# A remark on a golden arbelos in Wasan geometry 

Hiroshi Okumura<br>Maebashi Gunma 371-0123, Japan<br>e-mail: hokmr@yandex.com


#### Abstract

We consider a problem in Wasan geometry involving a golden arbelos.


Keywords. golden arbelos.
Mathematics Subject Classification (2010). 01A27, 51M04.

## 1. Introduction

We consider the arbelos appeared in Wasan geometry, and consider an arbelos formed by three semicircles $\alpha, \beta$ and $\gamma$ with diameters $A O, B O$ and $A B$, respectively for a point $O$ on the segment $A B$ (see Figure 1). We denote the arbelos and the radii of $\alpha$ and $\beta$ by $(\alpha, \beta, \gamma)$ and $a$ and $b$, respectively, and call the perpendicular to $A B$ at $O$ the axis. Circles of radius $r_{\mathrm{A}}=a b /(a+b)$ are said to be Archimedean, and the incircle of the curvilinear triangle made by $\alpha, \gamma$ and the axis is Archimedean, which is denoted by $\delta$. Let $\sigma$ be the reflection in the perpendicular to $A B$ at the center of $\gamma$. We consider the following problem in [11] (see Figure 2).

Problem 1. Let $\varepsilon$ be the circle touching $\alpha^{\sigma}$ externally $\gamma$ internally and the axis from the side opposite to $A$. If $\varepsilon$ and $\alpha$ have the same radius, find the radius of $\varepsilon$ in terms of the difference of the radii of $\gamma$ and $\delta$.


Figure 1: $(\alpha, \beta, \gamma)$ with $\delta$.


Figure 2.

The same sangaku problem proposed in 1891 [1]. If $a / b=\phi^{ \pm 1}$, then $(\alpha, \beta, \gamma)$ is called a golden arbelos, where $\phi=(1+\sqrt{5}) / 2$. We will show that the figure of the problem forms a golden arbelos and the circles $\delta$ and $\varepsilon$ touch. We will also give a condition in which the circles $\delta$ and $\varepsilon$ touch in the case $a \neq b$.

## 2. Circles touching a perpendicular to $A B$ at the same point

We use a rectangular coordinate system with origin $O$ such that the farthest point on $\alpha$ from $A B$ has coordinates $(a, a)$. We use the next proposition.

Proposition 1. It two externally touching circles of radii $r_{1}$ and $r_{2}$ touch a line at two points $P$ and $Q$, then $|P Q|=2 \sqrt{r_{1} r_{2}}$.

Theorem 1. Let $\zeta$ be the semicircle of diameter $B O^{\prime}$ constructed on the same side as $\gamma$ for a point $O^{\prime}$ on the segment $A B$, and let $\varepsilon$ be the circle touching $\gamma$ internally, $\zeta$ externally and the axis from the side opposite to $A$. Then the following statements are equivalent.
(i) The circles $\delta$ and $\varepsilon$ touch.
(ii) The circle $\varepsilon$ has radius $b-r_{\mathrm{A}}$.
(iii) The semicircle $\zeta$ coincides with $\alpha^{\sigma}$.

Proof. Let $e$ and $z$ be the radii of $\varepsilon$ and $\zeta$, respectively, and let $y$ be the $y$ coordinate of the center of $\varepsilon$ (see Figure 3). Then we have $(a+b-e)^{2}=(-e-$ $(a-b))^{2}+y^{2}$ and $(z+e)^{2}=(-e-(-2 b+z))^{2}+y^{2}$. Solving the equations for $e$ and $z$, respectively, we get

$$
\begin{equation*}
e=b-\frac{y^{2}}{4 a} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
z=b-e+\frac{y^{2}}{4 b} . \tag{2}
\end{equation*}
$$

While (i) is equivalent to $y=2 \sqrt{a r_{\mathrm{A}}}$ by Proposition 1 . Therefore (1) implies that $y=2 \sqrt{a r_{\mathrm{A}}}$ if and only if $e=b-r_{\mathrm{A}}$, i.e., (i) and (ii) are equivalent. Substituting (1) in (2), we get

$$
\begin{equation*}
y^{2}=4 z r_{\mathrm{A}} \tag{3}
\end{equation*}
$$

The equation gives that $y=2 \sqrt{a r_{\mathrm{A}}}$ if and only if $z=a$, i.e., (i) and (iii) are equivalent.


Figure 3.


Figure 4.

We now consider the figure of Problem 1 and assume that the radius of the circle $\varepsilon$ equals $a$ (see Figure 4). Then by the equivalence of (ii) and (iii) in Theorem 1 we have

$$
\begin{equation*}
a=b-r_{\mathrm{A}} \tag{4}
\end{equation*}
$$

Let $c$ be the radius of $\gamma$. Then $2 a=a+b-r_{\mathrm{A}}=c-r_{\mathrm{A}}$, i.e., $a=\left(c-r_{\mathrm{A}}\right) / 2$, which is an answer of Problem 1. Solving (4) for $b$, we get $b=\phi a$. Therefore $(\alpha, \beta, \gamma)$ is a golden arbelos, where notice that $r_{\mathrm{A}}, a, b, c$ form a geometric progression with common ratio $\phi$. Also (4) implies that there is an Archimedean circle concentric to $\gamma$ touching the axis and the circles $\alpha, \alpha^{\sigma}$ and $\varepsilon$ externally.
The Archimedean circle touching $\varepsilon$ externally and the axis at $O$ can also be obtained in the case $b \neq \phi a$. Notice that the radius of the circle touching $\varepsilon$ externally and the axis at $O$ from the side opposite to $A$ equals $y^{2} /(4 e)=(z / e) r_{\mathrm{A}}$
by Proposition 1 and (3) in the proof of Theorem 1. Therefore we get (see Figure 5):


Figure 5.

Theorem 2. Let $\zeta$ and $\varepsilon$ be the semicircle and the circle in Theorem 1, and let $\eta$ be the circle touching $\varepsilon$ externally and the axis at $O$ from the side opposite to A. Then $\eta$ is Archimedean if and only if $\zeta$ and $\varepsilon$ have the same radius. In this event, $(\alpha, \beta, \gamma)$ is a golden arbelos if and only if $\zeta$ and $\eta$ touch.

We have considered two circles touching a perpendicular to $A B$ from the opposite side at the same point in a general way in [5]. Theorem 1 gives a special case in which such a pair of circles appears. Another condition using the reflection in the axis can also be found in [6].

## 3. Application of division by zero

We consider the relations (1), (2) with the recent definition of division by zero: $z / 0=0$ for any real number $z[3]$.


Figure 6: $a=0$.


Figure 7: $b=0$.

We consider (1). Notice that this relation is derived only from the assumption that the circle $\varepsilon$ touches $\gamma$ internally and the axis from the side opposite to $A$. If $a=0$, then the semicircle $\alpha$ degenerates to the point $A, \beta$ and $\gamma$ coincide, and $y^{2} /(4 a)=y^{2} / 0=0$ by the definition of division by zero. Hence (1) implies $e=b$. Therefore the half part of the circle $\varepsilon$ coincides with $\gamma$ (see Figure 6).
If $b=0$, then $\beta$ and $\varepsilon$ degenerate to the point $B$, i.e., $e=z=0$, and $y^{2} /(4 b)=0$. Therefore (2) still holds (see Figure 6).
For more applications of division be zero to Wasan geometry see [2], [4], [7], [8], [9, 10].

## 4. A configuration arising from the golden arbelos

Let $\tau$ be the product of $\sigma$ and the homothety of center $A$ and ratio $\phi^{-1}$. Let $p$ be the $x$-coordinate of a point $P$ on $A B$. Then we have $\left(p+p^{\sigma}\right) / 2=a-b$ and $\left(p^{\sigma}-2 a\right) / \phi=p^{\tau}-2 a$, where $p^{\sigma}$ and $p^{\tau}$ are the $x$-coordinates of the points $P^{\sigma}$ and $P^{\tau}$, respectively. Then $p^{\tau}=2 a+\left(p^{\sigma}-2 a\right) / \phi=2 a+(-2 b-p) / \phi=-p / \phi$. Therefore $\tau$ coincides with the homothety of center $O$ with ratio $-1 / \phi$. Hence $p^{\tau^{n}}=(-1)^{n} p / \phi^{n}$, i.e., $P^{\tau^{n}}$ has $x$-coordinate $(-1)^{n} p / \phi^{n}$, and the axis is fixed by $\tau$. Notice that $\gamma^{\tau}$ passes through the point of tangency of $\delta$ and $\varepsilon$ by Proposition 1, because $\left(2 \sqrt{a r_{\mathrm{A}}}\right)^{2}=2 a \cdot 2 \phi a=\left|A^{\tau} O\right|\left|B^{\tau} O\right|$ (see Figure 8).


Figure 8: $\mathcal{K} \cup \mathcal{K}^{\tau}=\mathcal{K}_{1} \cup \mathcal{K}_{2}$.


Figure 9.


Figure 10: $\mathcal{K}_{0}$ with it reflection in $A B$.
Let $\mathcal{K}$ be the figure consisting of $\gamma, \alpha, \alpha^{\sigma}, \delta$ and $\varepsilon$ in the case $b=\phi a$, which is obtained from Figure 2 by removing $A B$ and the axis. Let $\mathcal{K}_{i}=\mathcal{K}^{\tau^{i-1}}$ for $i=1,2,3, \cdots$, and $\mathcal{K}_{0}=\bigcup_{i \geq 1} \mathcal{K}_{i}$. It is a custom of Wasan geometry to describe the arbelos by three circles so that their centers lie on a vertical line. The original figure of Problem 1 is also described by $\mathcal{K}$ with the axis and its reflection in $A B$ so that $A B$ is a vertical segment as in Figure 9. Following to this custom, we also describe $\mathcal{K}_{0}$ so that $A B$ is a vertical line with its reflection in $A B$ (see Figure 10).

## References

［1］Fukushimaken Wasan Kenkyū Hozonkai（福島県和算研究保存会）ed．，The Sangaku in Fukushima（福島の算額），Sōju Shuppan（蒼樹出版）， 1989.
［2］Y．Kanai，H．Okumura，A three tangent congruent circle problem，Sangaku J．Math．， 1 （2017）16－20．
［3］M．Kuroda，H．Michiwaki，S．Saitoh，M．Yamane，New meanings of the division by zero and interpretations on $100 / 0=0$ and on $0 / 0=0$ ，Int．J．Appl．Math．，27（2）（2014）191－198．
［4］T．Matsuura，H．Okumura，S．Saitoh，Division by zero calculus and Pompe＇s theorem， Sangaku J．Math．， 3 （2019）36－40．
［5］H．Okumura，The arbelos in Wasan geometry：Chiba＇s Problem，Glob．J．Adv．Res．Class． Mod．Geom．，8（2）（2019）98－104．
［6］H．Okumura，A note on the arbelos in Wasan geometry：Satoh＇s problem and a circle pattern，Mathematics and Informatics 62（3）（2019）301－304．
［7］H．Okumura，Solution to 2017－1 Problem 4 with division by zero，Sangaku J．Math．， 2 （2018）27－30．
［8］H．Okumura，Wasan geometry with the division by zero，Int．J．Geom．，7（1）（2018）17－20．
［9］H．Okumura，S．Saitoh，Wasan geometry and division by zero calculus，Sangaku J．Math．， 2 （2018）57－73．
［10］H．Okumura，S．Saitoh，Applications of the division by zero calculus to Wasan geometry， Glob．J．Adv．Res．Class．Mod．Geom．，7（2）（2018）44－49．
［11］Ono（小野以正）ed．，Keiteki Sampō Shinan Taisei（啓廸算法指南大成），1855，Tohoku Uni－ versity Digital Collection．

