The Proof of the Riemann Hypothesis

Heinz Volkenborn

volkenborn-architekten@hamburg.de

For Uta

Abstract

The proof of the Riemann Hypothesis requires a decoding of the fine-structure constant α in which is shown, why the Riemann zeta function ζ (s) cannot show a zero point with Re (s) = 1, off the critical line Re (s) = 1/2

The Proof

That the proof of the Riemann Hypothesis requires a decoding of the fine-structure constant α was already suggested by Michael Atiyah (1). However, if we take a closer look at this suggestion, then we must not stop at the electron. Rather α requires that we concentrate on the proton (2). For if we place the proton in the center of our evidence and accept a limited space of positive energy within an unlimited space of negative energy, then a volume constant of electromagnetic processes appears and within this constant not only a mass point of m = 1, which marks the limited within the unlimited, but also an additional mass shift of m = 2 which is inversely proportional to the effect. Which not only the spin quantum number s = 1/2 makes stand out, and thus the connection of location and momentum, but also the Riemann zeta function ζ (s), which strives towards ∞ and has no zero with Re (s) = 1.

In this respect, the Riemann zeta function ζ (s) strives towards ∞ , while a spatial limitation of the unlimited as spin quantum number s appears, or as Re (s) = 1/2, which is then one and the same.

- (1) Atiyah M 2018 The Riemann Hypothesis, Heidelberg Laureate Forum
- (2) Volkenborn U and Volkenborn H 2017 The Quantization of Space, vixra 1710.0173