerlach experiment and other experi-
ments that involve the electron spin resonance. Furthermore, we have also ap-
plied the formulation to a possible spin dynamics associated with the radiation 
of a photon from a hydrogen atom. 
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Appendix 

In this appendix we show in details the formulation of Maxwell field equations 
from the system of linear first order partial differential equations given in Equa-
tion (10) of Section 3. The system of equations given in Equation (10) can be 
written the following matrix form 

0 1 2 3 4A A A A A J
t x y z

ψ
 ∂ ∂ ∂ ∂

+ + + = ∂ ∂ ∂ ∂ 
              (1) 

where ( )T
1 2 3 4 5 6, , , , ,ψ ψ ψ ψ ψ ψ ψ= , ( )T

1 2 3, , ,0,0,0J j j j=  and the matrices iA  
are given as follows 

0 1

2 3

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0

, ,
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0

,
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

A A

A A

−   
   − −   
   −

= =   
   
   −
      
   

− 
 
 
 −

= = 
 
 
  − 

4

1 0 0
0 0 0 0 0 0

,
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A

µ
µ

µ

 
 
 
 
 

− 
 
  
 

 
 
 
 

=  
 
 
  
 

   (2) 

The system of equations given in Equation (1) becomes 

6 51
1jt y z

ψ ψψ
µ

∂ ∂∂
− + − =

∂ ∂ ∂
                   (3) 

62 4
2jt z x

ψψ ψ
µ

∂∂ ∂
− + − =

∂ ∂ ∂
                   (4) 

3 5 4
3jt x y

ψ ψ ψ
µ

∂ ∂ ∂
− + − =

∂ ∂ ∂
                   (5) 

34 2 0
t y z

ψψ ψ∂∂ ∂
+ − =

∂ ∂ ∂
                    (6) 

5 31 0
t z x
ψ ψψ∂ ∂∂

+ − =
∂ ∂ ∂

                    (7) 

6 2 1 0
t x y
ψ ψ ψ∂ ∂ ∂

+ − =
∂ ∂ ∂

                    (8) 
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Using the identification ( )1 2 3, ,ψ ψ ψ=E  and ( )4 5 6, ,ψ ψ ψ=B , the above 
system of equations can be rewritten in the familiar form given in classical elec-
trodynamics as 

eρ⋅ =E


∇                           (9) 

0⋅ =B∇                          (10) 

0
t

∂
× + =

∂
BE∇                       (11) 

et
µ µ∂

× − =
∂
EB j∇                    (12) 

where the charge density eρ  and the current density ej  satisfy the conserva-
tion law 

0e
e t

ρ∂
⋅ + =

∂
j∇                      (13) 

From the matrices iA  given in Equation (2) we obtain 

2 2
0 1

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0

, ,
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

A A

   
   −   
   −

= =   
   
   −
      −   

 

2 2
2 3

1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

, ,
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0

A A

− −   
   −   
   −

= =   
− −   

   −
      −   

 

2

2

2
2
4 1 2 2 1

0 1 0 0 0 00 0 0 0 0
1 0 0 0 0 00 0 0 0 0
0 0 0 0 0 00 0 0 0 0

,
0 0 0 0 1 00 0 0 0 0 0
0 0 0 1 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0

A A A A A

µ
µ

µ

   
   
   
   

= + =   
   
   
        

 

1 3 3 1 2 3 3 2

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0

,
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 1 0

A A A A A A A A

   
   
   
   

+ = + =   
   
   
      
   

 

0 0 0 for 1,2,3i iA A A A i+ = =                       (14) 
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Now, if we apply the differential operator  
( )0 1 2 3A t A x A y A z∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂  to Equation (1) then we arrive at 

2 2

2 2

2

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

t x

   
   −   
   −∂ ∂

+   
∂ ∂   

   −       −   
− 
 
 
 − ∂

+ 
− 

 
  − 

2

2 2

2 2

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0

y z

x y x z

− 
 − 
  ∂

+  
−∂ ∂ 

 −
  
 

   
   
   
   ∂ ∂

+ +   
∂ ∂ ∂ ∂   

   
      
   

+
2

0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

J
y z t

µ
µ

µ
ψ

     
     
     
     ∂ ∂

= −     
∂ ∂ ∂     

     
               

    (15) 

From Equation (15), we obtain the following system of equations for the elec-
tric field ( ) ( )1 2 3, , , ,x y zE E E ψ ψ ψ= =E  

2 2 2
31 1 1 2 1

2 2 2

j
x y z tt y z

ψψ ψ ψ ψ
µ

∂ ∂ ∂ ∂ ∂ ∂∂
− − + + = − ∂ ∂ ∂ ∂∂ ∂ ∂  

              (16) 

2 2 2
32 2 2 1 2

2 2 2

j
y x z tt x z

ψψ ψ ψ ψ
µ

∂∂ ∂ ∂ ∂ ∂∂  − − + + = − ∂ ∂ ∂ ∂∂ ∂ ∂  
              (17) 

2 2 2
3 3 3 31 2

2 2 2

j
z x y tt x y

ψ ψ ψ ψ ψ
µ

∂ ∂ ∂ ∂ ∂ ∂∂
− − + + = − ∂ ∂ ∂ ∂∂ ∂ ∂  

              (18) 

If the electric field also satisfies Gauss’s law 

31 2 e

x y z
ψ ρψ ψ ∂∂ ∂

⋅ = + + =
∂ ∂ ∂

E


∇                     (19) 

then we obtain the following relations 
2

32 1 1
2

e e

x y z x x xx
ψ ρ ρψ ψ ψ∂ ∂ ∂ ∂∂ ∂ ∂   + = − = − +     ∂ ∂ ∂ ∂ ∂ ∂∂      

         (20) 
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2
31 2 2

2
e e

y x z y y yy
ψ ρ ρψ ψ ψ∂  ∂ ∂ ∂∂ ∂ ∂   + = − = − +    ∂ ∂ ∂ ∂ ∂ ∂∂     

         (21) 

2
3 31 2

2
e e

z x y z z zz
ρ ψ ψ ρψ ψ ∂ ∂ ∂ ∂∂ ∂ ∂   + = − = − +     ∂ ∂ ∂ ∂ ∂ ∂∂      

         (22) 

From Equations (16-18) together with relations given in Equations (20-22), 
we obtain, in vector form, the wave equation for the electric field as 

2
2

2
e e

tt
ρ

µ
∂∂  −∇ = ∇ −  ∂∂  

JE E


                    (23) 

where ( )1 2 3, ,e j j j=J . Similarly for the magnetic field  
( ) ( )4 5 6, , , ,x y zB B B ψ ψ ψ= =B  we obtain the following equations and relations 

2 2 2
5 64 4 4

2 2 2 0
x y zt y z

ψ ψψ ψ ψ ∂ ∂ ∂ ∂ ∂ ∂
− − + + = ∂ ∂ ∂∂ ∂ ∂  

               (24) 

2 2 2
5 5 5 64

2 2 2 0
y x zt x z

ψ ψ ψ ψψ∂ ∂ ∂ ∂∂∂  − − + + = ∂ ∂ ∂∂ ∂ ∂  
               (25) 

2 2 2
6 6 6 54

2 2 2 0
z x yt x y

ψ ψ ψ ψψ∂ ∂ ∂ ∂ ∂∂
− − + + = ∂ ∂ ∂∂ ∂ ∂  

               (26) 

5 64 0
x y z

ψ ψψ ∂ ∂∂
⋅ = + + =

∂ ∂ ∂
B∇                      (27) 

2
5 6 4

2x y z x
ψ ψ ψ∂ ∂  ∂∂

+ = − ∂ ∂ ∂ ∂ 
                      (28) 

2
6 54

2y x z y
ψ ψψ ∂ ∂∂∂  + = − ∂ ∂ ∂ ∂ 

                      (29) 

2
5 64

2z x y z
ψ ψψ ∂ ∂ ∂∂

+ = − ∂ ∂ ∂ ∂ 
                      (30) 

2
2

2 0
t

∂
−∇ =

∂
B B                           (31) 
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