A note on circle chains associated with the incircle of a triangle

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract

We generalize a problem in Wasan geometry involving the incircle of a triangle.

Keywords. circle chain, incircle of a triangle
Mathematics Subject Classification (2010). 01A27, 51M04

1. Introduction

We generalize the next problem [1] (see Figure 1).
Problem 1. For the incircle δ of a triangle $A B C$, let α be the incircle of the curvilinear triangle made by δ and $C A$ and $A B$. Similarly we define the circles β and γ. If a, b, c, d are the radii of the circles $\alpha, \beta, \gamma, \delta$, respectively, show that the following relation holds.

Figure 1.

2. Generalization

The fact stated in the problem is the case $n=1$ in the next theorem (see Figure $2)$.

Theorem 1. For the incircle δ of a triangle $A B C$, let $\alpha_{0}=\delta$, and let α_{n} be the incircle of the curvilinear triangle made by α_{n-1} and the sides $C A$ and $A B$ if the circle α_{n-1} has been defined for a positive integer n. If a_{n}, b_{n}, c_{n}, d are the radii of $\alpha_{n}, \beta_{n}, \gamma_{n}, \delta$, respectively for a positive integer n, then we have

$$
d^{\frac{1}{n}}=\left(a_{n} b_{n}\right)^{\frac{1}{2 n}}+\left(b_{n} c_{n}\right)^{\frac{1}{2 n}}+\left(c_{n} a_{n}\right)^{\frac{1}{2 n}} .
$$

Proof．Let $a=a_{1} / d, b=b_{1} / d, c=c_{1} / d$ ．Then $a_{n}=d a^{n}, b_{n}=d b^{n}, c_{n}=d c^{n}$ ． While we have $d=\sqrt{a_{1} b_{1}}+\sqrt{b_{1} c_{1}}+\sqrt{c_{1} a_{1}}=d(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})$ ．Hence we get $\sqrt{a b}+\sqrt{b c}+\sqrt{c a}=1$ ．Then

$$
\begin{aligned}
\left(a_{n} b_{n}\right)^{\frac{1}{2 n}}+\left(b_{n} c_{n}\right)^{\frac{1}{2 n}}+\left(c_{n} a_{n}\right)^{\frac{1}{2 n}} & =\left(d a^{n} d b^{n}\right)^{\frac{1}{2 n}}+\left(d b^{n} d c^{n}\right)^{\frac{1}{2 n}}+\left(d c^{n} d a^{n}\right)^{\frac{1}{2 n}} \\
& =d^{\frac{1}{n}}\left((a b)^{\frac{1}{2}}+(b c)^{\frac{1}{2}}+(c a)^{\frac{1}{2}}\right)=d^{\frac{1}{n}} .
\end{aligned}
$$

Figure 2.

References

［1］Fujita（藤田定資），Seiyō Sampō（精要算法） 1781 Tohoku University Digital Collection．

