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1. Introduction

We generalize the next problem [1] (see Figure 1).

Problem 1. For the incircle δ of a triangle ABC, let α be the incircle of the
curvilinear triangle made by δ and CA and AB. Similarly we define the circles β
and γ. If a, b, c, d are the radii of the circles α, β, γ, δ, respectively, show that
the following relation holds.
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Figure 1.

2. Generalization

The fact stated in the problem is the case n = 1 in the next theorem (see Figure
2).

Theorem 1. For the incircle δ of a triangle ABC, let α0 = δ, and let αn be the
incircle of the curvilinear triangle made by αn−1 and the sides CA and AB if the
circle αn−1 has been defined for a positive integer n. If an, bn, cn, d are the radii
of αn, βn, γn, δ, respectively for a positive integer n, then we have
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Proof. Let a = a1/d, b = b1/d, c = c1/d. Then an = dan, bn = dbn, cn = dcn.
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