Rational Distance

Radomir Majkic
E-mail: radomirm@hotmail.com

Abstract

There are countable many rational distance squares, one square for each rational trigonometric Pythagorean pair $(s, c): s^{2}+c^{2}=1$ and a rational number r.

Problem: Prove or disprove that there is an integer square $A B C D$ and a point P in the plain of the square such that the segments $A P B P, C P$ and $D P$ are also integers. An equivalent problem set-up is in the set of the rational numbers.

We place the square in the coordinate frame $x O y$ with $O B=\mathrm{AB}$ on the coordinate axes x, see the Picture 1 of the Figure 1. Orthogonal projections of the point P on the axes x and y are Q and R respectively. The edge of the square is an integer n and $\mathrm{DP}=m, \mathrm{CP}=k, \mathrm{AP}=\mathrm{M}, \mathrm{BP}=\mathrm{k}$, and $\mathrm{BQ}=\xi$ and $\mathrm{QP}=\eta$. We have to show that the segments $\{n ; \mathrm{M}, \mathrm{K}, m, k\}$ may or may not be the integers/rational numbers.

1

Figure 1: Rational Distance
Corollary 01. For fixed segments n and ξ the differences $\mathrm{m}^{2}-\mathrm{K}^{2}$ and $m^{2}-k^{2}$ are identical and

$$
\begin{equation*}
\mathrm{m}^{2}-\mathrm{K}^{2}=h^{2}=m^{2}-k^{2}, \quad h^{2}=n(n \pm 2 \xi) . \tag{1}
\end{equation*}
$$

We use the cosine theorem on the triangles DCP and $\mathrm{ABP}, \mathrm{K} \cos \varphi=\xi=k \cos \varphi^{\prime}$. The sign of the segment ξ depends on the position of the P projection point Q relative to the square.Thus

$$
\begin{aligned}
& \mathrm{M}^{2}=n^{2}+\mathrm{K}^{2} \pm 2 n \xi \Leftrightarrow \mathrm{M}^{2}-\mathrm{K}^{2}=n(n \pm 2 \xi),=(\mathrm{M}-n)(\mathrm{M}+n) \\
& m^{2}=n^{2}+k^{2} \pm 2 n \xi \Leftrightarrow m^{2}-k^{2}=n(n \pm 2 \xi)=(m-n)(m+n) \\
\therefore & \mathrm{M}^{2}-\mathrm{K}^{2}=m^{2}-k^{2}=n(n \pm 2 \xi) .
\end{aligned}
$$

Corollary 02. The rational distance problem is equivalent to the right rational triangle problem: Find if there is a right rational triangle $\mathcal{T}=\{\mathrm{m}, m ; d\}$ of the legs m and m and the hypotenuse $d=2(n \pm \xi)$.
\square A right triangle \mathcal{T} of the hypotenuse $d=2(n \pm \xi)$ inscribed in a circle of the radius $R=n \pm \xi$ must have the right angle vertex X on the circle Each such triangle, see the Picture 2 of the Figure 1, is specified by the position of the point X defined by the segments p and q cutup on the hypotenuse by the triangle hight $y: y^{2}=p q$ from the point X. Once the segments p and q are fixed the triangle legs a and b are defined uniquely. The point X partitions the triangle \mathcal{T} into right triangles $\triangle(p, a, y)$ and $\triangle(q, b, y)$, so that

$$
a^{2}-p^{2}=y^{2}=b^{2}-q^{2} .
$$

For given hypotenuse d there are infinitely many triangles \mathcal{T} and their right triangle partition parts. Each partition is uniquely defined by the pair (p, q) or equivalently by the hight $y^{2}=p q$ factorization.
Our particular triangle is set by the evaluation $y=h: h^{2}=n(n \pm 2 \xi)$ and identification

$$
\triangle(a, b, d)=\triangle(M, m, K+k) \quad \therefore \quad a=\mathrm{m}, b=m, p=K, q=k, k+K=d
$$

Consequently, the h^{2} has the following representation

$$
\mathrm{M}^{2}-\mathrm{K}^{2}=n(n \pm 2 \xi)=m^{2}-k^{2},
$$

and the rational square problem is equivalent to the problem of the rational triangle $\mathbf{T}=\{\mathrm{M}, m, \mathrm{~K}+k\}$ with hypotenuse $d=\mathrm{K}+k$ and hight $h=\sqrt{n(n \pm 2 \xi)}$.

Corollary 03. The rational distance problem is equivalent to the rational square problem of the triangle \boldsymbol{T} in the polar representation, and

$$
\begin{aligned}
& \mathrm{m}=2 R \cos \theta, \quad m=2 R \sin \theta, \\
& \mathrm{~K}=2 R \cos ^{2} \theta, \quad k=2 R \sin ^{2} \theta, \\
& h=R \sin 2 \theta, \quad n=2 R \sin ^{2} \theta, \\
& \xi= \pm R\left(1-2 \sin ^{2} \theta\right) .
\end{aligned}
$$

We introduce the angle θ between rays a and p, see the Picture 2, and the polar relations follow from the triangle \mathbf{T}. The segment ξ is calculated from the $2 R=(n \pm 2 \xi)+n=2(n \pm \xi)$. Hence, all the rational square segments are dependent only on the circle radius R and angle θ.
Thus, the problem is to find if there is an integer R and an angle θ such that all rational square segments are integers/rational numbers.

Definition: The collection of all integer triples $(\alpha, \beta ; \gamma), \alpha^{2}+\beta^{2}=\gamma^{2}$, are the Pythagorean numbers. The integer $|\alpha, \beta|=\gamma$ is the norm of the Pythagorean number. The collection of the rational pairs $(s, c), s^{2}+c^{2}=1$ are trigonometric or the unit Pythagorean numbers.

Corollary 04. Pythagorean and trigonometric Pythagorean numbers are equivalent.
For, the number γ of the Pythagorean triple $(\alpha, \beta ; \gamma)$ is its norm so that

$$
|\alpha, \beta|^{2}=\alpha^{2}+\beta^{2} \equiv \gamma^{2} \Leftrightarrow 1=\frac{\alpha^{2}}{|\alpha, \beta|^{2}}+\frac{\beta^{2}}{|\alpha, \beta|^{2}}=s^{2}+c^{2} .
$$

Conclusion

There are countable many rational distance squares. For each rational trigonometric Pythagorean pair $(s, c): s^{2}+c^{2}=1$ and each rational number R there is one rational distance square.For each Pythagorean trigonometric pair (s, c) there is an angle θ

$$
s=\sin \theta, c=\cos \theta, \quad \sin 2 \theta=2 s c, \cos 2 \theta=1-2 s^{2}
$$

so that all segments

$$
\mathrm{M}=2 R c, \quad m=2 R s, \quad \mathrm{~K}=2 R c^{2}, \quad k=2 R s^{2}, \quad h=\frac{R c s}{2},
$$

are rational numbers whenever R is a rational number. Further $n=k=2 R s^{2}$ is a rational number. Since

$$
2 R=2(n \pm \xi) \Rightarrow \xi= \pm R\left(1-2 s^{2}\right)
$$

all of $\{n ; m, k, h, \mathrm{M}, \mathrm{K}, \xi\}$ are rational numbers. Hence, the collection of the segments $\{n ; m, k, h, \mathrm{M}, \mathrm{K}, \xi\}$ corresponds to each rational point $(s, c ; R)$, and there are countable many rational distance squares. The integer segments are guaranteed by the choice of $R=2 \mathrm{~N}|\alpha, \beta|^{2}$ where N is an integer.

References

[1] W. E. Deskins, Abstract Algebra, The MacMilan Company, New York,
[2] George E. Andrews, Number Theory, Dower Publications, Inc. New York.

