Definition

August 2, 2019
Yuji Masuda
(y_masuda0208@yahoo.co.jp)

First, $\pm \infty$ is constant at any observation point (position).
If a set of real numbers is R, then

$$
\begin{aligned}
& R \times(\pm \infty)= \pm \infty \\
& R+(\pm \infty)= \pm \infty \\
& (-1) \times(\pm \infty) \neq \mp \infty
\end{aligned}
$$

On the other hand, when $x(\in R)$ is taken on a number line, the absolute value X becomes larger toward $\pm \infty$ as the absolute value X is expanded.
Similarly, as the size decreases, the absolute value X decreases toward 0 .
Furthermore, $\mathrm{x}(-1)$ represents the reversal of the direction of the axis.

$$
\begin{aligned}
& R \times(-1) \times(\pm \infty)=\frac{R}{ \pm \infty} \\
& -1=\left(\frac{1}{ \pm \infty}\right)^{2}=i^{2} \\
& 1=(\pm \infty) \times i \\
& \therefore(\pm \infty) \cdot i-1=0
\end{aligned}
$$

Second, from the definition of napier number e

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{(\pm \infty)}\right)^{(\pm \infty)}=e \\
1+i=e^{i\left(\because(1+i)^{\frac{1}{i}}=e\right)} \\
i=\log (1+i)\left(\because 1+i=e^{i}\right) \\
(1+i)^{\pi}=-1\left(\because e^{i \pi}=-1\right)
\end{gathered}
$$

