Definition II

August 7, 2019
Yuji Masuda
(y_masuda0208@yahoo.co.jp)

First, $\pm \infty$ is constant at any observation point (position).
If a set of real numbers is R, then

$$
R \times(\pm \infty)= \pm \infty, R+(\pm \infty)= \pm \infty,(-1) \times(\pm \infty) \neq \mp \infty
$$

On the other hand, when $\mathrm{x}(\in \mathrm{R})$ is taken on a number line, the absolute value X becomes larger toward \pm ∞ as the absolute value X is expanded.
Similarly, as the size decreases, the absolute value X decreases toward 0 .
Furthermore, $\mathrm{x}(-1)$ represents the reversal of the direction of the axis.

$$
(-1) \times(\pm \infty)=\frac{1}{ \pm \infty} \quad \therefore(\pm \infty) \cdot i-1=0
$$

Second, from the definition of napier number e

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{(\pm \infty)}\right)^{(\pm \infty)}=e \\
\begin{array}{l}
1+i=e^{i}\left(\because(1+i)^{\frac{1}{i}}=e\right) \\
i=\log (1+i)\left(\because 1+i=e^{i}\right) \\
(1+i)^{\pi}=-1\left(\because e^{i \pi}=-1\right)
\end{array} \\
\begin{array}{l}
(1+i \pi)^{\frac{1}{i}}=e^{\pi}\left(\because(1+i r)^{\frac{1}{i}}=e^{r}\right) \\
i \pi=-2 \\
e=-i\left(\because e^{-2}=-1, \log i=\frac{1}{2} \pi i=-1\right)
\end{array} \\
\hline \times \times\left(\frac{1}{ \pm \infty}\right)
\end{gathered}
$$

