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Abstract

This paper proposes mass interaction principle (MIP) as: the particles will be sub-

jected to the random frictionless quantum Brownian motion by the collision of space

time particle (STP) ubiquitous in spacetime. The change in the amount of action of

the particles during each collision is an integer multiple of the Planck constant h. The

motion of particles under the action of STP is a quantum Markov process. Under

this principle, we infer that the statistical inertial mass of a particle is a statistical

property that characterizes the difficulty of particle diffusion in spacetime. Within the

framework of MIP, all the essences of quantum mechanics are derived, which proves

that MIP is the origin of quantum mechanics. Due to the random collisions between

STP and the matter particles, matter particles are able to behave exactly as required

by the supervisor and shepherd for all microscopic behaviors of matter particles. More

importantly, we solve a world class puzzle about the anomalous magnetic moment of

muon in the latest experiment, and give a self-consistent explanation to the lifetime

discrepancy of muon between standard model prediction and experiments at the same

time. Last but not least, starting from MIP, we prove the principle of entropy increasing

and clarify the physical root of entropy at absolute zero.Within the framework of MIP,

we comprehensively discussed the Copenhagen interpretation. It leads to an important

conclusion that Copenhagen interpretation is unnecessary for the quantum mechanical

system. We found that Maxwell’s classical electromagnetic theory is applicable to the

microscopic world not as previously thought. The key is that Brownian motion and

classical electromagnetic theory must be combined together to completely solve the

problem of electrons outside the nucleus not radiating electromagnetic waves.
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1 Introduction

1.1 Spacetime Fluctuation, STP and MIP

We believe the energy fluctuations of spacetime are universal, which are defined as STP. In

this picture, particles are classified into two groups: one is matter particles which interact

with STP, another one is massless particles which freely move in spacetime. Matter particles

change their states by all the collisions with STP. The underlying property of mass is a

statistical property emerging from random impacts in spacetime. Different particles have

different effects of impact by STP, which can be defined as some kind of inertia property of

particles. This property corresponds to mass dimension (Following we will prove it happens

to be the inertial mass from Schrödinger’s equation ). Matter particles develop a Brownian

motion due to random impacts from spacetime. We strongly suggest that all the probabilistic

behaviours of quantum mechanics come from the Brownian motion, which is exactly the

origin of quantum nature. In the framework of MIP, the photon represents itself as a Hopf

link exicitation made of the 2+1-dim gauge field and its Hodge dual partner. On the other

hand, under the MIP framework, photons not only exchange electromagnetic interactions,

they also exchange spin information. It just explains that the annihilation condition of

positive and negative electrons is not only the opposite of charge, but also the opposite

of its spin. In modern physics, the spin and charge of matter particles are independent

quantum properties. However, the spin has a magnetic moment and indicates that the

spin and electromagnetic interactions are related. Under the MIP framework, this apparent

contradiction can be self-consistently explained.

We believe the quantum behaviours of matter particle come from spacetime fluctuation.

The energy fluctuation of spacetime is quantised. We call the quantised energy as space-

time particle. It is a massless and spinless scalar particle. The exchange of energy between

particle and STP is not strictly random, which leads to a unique Brownian-like motion.

Once the time interval of impact is fixed, the exchange of energy has to be quantised, which

indeed is the quantum nature of particles. Therefore, all quantum nature of particles is a

faithful representation of spacetime quantised fluctuation.

Matter particles will perform random fluctuation motion in spacetime because of stochastic

interactions between STP and matter particles, within which the energy exchange can not

be achieved instaneously. For free matter particles, we define the product of exchanged

characteristic energy and the corresponding time interval as the change of action in the

collision process(For more details, please refer to Appendix A).

1.2 Inertia Mass is a Statistical Property

Until now, our knowledge of mass, a fundamental concept of physics, mainly comes from

Newton’s laws of motion especially the first and second laws. The definition of mass in

physics is a basic property of particles. The amount of matter contained in object is called

the mass of object. The mass is related to the inertial nature of the object’s original motion
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state.

The first law states that in an inertial reference frame, an object either remains at rest or

continues to move at a constant speed, unless acted upon by a force. However according

to the MIP, free particle has to do Brownian-like motions in spacetime, which is a Markov

process. The mass of particle, in order to be sensed by spacetime, has to be collided randomly

by STP. Mass cannot be well defined within the interval of two consecutive random collisions.

In other words, mass is not a constant property belonging to the particle itself, but a discrete

statistical property depending on dynamical collisions of spacetime. We will derive from

MIP straightforwardly that mass must be a statistical term which has its own means and

fluctuations.

Moreover, we prove the uncertainty relation asserting a fundamental limit to the precision

regarding mass and diffusion coefficient. This implies that both mass and diffusion coefficient

of any particle state can not simultaneously be exactly measured. Newton’s Second law

states that in an inertial reference frame, the vector sum of the forces F on an object

is equal to the mass m of that object multiplied by the acceleration of the object. This

connects the concept of mass and inertia and in principle defines a fundamental approach to

measure the mass of any particle experimentally. However, according to the MIP, forces on

a particle are changed constantly by the random impact of STP. Therefore, we are no longer

able to take constant mass for granted. In conclusion, we believe that mass as a statistical

property is much more natural within the framework of modern science, which completely

overrules Newton’s concept of mass based on Mathematical Principles of Natural Philosophy

first published in 1687.

1.3 Realistic Interpretation of Quantum Mechanics

The main idea of Copenhagen interpretation is that the wave function does not have any real

existence in addition to the abstract concept. In this article we do not deny the internal con-

sistency of Copenhagen interpretation. We admit that Copenhagen′s quantum mechanics is

a self-consistent theory. Einstein believed that for a complete physical theory, there must

be such a requirement: a complete physical theory should include all of the physical reality,

not merely its probable behaviour. From the materialistic point of view, the physical reality

should be measured in principles , such as the position q and momentum p of particles. In

the Copenhagen interpretation, the particle wave function Ψ(q, t) or the momentum wave

function Ψ(p, t) is taken to be the only description of the physical system, which can not be

called a complete physical theory, at most a phenomelogical effective theory. Therefore, in

this paper, we propose a MIP where the coordinate and momentum of particles are objec-

tive reality irrespective of observations . With the postulation of MIP, quantum behaviour

will emerge from a statistical description of spacetime random impacts on the experimental

scale, including Schrödinger′s equation, Born rule, Heisenberg′s uncertainty principle and

Feynman′s path integral formulation. Thus, we believe that non-relativistic quantum me-

chanics can be constructed under the MIP. Born rule and Heisenberg′s uncertainty relation

are no longer fundamental within our framework.
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1.4 Photon under the MIP framework

Within the framework of MIP, STP spread over spacetime, and its energy spectrum distri-

bution is consistent with scalar particles. It can therefore be thought of as an excitation

of a scalar field. The influence of material particles on its spacetime is local, so on the

2+1-dimensional time-space slice, the influence of material particles on spacetime can be

regarded as a potential energy.

In modern quantum field theory, an important point is that microscopic energy can be non-

conservative, and it can fluctuate to form pairs of virtual positive and negative particles.

Within the framework of MIP, the fluctuation of spacetime energy is itself STP. The number

of STP particles is not conserved locally, but globally, the energy of STP is conserved. So the

picture of STP as a free particle is restored on a large scale. This just shows that STP has

some local symmetry, which is broken at large scale. In essence, when the domain symmetry

of the authority is U(1), STP is the excitation of a complex scalar field.

On the other hand, the spacetime can be regarded as 2+1-dimensional around the spacetime

in which the material particles are located. On this 2+1-dimensional spatiotemporal slice,

STP is the excitation of the complex scalar field, which is accompanied by the excitation of

the gauge field. The material particle produces a local non-perturbative potential energy in

the surrounding space and time. The existence of this potential energy can cause the STP

to spontaneously form a stable vortex solution. If the STP is not accompanied by a gauge

field, then the vortex solution will cause the problem of energy divergence in the vortex

center. The gauge field just eliminates the problem of local energy divergence.

The existence of a vortex solution also provides a possibility of duality, namely Hodge

duality. The Hodge duality will extend the dynamics of the 2+1 dimensional gauge field

to the 3+1 dimension. In the sense of Lagrangian, the 3+1-dimensional gauge field just

describes the electromagnetic field theory. That is to say, the 3+1-dimensional equation

of motion is Maxwell’s equation. Therefore, we derive the classical electromagnetic theory

from the vortex dynamics of STP.

In the MIP framework, the photon is essentially a topological excited state of two 2+1-

dimensional gauge fields with their field strengths being Hodge’s dual, and its topological

configuration is a Hopf chain. Physically, photons transfer phase changes of material parti-

cles. Its equation of motion is the Maxwell equation.

On the other hand, the two topological circles of the photon, of which topological configura-

tion Hopf link correspond to the topological subspace of the local spacetime. The Hopf links

just represent the Lorentz representation of spin 1, which is a vector representation. There-

fore, within the framework of MIP, the spin 1 of zero-mass photon is also self-consistently

explained.
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1.5 Radiation under the MIP framework

As a real object, electrons move locally in atoms and cannot maintain a state of linear and

uniform motion, so they must have acceleration. Classical electromagnetic theory predicts

that accelerated charged particles will radiate electromagnetic waves, which is in an obvious

contradiction with the stability of atoms. Is the classical electromagnetic theory really invalid

in the microscopic world? We gave a negative answer. Maxwell’s electromagnetic theory

still holds true in the microscopic world. Only by combining electromagnetic theory with

Brownian motion, it can be proven that free electrons and electrons outside the nucleus do

not radiate electromagnetic waves. In this chapter, we will prove this extremely important

conclusion in detail, thereby establishing an objective reality picture of the microscopic world

and a materialist interpretation of quantum mechanics.

1.6 Fremion spin under the MIP framework

Within the framework of MIP, a careful observation of properties near the singularity at the

center of the STP vortex, drive us to a new perspective of particle spin. We noticed there

are not only energy divergence at the singularity on the center of the STP vortex, there

also exists a disorientation property for a direction vector. To describe the disorientation,

we introduce the torsion based on the cotangent vielbein field. The torsion tensor actually

drives the cobordism topological phase transition between STP vortices on tangent space and

its dual normal space. By the cobordism topological phase transition, we combined vortices

on the 2+1 dimensional tangent space and normal space into a 3+1 dimensional instanton.

The cost of this cobordism topological phase transition, is to calculate the corresponding

topological order. By cohomological theory, we calculated the incomplete angle due to

the cobordism topological phase transition, which concludes that the incomplete angle is an

integer times π,this angle contributes to the STP vortex around matter particle a factor eiNπ.

When rotating the particle a circle, the factor changed the signature of the wave function.

This inveals the origination of particle spin is a topological phase transtion between STP

vortices around the matter particle. Within the framework of MIP, particle spin describes

the topological order of this cobordism phase trantion of STP vortices.

1.7 Muon anomalous magnetic moment under the MIP framework

On April 7, 2021, FermiLab performs a new muon anomalous magnetic moment experiment.

The experimental value differs from the theoretical value predicted by the Standard Model

with 4.2σ standard deviation. The probability of this deviation comes from statistical fluc-

tuations is 1 in 40000, which implies possible physics beyond the Standard Model. The new

massless scalar STP required by the MIP is a key step beyond the existing standard model.

Introducing only one parameter, the interaction strength between STP and lepton, not only

perfectly solves the world-class problem of the anomalous magnetic moment of muons in

the latest experiment, but also explains the muon lifetime discrepancy between theory and

experiment. It can be seen that this is a triumph for applications of MIP in modern particle
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physics.

Last and most importantly, we derived the generation for charged leptons. This is a com-

pletely new result and one can not derive this law in current quantum field theory framework.

Within the MIP framework, by invoking the STP vortices, the generation is a direct infer-

ence.

1.8 Entropy under the MIP framework

We start from MIP and combine it with the mathematical properties of Markov process to

prove the principle of entropy increasing in the non-interacting systems. It must be empha-

sized that this principle is still an empirical law in modern physics and cannot be proven

from first principles, therefore our proof has a far-reaching significance. We can clearly see

that the principle of entropy increasing comes from the statistical effect of random collisions

by STP. The random collision of STP under MIP can naturally produce the principle of

entropy increasing of material particles, which is one of the cornerstones in physics.

2 Mass Interaction Principle

2.1 Proposing the MIP

Particles moving in spacetime interact with STP. The generation of STP itself should be

regarded as a microscopic random excitation of local spacetime energy. We can assume the

following two self-consistent ideal STP models. First, the spacetime itself is discrete, and

each of the smallest spacetime units can act on the particle to change the particle’s motion

. However this spacetime unit acts as a random force on the particles, the motion of the

particles in spacetime under the action of STP will also be random. Secondly, the energy

distribution of STP is Gaussian, therefore, when they were scattering with matter particle,

the force is random.

Furthermore, we propose in each interaction between matter particle and STP, the exchang-

ing action should be nh, with n integer and h the Planck constant. According to this, we

can define the MIP accurately. Suppose STP begin to collide with matter particle at time

t1 and end it at at time t2 to exchange energy E. Without the collision of STP, the action

of particle at the same interval will be

S =

∫ t2

t1

E0dt (2.1)

With the collision of STP, the action of particle at the same interval will be

S′ =

∫ t2

t1

E(t)dt (2.2)
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Therefore the change of action in Definition 1 is

δS = S′ − S =

∫ t2

t1

[E(t)− E0]dt ≡
∫ t2

t1

f(t)dt (2.3)

By definition, integral function f(t) is a monistic increasing function f(t) with following

property

f(t1) = 0, f(t2) = E (2.4)

According to Mean value theorems for integrals, there exists one point t∗ at the interval

satisfying ∫ t2

t1

f(t)dt = f(t∗)(t2 − t1) (2.5)

Setting exchange of energy be E∗ = f(t∗) at this point, we have 0 < E∗ < E. So the exact

formula of the change of action is

δS = E∗δt (2.6)

where δt ≡ t2 − t1. Therefore we are sure that, it is this characteristic exchange energy E∗

not the energy of STP itself corresponding to the change of action. With MIP δS = nh, it’s

impossible to interact instantaneously, since the exchange energy E∗ will blow up.

In our MIP framework, there are no instant interactions between matter particle and STP,

in other words, the interaction takes time to transfer the energy. If the scattering STP has

an extremely low energy such that in ∆t, the transfered action is less then h , we conclude

that in ∆t, the STP cannot collide the particle. We argue that such a collision is still in

process, the particle as well as the STP are in a bound state, not a scattering state. This

is similar to a completely inelastic collision in classic mechanics. While in such a process,

the conservation of energy and momentum can not be satisfied simultaneously. Because of

conservation of energy and momentum, the bound state actually is not a stable state. This

observation leads to an important point: there exists a minimal energyEmin in ∆t so that

Emin∆t = const. (2.7)

In physics , the product of energy and time will have the dimension of action. It is natural

to suggest such a constant with action dimension is the Planck constant, so we have

Emin∆t = nh, n ∈ Z. (2.8)

At a certain moment, particle can be scattered by many STP with different momenta and

energies. In ∆t, we assume there are effectively N collisions. The state of the motion will

depends on the net effect of the N times collision. This is a principle of superposition. We

can use in total N vectors to superposite whole changes of the state of motion, which means

if at time t the particle was at position X⃗(t), with speed V⃗0, then at the moment t + ∆t,

its position will be x⃗(t + ∆t) = X⃗(t) +
∑N

i=1 ∆Xi, and speedV⃗0 +
∑N

i=1 ∆V⃗i. This simple

analysis tells us in ∆t, the ultimate state of motion of the particle can be separated as N

different paths. This is the effect of separation of paths. While the weights of these paths,

aka the probability distribution of universal diffusion, highly rely on the energy distribution

of STP. Collisions by STP with different energies end up with different changes of the state

of motion.

7



2.2 The Nature of Spacetime within the framework of MIP

At the beginning of the 20th century, the null result of the Michaelson-Morley experiment

ended the ether theory. Within the framework of MIP, the concept of spacetime looks very

similar to that of ether, but it is fundamentally different. To clarify this, let us first review

the concept of ether. The ether is a gas medium filled in Newton’s absolute static time

and space. Its definition directly introduces a reference frame of God’s perspective, which

is Newton’s static spacetime system. The earth and this frame of reference are relatively

moving, so they will feel the ether wind blowing, which is the experimental basis of the

Michaelson-Morley experiment. But spacetime is not a gaseous medium filled with absolute

time and space. It is the fluctuation of time and space. From a large scale, the fluctuation of

spacetime does not have significant effects. Spacetime seems to be smooth and differentiable,

and the differential geometry theory of general relativity can effectively describe the physical

properties of large-scale spacetime. However, on the microscopic scale, the fluctuation of

spacetime indicates that spacetime itself does not have continuous property. There is no

absolute static spacetime reference frame in the above discussion, so the STP within the

framework of MIP is not etheric.

The null result of the Michaelson-Morley experiment actually promoted Einstein’s most

important hypothesis of the theory of relativity, which is the constant speed of light. In

the theory of relativity, the constant speed of light is the only absolute assumption, and the

relativity of all other speeds remains.

Within the framework of MIP, the energy fluctuation of spacetime forms STP. If you think

of spacetime as a peaceful lake, then STP is the splash of water on the surface of the lake.

When it falls on the surface of the lake, it will form ripples. Therefore, the emergence of

STP is always accompanied by the spread of ripple. The propagation speed of ripple is the

characteristic propagation speed in spacetime. Forming a STP means that fluctuation of

spacetime will spread to a certain spatial distance within a certain period of time, so the

spacetime around the STP is also changed. We now know that the smallest scale of time is

the Planck scale, and the smallest scale of space is the Planck length. In the Planck time

STP has to spread a Planck length of space, so the propagating speed of STP is the same

as light speed.

From the spacetime view of MIP, any physical observable event in spacetime will inevitably

accompany the fluctuation of spacetime energy, which will profoundly affect the spacetime

after the event. Under such a view of spacetime, the current spacetime is actually the result

of the joint influences of all events in the history.

2.3 Energy spectrum of STP

To consider the collision between STP and particle, it will be ambiguous if the energy

spectrum of STP is not clear at first. In this subsection, we deal with this problem.

Let us consider a cubic with volume L3, which we call a system. If there are in total N
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systems in spacetime, we can classify the N systems by states. We label a state by j so

that there are Nj systems with energy Ej . The total energy of the ensemble(collection of N

systems) is denoted as E , we have

N =
∑
j

Nj (2.9)

E =
∑
j

NjEj , (2.10)

for constant E and N , the possible total number of states in whole spacetime will be Ω =
N !∏
j Nj !

. Physical reality is required by the maximum of Ω. There is a distribution {Nj}
maximizing Ω, so that

lnΩ = N lnN −N −
∑
j

Nj lnNj +
∑
j

Nj · · · (2.11)

the question is under constraints (2.9,2.10), how to maximize lnΩ . With the method of

Lagrangian multiplier,

∂ lnΩ

∂Nj
− λ1

∂
∑

j Nj

∂Nj
− λ2

∂
(∑

j NjEj

)
∂Nj

= 0 (2.12)

we can derive

− lnNj − λ1 − λ2Ej = 1⇒

Nj = e−1−λ1−λ2Ej (2.13)

hence the probability of being at state j

Pj =
Nj

N
=

e−λ1−λ2Ej∑
j e

−λ1−λ2Ej
=

e−λ2Ej∑
j e

−λ2Ej
≡ e−λ2Ej

Z
(2.14)

and the average energy of the ensemble

E =
E
N

=
∑
j

EjPj = −
∂

∂λ2
lnZ (2.15)

In L3 , suppose there are np⃗ = 0, 1, 2, · · · STP have momentum p⃗, for giving distribution

{np⃗}, the energy in L3 is

E =
∑
{np⃗}

np⃗Ep⃗ (2.16)

with Ep⃗ = c|p⃗| = cp. Here STP are massless as proposed. We have

Z =
∑
{np⃗}

e−λ2E =
∏
p⃗

(
1 + e−cλ2p + e−2cλ2p + · · ·

)
=

∏
p⃗

1

1− e−cλ2p
(2.17)

and the average energy of a system is

E = − ∂

∂λ2
lnZ =

∂

∂λ2

∑
p⃗

ln
(
1− e−cλ2p

)
=
∑
p⃗

pe−cλ2p

1− e−cλ2p
=
∑
p⃗

cp

ecλ2p − 1
(2.18)
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when L→∞, summation becomes integration as follow∑
p⃗

→ L3

8π3

∫
d3p⃗

from which we see

E =
L3

2π2

∫
dp

p3

ecλ2p − 1
=
π2L3

30λ42
(2.19)

so the density of STP will be

ϵST =
π2

30λ42
(2.20)

Recover c and ℏ in above equation, we obtain

ϵST =
π2

30c3ℏ3λ42
. (2.21)

Now consider the physical meaning of λ2, which determines the constraint that represents

energy distribution of STP. While the multiplier λ1 which determines the constraint repre-

sents the number distribution of STP has no affects on the dynamics of STP. This means

we can classify STP arbitrarily, except to satisfy the total energy constraint. For example,

the action of particle changed kh, k ∈ Z in a certain collision by STP. In physics we can

not distinct one STP collision or many STP collision, since neither from energy spectrum

of STP nor from the change of status of the particle can distinct them. From dimensional

analysis and MIP, we have

λ2 =
g

EST
(2.22)

where g is a dimensionless coupling constant, and EST is the characteristic energy of STP.

In the limit of extreme relativity, the colliding of STP can not be seen as perturbations, but

strong disturbances.

3 Random Motion and Spacetime Diffusion Coefficient

Let mST be the statistical mass of the particle . We will prove the spacetime interaction

coefficient of a mST mass particle will be universally given as

ℜ =
h

2mST
. (3.1)

Within the framework of random motion[1], or Wiener process in mathematics [2], this space-

time induced random motion is equivalent to the Markov process, moreover, the spacetime

interaction coefficient is nothing but the diffusion coeffient [3]. In this section, we will start

our journey from propability theory of random motion[3, 4], and then give a concrete proof

that for the random motion induced by MIP, the spacetime interaction coefficient is given

exactly by (3.1). The last two subsections discussed two spacetime models in order to in-

vestigate the origin of the spacetime interaction coefficient. From both we obtained the

coefficient reading as ℜ = wℓ
2 , in which w is the average speed of the particle and ℓ the mean

free path.

10



3.1 Langevin Equation

The space-time background can be seen as a fluctuation environment, and the particles move

in this fluctuation environment. This is a Markov process. The position of the particle q⃗ is

a random quantity. From a strict mathematical point of view, it can be decomposed into a

super random part and a superimposable function

q⃗(t) = q⃗0(t) + ω⃗(t) (3.2)

where q⃗0(t) is the differential part of position and ω⃗(t) represents random motions of parti-

cles. The whole motion of particle can be described by Langevin equation as

δqi(t)

δt
=
dq0,i(t)

dt
+
δωi(t)

δt
= Ui(q(t)) + νi(t) (3.3)

In spacetime, particles are subjected to the impact of STP. But if some of the impact is rel-

atively weak, then the change of the state of motion can only be regarded as a perturbation.

Under perturbation, the velocity of the particles changes which can be seen as smoothly and

continuously. The non-perturbative impacts of STP on the particles instantaneously change

the motion state of the particles, leading to the completely random motion. Each impact

should be treated as a sum of a differential impact and a random impact. A microscopic

impact does not change the classic trajectory of the particle, but it will cause the trajec-

tory to be superimposed on the motion of an envelope. This is precisely the “differentiable

velocity function” U(q(t)) expressed by the first term in the three velocities decomposition

of the Langevin’s equation. Therefore, the true velocity of the particle V(t) should contain

three contributions, which is

V(t) = v(t) + u(q(t)) + ν⃗(t) (3.4)

Where v(t) is the classic statistical velocity, u(q(t)) is the quantum envelope velocity of the

particle, and ν⃗(t) is the diffusion velocity representing random motion. U(q(t)) denotes the

union of the first and the second term in eq.(3.4)

U(q(t)) = v(t) + u(q(t)) (3.5)

.

For a Markov process, the average contribution of white noise vanishes. However, because

of its Gaussian nature, its variation is not zero. We have

⟨νi⟩ν = 0, ⟨νi(t)νj(t′)⟩ν = Ωδi,jδ(t− t′), t ≥ t′ (3.6)

here the δi,j in the later equation can be obtained from the spacetime homogeneous property,

while δ(t−t′) is determined from the Markov property. For a Markov process, only conditions

at the very moment determine the dynamics of the system, and all information from future

or past are irrelevant. We can write down the basic correlation function by introducing a

probability measure [dρ(ν)],which is given as

[dρ(ν)] :=

(√
1

2πΩδ(t− t′)

)D

[dν] exp

(
− 1

2Ω

∫
dt
∑
i

ν2i

)
(3.7)
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It is easy to see that

νi(t)⟩ν ≡
∫
νi(t)[dρ(ν)] = 0 (3.8)

νi(t)νj(t
′)⟩ν ≡ νi(t)νj(t′)[dρ[ν]] = Ωδi,jδ(t− t′) (3.9)

Here Ω describes the strength of spacetime interaction on the particle. Notice δ(t− t′) has
the inverse dimension of time t , as ∫ ∞

0

δ(t− t′)dt = 1.

However, from the definition of measure (3.7), we can see, νi have the unit of m/s, so Ω will

have the unit of m2/s. From previous analysis, each collision leads to a change of an action

h. h has the unit of angular momentum, kg ·m2/s. From this we can define a quantity with

mass unit, it is

mST ≡
h

Ω
. (3.10)

The mass mST has the meaning such that it is the mass collided by STP and is a statis-

tical property. Accordingly, the collision parameter Ω = h
mST

reflects a physical realistic

viewpoint: an object in our real nature, the larger its mass means the smaller its quantum

effect.

Langevin equation generates a timedependent probability such that

P[q, t; q′, t′] = ⟨
D∏
i=1

δ[qi(t)− q′i(t′)]⟩ν , t ≥ t′ (3.11)

which means for an operator O[q], its average value at time t will be:

⟨O[q(t)]⟩ν ≡
∫

P[q, t; q′, t′]O[q]dq (3.12)

Using the probability distribution (3.11), one can immediately verify equation (3.12). Ac-

tually, the distribution (3.11) can be seen as an evolution process, which says

P[q, t; q′, t′] =

∫∫
q(t)e−(t−t′)H(p,q)q′(t′)dDp (3.13)

here the evolution Hamiltonian is the famous Fokk-Planck Hamiltonian, as we will derive

its formalism in next subsection.

3.2 Fokker-Planck Equation

Given the Langevin equation (3.3), we can derive the corresponding Fokk-Planck equation,

as well as the Fokk-Planck Hamiltonian [3].

We consider the time segment from t to t+ ϵ, ϵ→ 0, and have the Langevin equation as:

qi(t+ ϵ)− qi(t) = ϵUi(q(t)) +

∫ t+ϵ

t

νi(τ)dτ +O(ϵ2) (3.14)
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its related propability distribution is

P[q, t+ ϵ; q′, t] = ⟨δ(q− q(t+ ϵ))⟩ν (3.15)

According MIP, everytime the STP collided with the particle, the action of particle will

change nh, n ∈ Z. To obtain the Fokk-Planck equation, we define following discreterization

ν̄i ≡
1√
ϵ

∫ t+ϵ

t

νi(τ)dτ (3.16)

so that the discrete Langevin equation is

qi(t+ ϵ)− qi(t) = −
1

2
ϵfi(q(t)) +

√
ϵν̄i +O(ϵ2) (3.17)

Notice here the time has been discreterized as

(t− t′)/ϵ ∈ Z+.

Now the Gaussian distribution and the property of Markov progcess determins the average

value of discrete white noises νi, and we have

⟨ν̄i⟩ν = 0, ⟨ν̄i(t)ν̄j(t′)⟩ν =
ℏ

mST
δi,jδt,t′ (3.18)

When ϵ→ 0, the Fourier transformation of the probability distribution (3.15) is

P̃[p, t; q′, t′]|t=t′+ϵ =

∫
e−ip·qP[q, t;q′, t’]dDq|t=t′+ϵ

= ⟨e−ip·q′(t−ϵ)⟩ν

= ⟨e−ip·(q′(t)−ϵ
δq′(t)

δt −O(ϵ2))⟩ν
= ⟨exp(−ip · (q′(t)− ϵU(q′)))⟩ν

×
〈
exp

[
+ip �

∫ t

t−ϵ

ν(τ)dτ

]〉
ν

×
〈
exp

(
O(ϵ2)

)〉
ν

= exp [−ip � (q′ − ϵU(q′))]

×
〈
exp

[
+ip �

∫ t

t−ϵ

ν(τ)dτ

]〉
ν

(3.19)

Notice that the last average value can be evaluated out by Gaussian integration, which reads,

13



(√
h

2π

)D ∫
[dν] exp

(
−mST

2h

∫
dt

D∑
i

ν2i

)
exp

[
+ip �

∫ t

t−ϵ

ν(τ)dτ

]

=

(√
h

2π

)D ∫
[dν] exp

(
−mST

2h

∫
dt
∑
i

ν2i + ip �
∫ t

t−ϵ

ν(τ)dτ

)

=

(√
h

2π

)D ∫
[dν] exp

(
−mST

2h

∫
dt
∑
i

ν2i + i
√
ϵp � ν̄

)

× exp

(
−ϵ h

2mST
p � p+ ϵ

h

2mST
p � p

)

=

(√
h

2π

)D ∫
[dD

(
−νi −

ih

2mST

√
ϵpi

)
]

× exp

(
−mST

2h

∫
dt

D∑
i=1

(
νi +

√
ϵ

ih

2mST
pi

)2

− ϵ h

2mST
p � p

)
= exp (−ϵhp � p/(2mST )) (3.20)

here we obtain the probability distribution under Fourier transformation ,

P̃[p, t+ ϵ; q′, t] = e−ϵh/2mSTp·p+iϵp�f(q′)/2−ip·q′
(3.21)

for ϵ→ 0, expanding (3.21) will end up with

P̃[p, t+ ϵ; q′, t] = e−ip·q′
(1− ϵHFP (p,q

′) +O(ϵ2)).

Here we obtained the Fokk-Planck Hamiltonian

HFP (p,q) = −
h

2mST
p · p− ip · f(q)/2 (3.22)

From which we can read off the diffusion coefficient induced by collisions between STP and

the particle, is exactly ℜ = h/2mST . Later we will see in deriving the Schrödinger equation

of free particle in spacetime, the spacetime massmST = 2πm will be identified as the inertial

mass, in the framework of non-relativistic quantum mechanics.

3.3 From spacetime scattering to spacetime diffusion coefficient

3.3.1 From spacetime scattering to spacetime diffusion coefficient

Beginning with MIP, we want to investigate the origin of spacetime interaction coefficient.

Within the framework of discrete spacetime, spacetime diffusion coefficient ℜ = h
2mST

should

be derived in terms of parameters of discrete spacetime. Let us consider the simplest discrete

model (see Fig.1), where the length union of discrete space is ℓ. P (j, t) is the probability of

a particle at lattice site j at time t.

Because of the discrete nature of the space, all jumpings can only happen between nearest

pair of positions. Given the rate of jumping between the nearest neighbour ζ and the isotropy
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Figure 1: Random jumping model on one dimensional lattice

of frictionless space, the evolution of probability should be

∂tP (j, t) = ζ(
1

2
P (j − 1, t) +

1

2
P (j + 1, t)− P (j, t)) (3.23)

the first two terms of RHS of (3.23) describe the fact that jumping forward and backward

from neighbors j − 1 and j + 1 positions respectively, have the same probability, which is

1/2, the third term remarks the probability from j position to neighbors. Introducing the

fundamental spacing of the lattice ℓ, the eq.(3.23) goes to

∂tP (j, t) =
ζℓ2

2
(
P (j+1,t)−P (j,t)

ℓ − P (j,t)−P (j−1,t)
ℓ

ℓ
) (3.24)

In the continum limit of spacetime, which says ℓ→ 0, and ζ →∞, but keeping the quantity

ζℓ2 unchanged, the probability P (j, t) now becomes the probability density ρ(x, t), and the

RHS of (3.23) becomes the definition of second derivative. Thus we have

∂tρ(x, t) =
ζℓ2

2
∂2xρ(x, t). (3.25)

It is straightforward to generalise above equation to three dimension case, we have,

∂tρ(r⃗, t) =
ζℓ2

2
∇2ρ(r⃗, t) (3.26)

Comparing with diffusion equation in Einstein’s paper[6]

∂tρ(r⃗, t) = ℜ∇2ρ(r⃗, t) (3.27)

the microscopic origin of spacetime diffusion coefficient will be

ℜ =
ζℓ2

2
(3.28)

Furthermore, we can also discrete time with union τ = ℓ
w , where w is the average speed of

particle. With ζ = 1
τ , we obtain

ℜ =
wℓ

2
(3.29)

Combining the microscopic structure of discrete spacetime with the MIP, we have

ℜ =
wℓ

2
=

h

2mST
(3.30)

3.3.2 From Spacetime Scattering to the Spacetime Diffusion Coefficient

Particles will be scattered randomly from the STP with the speed of light, which leads to

the probability distribution of speed f(v⃗), the number of partials within v → v + dv is
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dA

θ

v dt

Figure 2: Probability distribution of spacetime scattering

f(v)d3v⃗. Therefore, all the particles cross the section area dA during time dt will be inside

the cylinder (see Fig.2).

The volume of this cylinder is

V = vdt cos θdA (3.31)

in which the number of particles is

N = f(v⃗)d3v⃗vdt cos θdA (3.32)

Because of the isotropy of space, we have f(v⃗) = f(v). From left to right, the number of

particle cross the unit area per unit time is

Φ =

∫
vz>0

N

dAdt

=

∫ π
2

0

dθ cos θ sin θ

∫ 2π

0

dϕ

∫ +∞

0

f(v)v3dv

= π

∫ +∞

0

f(v)v3dv (3.33)

where vz > 0 means 0 < θ < π
2 . The average speed reads

w =

∫ +∞
0

f(v)vd3v∫ +∞
0

f(v)d3v
=

4π

ρ

∫ +∞

0

f(v)v3dv (3.34)

where the density of particle number is ρ =
∫ +∞
0

f(v)d3v. Correspondingly, the number of

particle cross the unit area per unit time will be

Φ =
1

4
ρw (3.35)

Let mean free path of particles be ℓ, i.e. the average distance traveled by the particle between

successive impacts from spacetime. The net flux Jz through the z plane will be (see Fig.3)

Jz =
1

4
ρ(z − ℓ)w − 1

4
ρ(z + ℓ)w = −1

2
ℓw∂zρ (3.36)

With the equation of continuity

∂tρ+∇ · J⃗ = 0 (3.37)
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Figure 3: mean free path and scattering flux

and the isotropy of space, we have

∂tρ =
1

2
ℓw∇2ρ (3.38)

Combining the kinetics of spacetime scattering with quantum nature induced by STP, we

obtain

ℜ =
wℓ

2
=

h

2mST
(3.39)

which is consistent with eq.(3.30).

3.4 Statistical mass of fundamental particles

Let’s consider the electron at first. The mass of an electron is me = 9.104 × 10−31kg . So

its static energy is

Ee = mec
2 = 9.104× 10−31 × 9× 1018J = 8.1936× 10−12J

This energy, according to MIP, comes from ”effective” collisions between STP and the elec-

tron. In our MIP theory, the electron is not a point-like particle. It is finite size, statistically.

Because of symmetry, its shape is a ball with a sphere boundary. The effective collisions

are considered as the number of STP which coming into and going out cross the sphere.

Assume every effective collision gives energy, which numerically equals to Planck constant.

Hence the times of effective collisons (TEC) can be calculated as follow

Ne = Ee/h = 1.2347× 1020[s−1]

The statistical mass of electron can be written in form of TEC

me =
h

c2
Ne (3.40)

The ratio of mass and TEC is

kst ≡
h

c2
= 7.37× 10−51kg · s (3.41)

It has the unit of [mass] · [time]. The fluctuation of the density of STP, around the electron,

denoted as ∆ρest, can be written as

∆ρest ≡ ρe − ρ0 =
mec

2

4
3πr

3h
(3.42)
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For proton, it is easy to calculate exactly the same as the electron, we have

Np =
mp

kst
= 1.6726× 10−27/7.37× 10−51 ≃ 2.227× 1023[s−1] (3.43)

The radius of proton is

rp ≃ 8.735× 10−16m (3.44)

from which we obtain the mean free path of a proton in the STP sea around it.

lst =
3

√
4

3
πr3p/Np ≃ 2.3× 10−23m

3.5 Momentum and energy within the framework of MIP

The time scale of physics spans many orders of magnitude. Cosmology studies the age of the

universe at about 4×1017 seconds. Newtonian mechanics studies the low-velocity motion of

macroscopic objects, and the time scale is usually on the order of seconds. The basic system

of quantum mechanics is a hydrogen atom. When the electrons outside the hydrogen nucleus

are in the ground state, the electrons move around the nucleus for about 1.5×10−15 seconds.

The first excited state of the hydrogen atom transitions to the ground state emitting light

with a wavelength of 121 nm, corresponding to a time period of 4× 10−16 seconds. Modern

physics believes that considering the principles of general relativity, special relativity and

quantum mechanics, the smallest physical time scale is Planck time about 5×10−44 seconds,

which is the smallest measurable time interval. According to academic consensus today, any

changes during this time interval cannot be measured or detected.

Under the MIP framework, the average number of STP hitting electrons within one sec-

ond is 1020. That is to say, the theory derived from MIP in this paper has a typical time

scale of 10−20 seconds. For electron, this time scale is 10,000 times shorter than quantum

mechanics1. Therefore, energy conservation and momentum conservation in quantum me-

chanics are not constant conservation laws, but statistical average conservation under the

MIP framework. The momentum and energy we define below are the results of statistically

averaging the random effects of STP.

In the time interval of 10−20 seconds, we call the momentum of particle 2 as instant mo-

mentum. According to MIP, instant momentum is defined as

P⃗i = miV⃗ (3.45)

Where mi is the mass of the particles in the time interval of 10−20seconds, which we call as

instant mass. V⃗ is the true velocity of the particle

V⃗ = u⃗+ v⃗ + ν⃗ (3.46)

1In the field of particle physics, short lifetime such as the Higgs boson is about 1.5× 10−22 seconds. For

the Higgs boson, the average number of STP hitting a Higgs particle in a second is 1025 times. Its typical

time scale is a thousand times smaller than quantum field theory.
2In the discussion below, the particles are all specific to electrons and represent the particles of matter.
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Similarly, we define the instant kinetic energy of the particle as

Ei =
1

2
miV

2 (3.47)

The mass observed in modern physical experiments is the statistical mass of the particles,

which is the inertial property at intervals greater than ×10−16 seconds. The momentum

observed in modern physical experiments is the momentum predicted by quantummechanics.

Quantum mechanical momentum is the statistical average of instant momentum, which we

call statistical momentum:

P⃗s =< P⃗i >=
Mst

2π
< v⃗ + u⃗ > (3.48)

From this we relate the instant momentum at small time scales to the quantum mechanical

momentum at large time scales. There is an important observation which we have proved in

Chapter 5. The classical statistical velocity of any stationary state (the ground state is the

lowest energy stationary state) is v⃗ = 0, and the quantum envelop velocity of the ground

state electrons of hydrogen atoms is

u⃗ = −cαr̂ (3.49)

Where α is the Fine structure constant. Comparing the results of quantum mechanics: the

momentum of the ground state electrons of a hydrogen atom must be zero, satisfying the

isotropic wave function. Subtlely, the quantum envelope velocity does not contribute to the

momentum of the ground state electrons because isotropic offsets each other by < u⃗ >= 0.

Because quantum mechanics is the combined result of statistical averaging three velocities

and instant mass on large time scales, P⃗s is consistent with the momentum calculated by

quantum mechanics.

The kinetic energy observed in modern physical experiments is the kinetic energy predicted

by quantum mechanics theory. Quantum mechanical kinetic energy is the statistical average

of instant kinetic energy, which we call statistical kinetic energy.

Es =< Ei >=
Mst

4π
< V 2 > (3.50)

The quantum envelop velocity contributes to the kinetic energy of the ground state electrons

(always positive so cannot cancel out). Therefore, the energy of the ground state electron

has two parts (the classical statistical velocity is always 0, and does not contribute to the

ground state kinetic energy):

ground state energy = quantum envelop energy + coulomb potential

The calculated result is exactly -13.6 ev, which is also consistent with the energy calculated

by quantum mechanics. The quantum envelop kinetic energy is defined as

Ee =
1

4π
Mstu

2 (3.51)

Substituting the value of the electron energy of the ground state of a hydrogen atom

E =
Mst

4π
< (cα)

2
> + < − e2

4πϵ0
a >= −13.6ev (3.52)
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Where a is the Bohr radius of the hydrogen atom and ϵ0 is the vacuum permittivity. Thus,

we obtain the definitions of momentum and kinetic energy that are consistent with quantum

mechanics.

More generally, the equivalence between statistical momentum and quantum mechanical

momentum in any quantum state are proved as follows. According to the Ehrenfest theorem

of quantum mechanics, the average value of particle positions evolves with time as

d

dt
⟨x⃗⟩ = 1

iℏ
⟨[x⃗, H]⟩ = 1

i2mℏ
⟨[x⃗, p2]⟩ = 1

i2mℏ
⟨x⃗pp− ppx⃗⟩ (3.53)

Combining with x⃗pp− ppx⃗ = i2ℏp⃗, we have

d

dt
⟨x⃗⟩ = 1

m
⟨p⃗⟩ (3.54)

This is a very important result, indicating how the momentum average of quantum mechanics

is related to the mean value of the coordinates. In the MIP framework, the derivative of

coordinates versus time is defined as

d

dt
x⃗ = u⃗+ v⃗ (3.55)

Once two sides of the equation are averaged, the momentum average of quantum mechanics

corresponds to the statistical momentum of the MIP as

P⃗s =< P⃗i >=
Mst

2π
< v⃗ + u⃗ > (3.56)

which proves that the microscopic theoretical basis of quantum mechanics is exactly MIP.

4 Mass-Diffusion Uncertainty relation

We now consider the motion status of particle under impacts of STP collisions. The most

important proposition of Copenhagen interperitation of quantum mechanics is the wave-

particle duality. This allows one using the superposition rule of plane waves to describe the

state of a particle. The kernel of the wave transformation from frequency space to time

space will be the factor exp(ipx/ℏ). In fact it introduces the quantized operator formalism

p⃗ = −iℏ∇⃗. Because of the duality, physical quantities of the particle can also be derived

from wave, which implies some quantities can be described in phase space as eigenvalues

of special operators. However, under the framework of MIP, we need to emphrase again

that the wave-like property of the particle is an emergent property due to collision of STP,

therefore it is not intrinsic. We can not borrow the quantization hypothesis directly. We

consider the action of the particle

S[ϕ(t, x), ∂ϕ(t, x), ν̄(t, x)] (4.1)

= S0[ϕ(t, x), ∂ϕ(t, x)] +

∞∑
I=1

SI [ν̄(t, x)]

where ϕ(t, x) describing the classical trajectory of the particle, and S0 is the related classical

action. SI [ν̄(t, x)] is the contribution of I − th collision between STP and the particle. It
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does not depend on the classical trajectory at all, which only depends on the fluctuation of

STP. The MIP said this term should contribute integer number of h , that is SI = nh.

The partition function of the particle now is

Z =

∫
[dϕ(t, x)] exp(− i

ℏ
S[ϕ(t, x), ∂ϕ(t, x), ν̄(t, x)]) (4.2)

hence

exp

(
− i
ℏ
SI [ν̄]

)
= exp

(
− i
ℏ
nh

)
= e−i2πn = 1 (4.3)

from which we see the introducing of MIP does not change the classical partition function,

therefore physical quantity derived from classical action will not be affected.

4.1 Mass-Diffusion Uncertainty

We have claimed and proven that particle mass is a statistical property describing the

diffusion ability of the particle in spacetime, ,which shows that mass and diffusion coefficient

are indeed statistical properties, under continuous interaction of STP. However, MIP itself

describes a special Markov process, which possesses the intrinsic characteristic property of

being quantized.

Firstly, we will proof that within framework of MIP, the particle mass and the diffusion

coeffient in spacetime are not only statistical conjuation to each other, but also satisfying

the minimum uncertainty relation:

∆m∆ℜ = h/2 (4.4)

4.2 Instantaneous statistical inertia mass

In this article, mass reflects the statistical propterty of the motion of matter particle, which

is drived by collisions of STPs with the particle. As a statistical physical quantity, its

instantaneous value does not have an explicit meaning in physics. We do not know how to

measure the collision of a single collision between one STP and the particle exactly. In the

other way, when we consider the relation between collision and the spectrum of STPs, we

had already proven the number of STPs can not be determinate accurately. Hence even for

a single collision between STP and the particle, the mass of the particle is also a statistical

property. With this point of view, the statistical mass can be defined instanteously. In

Minkowski spacetime, the distribution of STPs is uniform and isotropic. The instantaneous

mass of matter particle will be changed according to the speed of particle. Though the

instantaneous mass of particle m̂, varying every moment, when taking the mean of speeds

of the particle, will regress to the statistical inertia mass mST .
3

Because the exchanged action relating to every single collision is not the same, neither the

energy of the STP in this collision. The time interval that accomplishing the exchanging of

3It possible that collisions of STP give matter particles the statistical property of mass, while the Higgs

particle produces the average mass of matter particles.
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action, is also different in every collision. We know, as a reflection of the collision between

STP and matter particle, the motion of particle will deviate from its classical velocity. The

noise part ν⃗ describes the deviation cause by the collision between STP and the particle.

The bigger the noise is, the smaller the statistical inertia mass mST is. In another way, a

bigger deviation means the particle can diffuse in spacetime easier, thus it corresponds to

a bigger spacetime diffusion coefficient ℜ. In the moment of measurement, because of the

existence of noise, the instantaneous mass of the particle will not be exact as mST . We know

∆m = m̂−mST

The instantaneous mass corresponds to every measurement does not have any real physical

meaning. The standard deviation of many times of measurement results is what we care

about, it is

σ(m) =

√√√√ 1

N

N∑
i=1

(m̂i −mST )
2

(4.5)

With the same reason, we only care about the standard deviation of spacetime diffusion

coefficients of every measurement

σ(ℜ) =

√√√√ 1

N

N∑
i=1

(
ℜ̂i −ℜ

)2
(4.6)

The relative difference of this two statistical quantity can be represented as the covariance,

as

cov(m,ℜ) =

∑N
i=1 (m̂i −mST )

(
ℜ̂i −ℜ

)
Nσ(m)σ(ℜ)

(4.7)

Since the noise of STP is a white noise, its standard deviation is a constant, so we can

normalize its magnitude as 1.

Notice that when N →∞,

cov(m,ℜ) = lim
N→∞

∑N
i=1 (m̂i −mST )

(
ℜ̂i −ℜ

)
N

≡ ⟨∆m∆ℜ⟩ (4.8)

which is the LHS of the uncertainty relation expression as we claimed in (4.4). The following

task is to calculate its explicit value.

We now cut the time into slides along the classical velocity of the particle. On each time

slide, we only need to consider the collision of STPs parallel to the time slide. Defining the

time interval for the cutting as δτ . the instantaneous mass at the moment i could be defined

as follows: from the moment i − 1 to i, the action changing causing by STP collisions is

∆Si = Si − Si−1; Meanwhile the diffusion area is ℜ̂i. The instantaneous mass is

m̂i ≡
∆Si

ℜ̂i

(4.9)
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To varifying the (4.9) matches the statistical definition as in previous chapter, we need to

reform the changing of action as the changing of motion status of the particle, it is

∆Si =
1

4π
mST (V

2
i − V 2

i−1)δτ (4.10)

hereVi and Vi−1represent real velocities at moment i and i−1. Because there is no changing

of classical velocity from moment i − 1 to moment i , meanwhile the differentiable part of

the collision, aka the quantum envelope velocity is also a slow varying quantity, so it could

be seen as unchanged in this time interval. Thus all changing of the velocity is contributed

from the STP noise. In classical situation, the previous equation could be written as

∆Si =
1

2
m(V 2

i − V 2
i−1)δτ

=
1

2
m
(
(Vi−1 + νi)

2 − V 2
i−1

)
δτ

=
1

2
m
(
ν2i + 2Vi−1νi

)
δτ (4.11)

Taking the mean value of this equation, we obtain

⟨
∑
i

∆Si⟩ν = ⟨
∫

1

2
m
(
ν2i + 2Vi−1νi

)
dt⟩ν

= ℏ/4 (4.12)

However, it is notable that the changing caused by STP collisions is not a classical kinetic

variation, we need to consider the special relativety effect as well. In rest frame of classical

velocity, the particle energy is

E = mc2

In static observer frame, its energy is

E0 =
m0c

2√
1− V 2/c2

(4.13)

Therefore we obtain

∆Si =

 m0c
2√

1− V 2
i

c2

− m0c
2√

1− V 2
i−1

c2

 δτ0√
1− V 2

i−1

c2

=
m0c

2δτ0√(
1− (Vi−1+νi)2

c2

)(
1− V 2

i−1

c2

) − m0c
2δτ0(

1− V 2
i−1

c2

)

=

m0c
2δτ0

(√(
1− V 2

i−1

c2

)
−
√(

1− (Vi−1+νi)2

c2

))
(
1− V 2

i−1

c2

)√(
1− (Vi−1+νi)2

c2

) (4.14)

especially, in above equation, we used the special relativity transformation that

mi =
m0√
1− V 2

i

c2

(4.15)
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Because the changing of action from i− 1− th to i− th time slide is a Lorentz scalar. We

can take the i − 1 − th slide as the rest frame with mass mi−1, the i − th slide represents

the frame with velocity νi. Therefore, we change the equation (4.14) as

∆Si =

(
mi−1c

2√
1− ν2i /c2

−mi−1c
2

)
δτi (4.16)

=

(
1

2
mi−1ν

2
i +

3

8
(ν2i /c

2)2c2mi−1 + · · ·
)
δτi

Taking mean value of the above, we obtain

⟨
(
1

2
mi−1ν

2
i +

3

8
(ν2i /c

2)2c2mi−1 + · · ·
)
δτi⟩ν

=
ℏ
4
+

3ℏ2

32c2mi−1δτi
+

5ℏ3

256c4m2
i−1δτ

2
i

· · · (4.17)

When the cutting interval goes to the classical limit, say, δτi ≫ 0 , and the number ℏ/c is

very small, we have:

⟨m̂iℜ̂i⟩ν ≃
ℏ
4

(4.18)

It means at arbitrary time slide, the mean value of the product of instantaneous mass and

diffusion coefficient is ℏ
4 .

From the definition of statistical inertia mass mST and diffusion coefficient ℜ , we have:

ℜ ≡
N∑
i=1

ℜ̂i/N (4.19)

mST ≡ 2π

N∑
i=1

m̂i/N (4.20)

It will not change the essence of the relation

⟨mSTℜ⟩ν =
h

2

This is because

⟨mSTℜ⟩ν = 2π⟨
N∑
i=1

m̂i/N

N∑
j=1

ℜ̂j/N⟩ν

= 2π

 N∑
i=j

⟨m̂iℜ̂i⟩ν
N2

+

N∑
i̸=j

⟨m̂iℜ̂j⟩ν
N2


=

h

4N
+ 2π

∑N
i=1⟨m̂i⟩

∑N
j ̸=i⟨ℜ̂j⟩

N2
+O( h

2

c2N
)

=
h

4N
+
N − 1

N

h

2
+O( h

2

c2N
) =

h

2
− h

4N
−O( h

2

c2N
) (4.21)

when N → ∞, ⟨mSTℜ⟩ν = h
2 . Therefore we know the time cutting definition and the

statistical definition is coincident with each other.
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Now we can calculate the covariance as following

cov(m,ℜ) = lim
N→∞

∑N
i=1 ∆Si −mST

∑N
i=1 ℜ̂i −ℜ

∑N
i=1 m̂i

N
+ h/2 (4.22)

and we obtain:

cov(m,ℜ) = lim
N→∞

∑N
i=1 ∆Si

N
− h/2 (4.23)

From MIP, the changing of action caused by STP collsion is N times of Planck constant,

where N is an arbitrary integer, when the number of collisions goes to infinity, it is obvious

that

lim
N→∞

∑N
i=1 ∆Si

N
= lim

N→∞

ℏ/4
N

= 0 (4.24)

at last we obtain

⟨∆m∆ℜ⟩ = h/2 (4.25)

and the proof is closed.

4.3 Position-Momentum Uncertainty Relation

Extending the definition of commutation relation, and recall m = mST /2π, we consider the

position-momentum commutator

[x, p] = lim
ϵ→0

(
1

2π
x(t+ iϵ)mST

δx(t)

δt
− 1

2π
mST

δx(t+ iϵ)

δt
x(t)

)
= lim

ϵ→0

(
i
ϵ

2π

[
mST

(
δx(t)

δt

)2

−mST
δ2x(t)

δt2
x(t)

])
(4.26)

Here we didn’t take the statistical inertia mass as a variable, because when considering

the changing of the particle’s position caused by STP collisions, its statistical property

is unchanged. Noticed that in our derivation, the momentum and position both have its

instantaneous value. However, the two measurements are not isochronous in priori. Our

isochrony is essencially different from what in quantum mechanism. Here since there exist

collisions between STPs and matter particle, any two measurements can not be exactly

isochronous. We let the time interval ϵ goes to zero to achieve an isochronous commutation

relation in posteriori.

Define

aST (t) :=
∂2x(t)

∂t2
(4.27)

It is the instantaneous accelaration induced by the collison between STP and the particle.

From which we can define the instantaneous ”spacetime” force as

FST (t) = maST (t) = m
δ2x(t)

δt2
(4.28)

The statistical average of eq.(4.26) is

[x, p] = lim
ϵ→0

(
m⟨V (t)2⟩νiϵ− ⟨FST (t)x(t)⟩νiϵ

)
(4.29)
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Its second term has an explicit meaning in physics. It is the the mean work done by STP

acting on the particle. Obviously, this mean work is zero.

Now we consider the contribution from the first term of eq.(4.29) Under discretization of

the fluctuation, the average speed is

∫ t+ϵ

t

ν(τ)dτ/ϵ = ν̄/
√
ϵ

therefore

⟨ν2⟩ν = ⟨ν̄2⟩ν/ϵ =
h

mST ϵ
(4.30)

Substitude this into the first term of Eq. (4.29), we obtain

[x, p] = lim
ϵ→0

(
iϵm⟨ν2⟩ν + iϵ⟨U2⟩ν

)
= lim

ϵ→0
iϵm

h

mST ϵ
+ 0 = iℏ (4.31)

which is the most fundamental hypothesis of quantum mechanism, the position-momentum

uncertainty relation.

4.4 Energy-Time Uncertainty Relation

Within the framwork of non-relativity quantum mechanism, the position-momentum uncer-

tainty relation does not imply the energy-time uncertainty. This means we can not derive

one kind of uncertainty relation from the other. Notice, position, momentum, energy are all

dynamical variables. They are functions of time t, say, the time t is a self-variable. Experi-

mentally, because in non-relativity quantum mechanism, time t is an independent variable

and does not rely on particle status, we can measure the position, momentum, energy of a

matter particle.

Now we define the ∆t in energy-time uncertainty relation as: the characteric time describing

a significant variation in the system study at hand. To describe the variation, we have to

introduce a time-varying physical quantity Q. The ’significant’ variation is defined as the

time interval in which the Q changing by one standard deviation σQ. Mathematically, it is

expressed as:

σQ = | d
dt
⟨Q⟩ν | ×∆t (4.32)

Meanwhile, we can define the ∆E in energy-time uncertainty relation as the uncertainty of

Hamiltonian of the system σH . The average evolution equation of Q along with the time is

d

dt
⟨Q⟩ν =

i

ℏ
⟨[H,Q]⟩ν (4.33)
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combine with the Schwarz inequality in mathematics, we have

σ2
Hσ

2
Q ≥

[
1

2i
⟨[H,Q]⟩ν

]2
(4.34)

and then substitude into the definition of ∆E and∆t, we arrive:

∆E∆t ≥ ℏ
2

(4.35)

If any physical quantity in this system varies fast, say ∆t is very small, then its energy

uncertainty will be very large. If ∆E is very small, then the ∆t is very large, it means all

observables in this system are varying slow.

5 Random Motion of Free Particle under MIP

5.1 Decompositions of the Real Velocity

In modern quantum mechanics, particles do not have trajectories of motions, so their veloc-

ities are not well defined. Within the framework of MIP, the real velocity of the particles

must be discussed in detail. Under the impact of STP, the velocity of the particle not only

contains the classical velocity, but also the results of random mechanical interactions. It

is especially important that the particles are subjected to the impact of the STP, and the

change of action is quantized. Therefore, the real velocity of the particles should reflect the

classical, random and quantum properties.

Within the framework of MIP, the motion of particles is a frictionless quantum Brownian

motion. However, it should be noted that the impact of STP is not completely random.

The exchanged action that each particle is subjected to STP is an integer multiple of the

Planck constant h. Therefore, the movement of particles in spacetime cannot be a problem

of random mechanics completely. It is the quantization of randomized motions. The cor-

responding theoretical system is a quantum Markov process. If there is no STP and other

external forces, the motion of the free particles satisfies Newtonian mechanics. Its velocity

is the classic velocity.

Within the framework of MIP, for the real velocity of motion of free particles V⃗ (x⃗, t), we can

first isolate the classical statistical velocity of the particle v⃗(x⃗, t). In the context of space-

time, it is a simple mean of the statistics of the impact of STP as Gaussian noise. Since the

simple mean contribution of Gaussian noise is zero, the classical statistical velocity of the

particle and the classical velocity under Newtonian mechanics are exactly equal. Second,

after separating the classical statistical velocity v⃗(x⃗, t), we will consider a random motion.

This random motion is driven by the impact of STP, and we note it with the random motion

velocity W⃗ (x⃗, t). In Appendix B of this paper, we prove that any random function can be

decomposed into a random function and a superposition of differentiable functions. Ran-

dom motion under the framework of MIP also follows this important principle. Therefore,

in general, we can decompose the random motion velocity W⃗ (x⃗, t) as follow

W⃗ (x⃗, t) = u⃗(x⃗, t) + ν⃗(t) (5.1)
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Where u⃗(x⃗, t) is defined as the quantum envelope velocity of the particle. For free particles,

< u⃗(x⃗, t) >ν= 0. It corresponds to the perturbation part of the random motion. It reflects

the physical fact that the impact of STP is random, but it is a small perturbation to the

current motion of the particle. These impacts are ”differential impacts” of STP on the

particles. Under the action of the pertubation of space-time, the motion of particles is not

an unpredictable random motion. It allows the motion state of particles to be described by

a differentiable function and describes the corresponding motion state . The equation is a

non-random partial differential equation. And ν⃗(t) represents the non-microscopic impact

of the particle by STP, which is a non-perturbative effect on the velocity of the particle

motion. We define it as the velocity of fluctuation. Because of the existence of such random

impact, the state function that we finally describe the equation of motion of the particle will

not be an accurate description. It can only be a probabilistic description on the background

of this fluctuation.

We will see that in the framework of MIP, quantum envelope motion reflects the wave-

particle duality of particles. Considering the impact between STP and particle, the amount

of exchange action is nh. For particles with a statistical mass of m0, the characteristic time

of this collision is

tc =
nh

m0c2
(5.2)

The so-called quantum envelope motion is essentially the differentiable part of the fluctuation

motion.

The above discussion is based on the classification of particles by the impact of STP. From the

above analysis we can see that there is actually another mathematical classification for the

velocity of the particles, and we decompose the velocity of the particle into a differentiable

part and a non-differentiable part. The differentiable part of the real motion velocity of a

particle can be defined as:

U⃗(x⃗, t) = v⃗(x⃗, t) + u⃗(x⃗, t) (5.3)

It is a superposition of classic statistical velocity v⃗(x⃗, t) and quantum envelope velocity

u⃗(x⃗, t). We call this differentiable velocity “statistical average velocity”. Although math-

ematically it is a differentiable function, it is quite different from the classical velocity.

Because there is a quantum envelope velocity u⃗(x⃗, t), it is a representation of the Markov

process formed by the impact of STP. Therefore, the decomposition of the velocity of the

particles caused by the collision of STP can be written in three parts in principle4:

V⃗ (x⃗, t) = u⃗(x⃗, t) + v⃗(x⃗, t) + ν⃗(t) (5.4)

Since a Markov process will still be a Markov process under time reversal[9], the quantum

envelope velocity u⃗(x⃗, t) is invariant under time reversal as

T : u⃗(x⃗, t)→ ˜⃗u(x⃗, t) = u⃗(x⃗, t) (5.5)

4After we finished our manuscript, we found that this three-velocity decomposition is in fact consistent

with Wold’s decomposition theorem of the stochastic process in.

28



However, the classical statistical velocity v⃗(x⃗, t) is changed by the time reversal, that is,

T : v⃗(x⃗, t)→ ˜⃗u(x⃗, t) = −v⃗(x⃗, t) (5.6)

With above properties of time reversal, we can have a well defined limit u⃗ = 0 as Newtonian

mechanics with

v⃗ =
1

2
(U⃗ − ˜⃗

U) (5.7)

u⃗ =
1

2
(U⃗ +

˜⃗
U) (5.8)

Where
˜⃗
U is the time reversal of the statistical average velocity U⃗ . In the following, the

physical quantities with time reversal are marked with tilde.

The non-differentiable part is the fluctuation velocity ν⃗(t) for the random “non-differentiable

impact”of the particle. It causes the particle’s velocity to deviate from the classical statistical

mean, so it will be physically reflected as a random diffusion behavior of the particle in

spacetime. Based on this, we named it the “diffusion velocity” of particles in space and

time.

In the following subsections, we will see that the decomposition of the above two velocities

is a very important theoretical basis for deriving the equation of motion of particles, that

is, the Schrödinger equation in quantum mechanics and an in-depth understanding of its

physical meaning.

5.2 From MIP to Schrödinger Equation

Without the interaction of spacetime, the velocity of particle v⃗ has to be the derivative

v⃗ = dx⃗
dt . Contrasting from usual Markov process, spacetime random motion is frictionless,

otherwise the quantum effect of a particle will decay as time going, which is obviously not

the case. According to the MIP, the coordinate of a free particle is a stochastic process

x⃗(t), in which the velocity V⃗ can not be expressed in terms of dx⃗
dt . The velocity V⃗ should

be a statistical average corresponding to a distribution δx⃗ = x⃗(t+ 1
ω )− x⃗(t), at the limit of

spacetime collision frequency ω going to infinity. In Einstein’s theory on Brownian motion,

δx⃗ is a Gaussian distribution with zero mean and variance proportional to 1
ω [6]. However,

Einstein’s theory cannot be correct at the limit of spacetime collision frequency ω going to

infinity[10, 11]. Therefore, we will construct the operator D as following, which plays the

same role as d
dt in Newtonian Mechanics. For any physical function f(x⃗, t), we have

ω(f(x⃗(t+
1

ω
), t+

1

ω
)− f(x⃗(t), t))

= [∂t +
∑
i

ω(xi(t+
1

ω
)− xi(t))∂i

+
∑
ij

ω

2
(xi(t+

1

ω
)− xi(t))(xj(t+

1

ω
)− xj(t))∂i∂j

+
∑
i

(xi(t+
1

ω
)− xi(t))∂i∂t +

1

2ω
∂2t ]f(x⃗(t), t) (5.9)
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At the limit of spacetime collision frequency ω going to infinity, in terms of statistical average

< ... > for δx, we can define the operator D as

Df(x(t), t) = lim
ω→+∞

ω⟨f(x⃗(t+ 1

ω
), t+

1

ω
)− f(x⃗(t), t)⟩ν (5.10)

= (∂t +
∑
i

Ui∂i +
∑
ij

ℜij∂i∂j)f(x⃗(t), t) (5.11)

where we used

U⃗ = lim
ω→+∞

ω⟨δx⃗⟩ν (5.12)

it relates to the descreterization of Lagevin equation

xi(t+ ϵ)− xi(t) = ϵUi(x(t)) +
√
ϵν̄i +O(ϵ2) (5.13)

here

ϵ =
1

ω
(5.14)

In eq.(5.10) , we used the following deduced result

lim
ω→+∞

ω⟨δxiδxj⟩ν
2

= lim
ϵ→0+

1

2ϵ
⟨(xi(t+ ϵ)− xi(t))(xj(t+ ϵ)− xj(t))⟩ν

= lim
ϵ→0+

1

2ϵ

[
⟨ϵ2Ui(x(t))Uj(x(t))⟩ν + ϵ⟨ν̄iν̄j⟩ν + ϵ

3
2 ⟨(Uiν̄j + Uj ν̄i)⟩ν

]
=

h

2mST
δi,j (5.15)

Because of the isotropy of space, the MIP coefficient will be

ℜij =
ℏ

2mij
= ℜδij (5.16)

which is consistent with Eq.3.30 and 3.39. The operator D and its time reversal D̃ are

D = ∂t + U⃗ · ∇+ ℜ∇2 (5.17)

D̃ = −∂t +
˜⃗
U · ∇+ ℜ∇2 (5.18)

Therefore, the statistical average velocity of particle V⃗ can be written as

U⃗ = Dx⃗ (5.19)

˜⃗
U = D̃x⃗ (5.20)

Correspondingly, its classical statistical velocity and quantum envelope velocity are

v⃗ = D−x⃗ (5.21)

u⃗ = D+x⃗ (5.22)

with

D− =
1

2
(D − D̃) (5.23)

D+ =
1

2
(D + D̃) (5.24)
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We define the statical average acceleration of particles as

a⃗ = DU⃗ = (D+ +D−)(v⃗ + u⃗) (5.25)

= D+u⃗+D−v⃗ +D−u⃗+D+v⃗

Under time reversal, it acts as

˜⃗a = D̃
˜⃗
U = (D+ −D−)(−v⃗ + u⃗) (5.26)

= D+u⃗+D−v⃗ −D−u⃗−D+v⃗

Define the classical average acceleration as

a⃗c =
1

2
(⃗a+ ˜⃗a) = D+u⃗+D−v⃗, (5.27)

obviously it is invariant under time reversal. The average acceleration of a free particle must

be zero, which can be written as

D+v⃗ +D−u⃗ = 0. (5.28)

However, the average acceleration of quantum envelope motion can not simply be zero,

D+u⃗+D−v ̸= 0 (5.29)

At classical and low speed case, the average acceleration of quantum envelope motion does

not relate to classical statistical velocity, therefore we can have

D−v⃗ −D+u⃗ = 0. (5.30)

These conditions are equivalent to the coupled non-linear partial differential equations as

following

∂u⃗

∂t
= −ℜ∇2v⃗ −∇(u⃗ · v⃗) (5.31)

∂v⃗

∂t
= −(v⃗ · ∇)v⃗ + (u⃗ · ∇)u⃗+ ℜ∇2u⃗ (5.32)

Random motions of free particles due to the random impacts of STP satisfy the Markov

property, one can make predictions for the future of the process based solely on its present

state just as well as one could know the process’s full history. This is the simplest situation

for random motions, the free particle does not involve any external potential. Now, we have

an initial value problem, which is to solve u⃗(x⃗, t) and v⃗(x⃗, t)given u⃗(x⃗, 0) = u⃗0(x⃗), v⃗(x⃗, 0) =

v⃗0(x⃗). In order to solve the coupled non-linear partial differential equations, we have to

linearise it firstly[12, 13, 14]. Let

Ψ = eR+iI , (5.33)

where

∇R =
1

2ℜ
u⃗ (5.34)

∇I =
1

2ℜ
v⃗ (5.35)
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We can obtain
∂Ψ

∂t
= iℜ∇2Ψ (5.36)

According to the MIP, the universal spacetime diffusion coefficient is the MIP coefficient

ℜ = ℏ
2mST

. Substituting to the last equation, we will get the equation of motion of free

particles as

i
∂Ψ

∂t
= − ℏ∇2

2mST
Ψ (5.37)

which is the Schrödinger equation essentially.

According to the continuity equation

∂tρ(r⃗, t) +∇ · J⃗ = 0 (5.38)

The definition of particle current is density multiplied by velocity. In the framework of MIP,

the velocity in this definition corresponds to the classical statistical velocity. (See Appendix

C)We can naturally derive the Born’s interpretation as follows:

J⃗ = ρv⃗ (5.39)

among them

v⃗ = 2ℜ∇I (5.40)

Substitute (5.33) in Schrödinger equation

∂tΨ = iℜ∇2Ψ (5.41)

Let the real and imaginary parts be equal respectively, there are

∂tR+ ℜ(2∇R · ∇I +∇2I) = 0 (5.42)

and

∂tρ(r⃗, t) +∇ · (ρv⃗) = 0 (5.43)

which can be solved as

ρ = e2R (5.44)

Therefore, we show that the distribution of the particle number density is exactly the wave

function modulo square. Further considering the ensemble of many identical particles, the

particle number density is interpreted as the probability density, which is exactly the Born’s

interpretation.

The Born rule is a law of quantum mechanics which gives the probability that a measurement

on a quantum system will yield a given result, which became a fundamental ingredient of

Copenhagen interpretation[15]. In this paper, we attempt to suggest an interpretation of

Born rule according to the MIP, which can provide a realistic point of view for wave function.

Emerging from random impacts of spacetime, it’s absolutely necessary that wave function is

complex. If wave function were a real sine or cosine function[16], according to ρ = |Ψ|2, the
probabilistic density of a free particle with definite momentum would oscillate periodically

which violates the isotropy of physical space. Under the framework of this paper, we can

prove the ’Uncertain principle’ directly(For more details, see Appendix D).
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5.3 Physical Meanings of Potential Functions R and I

Substituting Ψ = eR+iI into ∂Ψ
∂t = iℜ∇2Ψ, we equalise the real and imaginary part sepa-

rately as

∂tR = −ℜ(2∇R · ∇I +∇2I) (5.45)

∂tI = ℜ[(∇R)2 − (∇I)2 +∇2R] (5.46)

Combining with previous result ρ = |Ψ|2 = e2R, we have

∂tρ = 2ρ∂tR (5.47)

∇ρ = 2ρ∇R (5.48)

The differential equation of potential R can be turned into

∂tρ = −2ℜ∇ · (ρ∇I) (5.49)

With ∇I = 1
2ℜ v⃗, the differential equation of potential R is equivalent to the equation of

continuity

∂tρ+∇ · (ρv⃗) = 0 (5.50)

Noticing that the classical momentum of particle is mv⃗ = ℏ∇I, we find that the differential

equation of potential I goes to

∂t(ℏI) +
(∇(ℏI))2

2m
− ℏℜ[(∇R)2 +∇2R] = 0 (5.51)

Comparing with the Hamilton-Jacobi equation from classical mechanics [17, 18] as

∂tS +
(∇S)2

2m
+ V (x) = 0 (5.52)

which is particularly useful in identifying conserved quantities for mechanical systems. There

are two crucial remarks: Firstly, potential function I is proportional to the Hamilton-Jacobi

function S as S = ℏI. Secondly, for a free particle, the influence of spacetime can be summed

up to the spacetime potential

VST = −ℏℜ[(∇R)2 +∇2R] (5.53)

where the spacetime potential VST will play the same role of potential V in the Hamilton-

Jacobi equation. The spacetime potential VST vanishes in the classical limit ℏ = 0, which

is equivalent to V = 0 for free particles in classical mechanics. The quantum effect, which

corresponding to nonzero ℏ, now is the natural result of the existence of the spacetime

potential VST , induced by MIP. In principal, the moving of free particle can be described

precisely by the spacetime potential VST as

m
d2x⃗

dt2
= −∇VST = ℏℜ∇[(∇R)2 +∇2R] (5.54)

This equation indicates that free particle moves not along straight line within interactions

of STP. It is affected by a space-time potential VST . The interactions between STP and

particle give the statistcal mass to particle.
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5.4 Space-time Random Motion of Charged Particles in Electromagnetic Field

According to the MIP, in case of low speed, electromagnetic field only serves as an external

potential, which itself is not affected by random impacts of spacetime. In a electromagnetic

field (E⃗, B⃗), the charged particle will experience a Lorentz force F⃗ = e(E⃗+v⃗×B⃗). Therefore,

the average acceleration [19] of charged particles will be

a⃗ = e(E⃗ + v⃗ × B⃗)/m (5.55)

where m is the inertial mass of charged particle and e is the charge. Based on the spacetime

principle, we are able to derive the equation of motion of charged particle in electromagnetic

field, which is finally shown to be Schrödinger equation in electromegnatic field, which is

iℏ∂tΨ =
1

2m
(−iℏ∇− e

c
A⃗)2Ψ+ eϕΨ (5.56)

where the electromagnetic potential and the electromagnetic field are connected by

B⃗ = ∇× A⃗, E⃗ = −∂tA⃗−∇ϕ. (5.57)

We do not have average acceleration in absence of electromagnetic field. However, this is not

the case when the particle have non-zero electric charge, moving in external electromagnetic

field. Identifying the velocity in the Lorentz force as the classical velocity of random motion

of particle in spacetime, we have

∂tv⃗ = e(E⃗ + v⃗ × B⃗)/m− (v⃗ · ∇)v⃗ + (u⃗ · ∇)u⃗+ ℜ∇2u⃗ (5.58)

In the electromagnetic field, the equation of motion of charged particle becomes coupled

non-linear partial differential equations as following

∂u⃗

∂t
= −ℜ∇(∇ · v⃗)−∇(u⃗ · v⃗) (5.59)

∂v⃗

∂t
= e(E⃗ + v⃗ × B⃗)/m− (v⃗ · ∇)v⃗

+(u⃗ · ∇)u⃗+ ℜ∇2u⃗ (5.60)

In order to solve the coupled non-linear partial differential equations, we have to linearise it

firstly. Let Ψ = eR+iI and notice that the canonical momentum of charged particle [20] is

p⃗ = mv⃗ + eA⃗/c, we suppose

∇R =
1

2ℜ
u⃗ (5.61)

∇I =
1

2ℜ
(v⃗ +

eA⃗

mc
) (5.62)

In order to prove Eq.(5.56), we expand the first term of right side of Eq.(5.56) as

1

2m
(−iℏ∇− e

c
A⃗)2Ψ = −ℏ2∇2

2m
Ψ+

e2A2

2mc2
Ψ (5.63)

+
iℏe
2mc

(∇ · A⃗)Ψ +
iℏe
mc

A⃗ · (∇Ψ)
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Substituting Ψ = eR+iI , it leads to

− ℏ2

2m
[∇2R+ i∇2I + (∇R+ i∇I)2]Ψ +

e2A2

2mc2
Ψ

+
iℏe
2mc

(∇ · A⃗)Ψ +
iℏe
mc

(A⃗ · (∇R+ i∇I))Ψ (5.64)

With vector formulas

∇(A⃗ · B⃗) = A⃗× (∇× B⃗) + B⃗ × (∇× A⃗)

+(A⃗ · ∇)B⃗ + (B⃗ · ∇)A⃗ (5.65)

∇(∇ · A⃗) = ∇× (∇× A⃗) +∇2A⃗ (5.66)

and Eq.(5.61), we will obtain

∇× u⃗ = 0 (5.67)

∇× (v⃗ +
eA⃗

mc
) = 0 (5.68)

Straightforwardly, we have

iℏ(∂tR+ i∂tI) = −
ℏ2

2m
[∇2R+ i∇2I

+(∇R+ i∇I)2] + e2A2

2mc2
(5.69)

+
iℏe
2mc

(∇ · A⃗) + iℏe
mc

(A⃗ · (∇R+ i∇I)) + eϕ

Now, let’s prove that the real and imaginary parts are separately equaled as

∂tI =
ℏ
2m

(∇2R+ (∇R)2 − (∇I)2)

− e
2A⃗2

2mc2
+

e

mc
(A⃗ · (∇I))− eϕ

ℏ
(5.70)

∂tR = − ℏ
2m

(∇2I + 2(∇R) · (∇I))

+
e

2mc
(∇ · A⃗) + e

mc
A⃗ · (∇R) (5.71)

Taking the gradient from both sides and the definitions B⃗ = ∇ × A⃗, E⃗ = −∂tA⃗ − ∇ϕ, we
have reproduced the Eq.(5.59). Therefore, we have proved that both sides of Eq.(5.59) are

at most different from a zero gradient function. It’s important to notice that the choices of

electromagnetic potentials are not completely determined. It allows a gauge transformation

[20]

A⃗′ = A⃗+∇Λ (5.72)

ϕ′ = ϕ− ∂tΛ (5.73)

For any function Λ(x⃗, t), the electromagnetic field is invariant. Therefore, the corresponding

wave function cannot change essentially, at most changing a local phase factor. Given

ψ′ = ψe
ieΛ
ℏc , Schrödinger equation of charged particle in electromagnetic field is invariant,

i.e., U(1) gauge symmetry. By choosing the function Λ(x⃗, t) properly, we are able to eliminate

the redundant zero gradient function. So we have proved Eq.(5.56) at the end.
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5.5 Stationary Schrödinger Equation from MIP

Compare to the definition of classical statistical velocity as in eq.(5.35), it is easy to see that

for the ground state, the classical statistical velocity is zero. Moreover, we can prove for

all stationary states, their classical statistical velocities are zero. For a stationary state has

exact energy E, the Schrödinger equation is

[−ℏ2∇2

2m
+ Vc(x⃗)]Ψ = EΨ (5.74)

its conjugation reads

[−ℏ2∇2

2m
+ Vc(x⃗)]Ψ

∗ = EΨ∗ (5.75)

here Vc(x⃗) is classical external potential. Add the above two equations, the new real wave

function has to satisfy the Schrödinger equation with same eigen-energy E.

Corresponding to the classical velocity from Eq.(5.35), it is easy to show that the classical

velocity of particles must be zero in stationary states. Within the framework of MIP, we

should interpret the stationary states from quantum mechanics as a spacetime random

motion with zero classical velocity. Once we have all the stationary states, we will get

the general solution by linear superposition. Therefore, we are going to derive stationary

Schrödinger equation from classical velocity v⃗ = 0, which can provide a clear physical picture

of MIP. Moreover, when |⃗v| is large and close to velocity of light c, the generalisation of this

framework is clear and will be explained in our further work.

The trajectory of random motion of particle can be understood as the superposition of

classical path and fluctuated path. During time interval △t, there are two contributions to

the trajectory as

δx⃗ = u⃗(x⃗, t)△t+△x⃗ (5.76)

of which distribution satisfies φ(△x⃗) = φ(−△x⃗) and∫
φ(△x⃗)d(△x⃗) = 1

. The spacetime coefficient reads

ℜ =
1

2△t

∫
(△x⃗)2φ(△x⃗)d(△x⃗) (5.77)

The probabilistic density ρ(x, t) evolves [21, 22, 23] as

ρ(x⃗, t+△t) =
∫
ρ(x− δx⃗, t)φ(△x⃗))d(△x⃗) (5.78)

Expanding Taylor series of both sides, we have

∂tρ = −∇ · (ρu⃗) + ℜ∇2ρ (5.79)

which is consistent with Fokker-Planck equation. In any external potential V (x⃗), there

are two contributions to the changing of average velocity. One is from random impacts of
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spacetime, another one is from acceleration provided by external potential. Therefore, the

average velocity will evolve during time interval △t as

u⃗(x⃗, t+△t) =∫
(u⃗(x⃗− δx⃗, t)− △t∇V (x⃗−δx⃗)

m )ρ(x− δx⃗, t)φ(△x⃗))d(△x⃗)∫
ρ(x− δx⃗, t)φ(△x⃗))d(△x⃗)

(5.80)

the denominator of eq. 5.80 is the normalisation factor of the probability distribution.

Expanding Taylor series of both sides, we obtain

m
du⃗

dt
= −∇V + ℜm(

∇2(ρu⃗)

ρ
− u⃗∇

2ρ

ρ
) (5.81)

From this we can see the acceleration of the quantum envelope velocity u⃗, whose dynamics

are rooted in the joint contribution of the classical potential and the quantum potential. For

the physical state with certain energy, the three-velocity decomposition V⃗ (x⃗, t) = u⃗(x⃗, t) +

v⃗(x⃗, t) + ν⃗(t) has clear physical meaning. The quantum envelope velocity u⃗(x⃗, t) and the

classical statistical velocity v⃗(x⃗, t) are both velocity fields, which are functions of space-

time coordinates. The classical statistical velocity field of a physical state with certain

energy is zero, which can be used as a new interpretation of the steady state of quantum

mechanics. The dynamic mechanism of the quantum envelope velocity field u⃗(x⃗, t) has two

contributions, the classical external potential field where the particle is located and the

quantum potential field generated by the random collision of time-space. The diffusion

velocity ν⃗(x⃗, t) is the background of space-time fluctuations, evenly distributed in space,

and satisfies the properties of Brownian motion in time, which is the intrinsic property of

space-time. The sum of these three velocities is the real velocity of the objective reality

of the particles required by materialism. See appendix B where we proved these.With the

condition of stationary state ∂tρ = 0, it goes to

u⃗ = ℜ∇ρ
ρ

(5.82)

∂tu⃗ = 0 (5.83)

It’s important to notice that
du⃗

dt
= ∂tu⃗+ (u⃗ · ∇)u⃗ (5.84)

The average velocity u⃗ is not zero in the stationary state, which exactly cancle out its

fluctuation velocity. Therefore, given the condition of stationary state, we are able to get

−2mℜ2∇2√ρ
√
ρ

+ V (x) = Const. (5.85)

We can prove this constant is exactly the average energy of particle

E =

∫
ρ(

1

2
mu2 + V )d3x (5.86)

Now, we have derived

−2mℜ2∇2√ρ
√
ρ

+ V (x) = E (5.87)

ψ =
√
ρe−iEt/ℏ (5.88)
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Let ℜ = ℏ
2m once again, we arrive at the stationary Schrödinger equation

−ℏ2∇2

2m
ψ + V ψ = Eψ (5.89)

5.6 Ground States of Hydrogen Atoms in MIP

In the hydrogen atom system, we can take A⃗ = 0 and ϕ = − e
4πϵ0r

. The stationary solution

of the equation (5.56) satisfies

EΨ =
1

2m
(−iℏ∇)2Ψ− e2

4πϵ0r
Ψ (5.90)

The lowest energy stationary state solution (ground state wave function) is Ψ(r, θ, φ) =
1√
πa3

e−r/a, where a = 5× 10−11m is the Bohr radius of the hydrogen atom. Using the wave

function of the ground state of a hydrogen atom, we can get its quantum envelope velocity

as

u⃗ = 2ℜ∇R = − ℏ
ma

r̂ = −cαr̂ (5.91)

Where c is the velocity of light in vacuum, r̂ is the unit vector r̂ = r⃗
r . Similarly we can get

its classic average velocity

v⃗ = 2ℜ∇I = 0 (5.92)

Its spacetime fluctuation rate is satisfied

< νi >= 0, < νi(t)νj(t
′) >= ℜδijδ(tt′) (5.93)

Then the electron in the ground state of the hydrogen atom has its coordinate X⃗(t) as a

random variable, and its real velocity V⃗ satisfies the following microscopic dynamic equa-

tions.
dX⃗(t)

dt
= V⃗ (t) = u⃗+ v⃗ + ν⃗ = −cαr̂ + ν⃗(t) (5.94)

This is the real equation of motion of the ground state electrons of a hydrogen atom in the

context of MIP. The quantum envelope velocity always points to the center of hydrogen

atom. The closer to the center, the greater the repulsive force generated by the spacetime

potential. Because this envelope velocity is balanced out by the combination of the classical

Coulomb potential and the spacetime potential, the hydrogen atom can be stabilized on the

ground state.

According to MIP, the real motion of electrons in the ground state of hydrogen atoms, we

can calculate the average kinetic energy of electrons as

< K >=
m

2
< V⃗ (t)2 >=

m

2
(cα)

2
+
m

2
< ν⃗(t)2 > (5.95)

The average of the square of the spacetime fluctuation is

< ν⃗(t)2 >= ℜ/T (5.96)

Where T is the cumulative interaction time of the electrons. The ground state of a hydrogen

atom can exist forever, that is, T tends to infinity, and thus we can obtain the average kinetic

energy of the ground state electron as

< K >=
m

2
< V⃗ (t)2 >=

m

2
(cα)

2
(5.97)
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We can calculate the average potential energy of the electron as

< U(r) >=< − e2

4πϵ0r
>=< − e2

4πϵ0a
> (5.98)

Where a is the Bohr radius and ϵ0 is the vacuum permittivity. The average energy of the

ground state electrons is the sum of the average kinetic energy and the average potential

energy. Substituting the standard values of physical constants, we can get the numerical

result of the average energy of the ground state electrons as

E =< K > + < U >= −13.6ev (5.99)

We have reached the same conclusion as quantum mechanics through the microscopic equa-

tion of motion of MIP. It can be seen that quantum mechanics only reflects the statistical

average nature of the real motion process and does not reflect all the physics under the

framework of MIP.

5.6.1 Deriving the amount of elementary charge from MIP

According to MIP, the interaction between particles and STP (the basic definition of the

action is the product of momentum and displacement)

Nh =

∮
pdq (5.100)

For example, the simplest uniform circular motion is∮
pdq = 2πmvr (5.101)

Consider the electrons inside the hydrogen atom. STP collisions provide random Brownian

motion, and attraction from proton provides centripetal force with equilibrium conditions

e2

4πϵ0r2
=
mv2

r
(5.102)

The amount of charge can be solved as

e = nh

√
ϵ0
mπr

(5.103)

The exact value of the electronic charge can be accurately obtained. We know that in MIP,

the exchange action is nh, where n can be any integer.

We only need to make a hypothesis that the orbit of the electron is determined by the

quantum number n of STP interaction. The proof of this hypothesis is shown in the next

section. That is, when n = 1, the electron falls on the Bohr’s orbit (r = 0.53 × 10−10m).

When n = 2, the electrons fall on the second orbit (by analogy). You can get important

results (all values below are with international units)

h = 6.62× 10−34,m = 9.11× 10−31, ϵ0 = 8.85× 10−12

After substituting, we obtain the amount of charge as

e = 1.6× 10−19C (5.104)
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5.6.2 Quantum number n of STP determining the orbit of hydrogen atoms

What we want to prove is that when the electrons are in Bohr’s orbit (r = a), the amount

of exchange action of STP is just a Planck constant, ie

h = 2πmva (5.105)

Using the ground state wave function of the hydrogen atom derived above

ψ =
1√
πa3

e−r/a (5.106)

The average value of the momentum can be found as

Mv = p = |
∫
ψ∗(−iℏ∇)ψdτ | = ℏ

a
(5.107)

The integral volume element is dτ = r2sinθdθdφdr and h = 2πmva.

5.6.3 Generalisation to Hydrogen-like atoms

The exchanged action between particles and STP

nh =

∮
pdq (5.108)

In uniform circular motion ∮
pdq = 2πmvr (5.109)

An electron in a hydrogen-like atom with a positively charged nucleus. STP collisions provide

random Brownian motion, and the attraction of the nucleus provides centripetal force with

equilibrium conditions
Ze2

4πϵ0r2
=
mv2

r
(5.110)

The amount of charge can be solved as

e = nh

√
ϵ0

Zmπr
(5.111)

The Bohr-like orbital electron corresponding to n = 1 has a Bohr radius of r = a/Z, from

which the elementary charge can be derived as

e = 1.6× 10−19C (5.112)

Starting from MIP, we have made a thorough study of free matter particles and obtained

the most important conclusions of quantum mechanics. Furthermore, the most fundamental

cause of atomic stability is explained by MIP, and from the first principle we calculate the

basic physical quantity of electron charge unit. It can be seen that the random collision of

STP does not only provide chaotic background noise , but also the stability of all matter

in a seemingly chaotic background. At the most profound level, materialism interpret the

physical world and the contradictions are unified.
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6 Quantum Measurement in MIP

6.1 General Principle

There are fundamental distinctions on quantum measurement between MIP and Copenhagen

interpretation. Within the framework of MIP, since matter particle is collided randomly by

STP. Any measurement related to position and momentum can not be done in a time in-

terval between two collisions, therefore any this kind of measurement cannot lead to precise

result, which means we cannot make errors as small as possible in principle. Therefore,

incommutable observables can not only be measured precisely at the same time, but also

cannot be measured precisely separately. Theoretically, all measure values means statistical

average, which include intrinsic uncertainty from spacetime besides normal measurement er-

rors. For examples, the momentum uncertainty from MIP is due to the statistical properties

of fluctuated mass. As a statistical mass, the minimum fluctuation is △mst , which roughly

is one part per million of electron mass. The position intrinsic uncertainty △Xst from MIP

is the mean free path between two consecutive collision by STP.

When the spacetime sensible mass is equivalent to the statistical inertial mass, the equa-

tion of motion will be determined by Schrödinger equation. In other words, moving matter

particle and propagational wave are unified in spacetime. If we want to measure a matter

particle, we need apparatus to interact with particle somehow. However, every such mea-

surement has to interrupt the random motion of particle. Therefore, measurement means

the end of a Markov process. When the measurement is finished, a new Markov process will

begin. For the moving matter particle, the phases of wave functions before and after mea-

surements is completely irrelevant, which cannot interfere each other. Under this framework,

it’s unnecessary to introduce hypothesises of wave function collapse or multi universe.

6.2 EPR Paradox in MIP

In a 1935 paper[24], Einstein with Podolsky and Rosen considered an experiment in which

two particles that move along the x-axis with coordinates x1 and x2 and momenta p1 and p2

were somehow produced in an eigenstate of the observables X = x1 − x2 and P = p1 + p2 (

these two observables commute [X,P ] = 0 ).It’s easy to understand that the measurement of

the position of particle 1 can interfere with its momentum, so that after the second measure-

ment the momentum of particle 1 no longer has a definite value. However two particles are

far apart, how can the second measurement interfere with the momentum of particle 2? And

if it does not, then after both measurements particle 2 must have both definite position and

momentum, contradicting the quantum uncertainty principle. If it does, there exist some

“spooky” interaction between two far apart particles, contradicting the locality principle in

the special theory of relativity. The orthodox interpretation of quantum mechanics suppose

that the second measurement which gives particle 1 a definite position, prevents particle 2

from having a definite momentum, even though the two particles are far apart. The states

of the two particles are so call quantum entanglement.
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Let’s investigate the experimental process in detailed and estimate every uncertainty re-

lations. Suppose two particles that are originally bound in some sort of unstable molecule

at rest fly apart freely in opposite directions, with equal and opposite momenta until their

separation becomes macroscopically large. Their separation will evolve as

x1 − x2 = x10 − x20 + (p1 − p2)t/m (6.1)

where x10, x20 are initial positions of two particles. It’s noticed that under MIP, every

massive particle is collided randomly by STP, the initial separation of two particle cannot

be measured precisely. There exists intrinsic uncertainty △Xst = △|x10 − x20| as the

mean free path between two consecutive collision by STP. According to the uncertainty

relation derived from MIP, the momentum difference at least has intrinsic uncertainty as

△Pst = △|p1 − p2| ≥ ℏ
△Xst

, because of the commutation [x1 − x2, p1 − p2] = 2iℏ. Therefore
the uncertainty of separation will be

△|x1 − x2| = △Xst +
ℏt

△Xstm
(6.2)

Its minimum is at △Xst =
√

ℏt
m , leading to

△|x1 − x2| ≥ 2

√
ℏt
m

(6.3)

Similarly, the total momentum P is not strictly zero under MIP, which includes at least the

intrinsic uncertainty due to

△P = △mstv (6.4)

where △mstis the fluctuation of statistical mass, according to MIP, roughly as one part per

million of electron mass. Perform EPR experiment after the second measurement of particle

1, the uncertainty of particle 2 at least will be

△p2△x2 = 2

√
ℏt
m
△mstv (6.5)

More importantly , does the intrinsic uncertainty of particle 2 given by MIP contradict the

uncertainty relation given by quantum mechanics? If

△p2△x2 ≤
ℏ
2

(6.6)

it still contradicts uncertainty relation of quantum mechanics, which means that we will

observe the quantum entanglement experimentally, because we have to suppose the “spooky”

interaction between two far apart particles to satisfy uncertainty relation. Therefore, we

obtain the key criterion of quantum entanglement (momentum-position type) as

△m2
st

m2
≤ πλd

8L
(6.7)

where λd = h
mv is de Broglie′s wavelength and L is the separation of two particles. So we

can conclude that there is a characteristic separation of quantum entanglement as

L∗ =
πλd
8

(
m

△mst
)2 (6.8)
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When the separation of two particles is larger than L∗, the inequality of (8) cannot be satis-

fied which means we are no longer able to determine the existence of quantum entanglement

from experimental results. The reason is that the intrinsic uncertainty of particle 2 given

by MIP has already satisfy uncertainty relation of quantum mechanics automatically. We

cannot deduce the existence of ’spooky’ interaction in this scenario. For two electrons mov-

ing at the speed of 0.01c, the corresponding characteristic separation will be L∗ ≈ 40m. For

two atoms moving at the speed of 0.01c, the corresponding characteristic separation will be

L∗ ≈ 4× 107m.

7 From MIP to Path Integral

The path integral representation of quantum mechanics is a generalization and formulation

method for quantum physics, which extends from the principle of action in classical mechan-

ics. It replaces a single path in classical mechanics with a quantum amplitude that includes

the sum or functional integral of all paths between two points. The path integral expression

was theoretically published by theoretical physicist Richard Feynman in 1948 [25]. Prior to

this, Dirac’s 1933 paper[26], had major ideas and some early results. The main advantages

of the path integral expression is that it treats spacetime equally, so it is easy to generalize

to the theory of relativity, which is widely used in modern quantum field theory. However,

the basic assumptions of MIP tell us that the effect of each STP colliding on particles can

be seen as an independent path. The weight of each independent path is related to the

distribution of energy. This is essentially a process of path integration. To understand this

concept more clearly, we consider a simple process as follows. Assuming that the effect of

random motion of particles over time ∆t is from point A to point B. According to MIP,

in this process, the change of the action can only be h, 2h, 3h, ..., but the paths are dif-

ferent corresponding to each specific action change. For example, the smallest amount of

action change is one h, corresponding to a linear motion from A to B, and the 2h change

corresponds to the movement of the polyline, during which the particle is struck twice by

STP, and so on. In this picture, the so-called infrared effect is naturally ruled out, that is,

the process of less than one h in ∆t. The effect of infinity is also ruled out because the

instantaneous velocity has certain upper bound which is the speed of light. This suggests

that such a path integral effect is a finite summation rather than an infinite, so there is no

need to introduce a so-called renormalization procedure. We see that under the framework

of MIP, the quantum properties of particles are rooted in nature as the statistical description

of their random motion.

7.1 Path Integral of Free Particle and Spacetime Interaction Coefficient

We had argued the real velocity of free particle in space-time satisfies the decomposition as

V⃗ (x⃗, t) = v⃗(x⃗, t) + u⃗(x⃗, t) + ν⃗(t) (7.1)

in which there are two kinetic arguments, they are classical statistical velocity v⃗ and quantum

envelope velocity u⃗.
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There are two kinetic variables with random motion particle in spacetime, which are classical

speed v⃗ and fluctuated speed u⃗. The corresponding kinetic equations are

∂u⃗

∂t
= −ℜ∇(∇ · v⃗)−∇(u⃗ · v⃗) (7.2)

∂v⃗

∂t
= −(v⃗ · ∇)v⃗ + (u⃗ · ∇)u⃗+ ℜ∇2u⃗ (7.3)

Setting Ψ = eR+iI , we are able to linearise as

∇R =
1

2ℜ
u⃗ (7.4)

∇I =
1

2ℜ
v⃗ (7.5)

which leads to
∂Ψ

∂t
= iℜ∇2Ψ (7.6)

During an infinite small time interval ϵ, the solution can be written in terms of integrals as

Ψ(x, t+ ϵ) =

∫
G(x, y, ϵ)Ψ(y, t)dy (7.7)

which represents the superposition of all the possible paths from y to x. The critical obser-

vation of Feynman is the weight factor G(x, y, ϵ) will be proportional to eiS(x,y,ϵ)/ℏ, where

S(x, y, ϵ) is the classical action of particle as

S(x, y, ϵ) =

∫
L(x, y, ϵ)dt =

∫
(K − U)dt = (K̄ − Ū)ϵ (7.8)

K̄ and Ū are average kinetic energy and potential energy separately. In order to show the

equivalence between path integral formulation and the spacetime interacting picture, we

should derive our basic kinetic equations from the postulation of path integral G(x, y, ϵ) =

AeiS(x,y,ϵ)/ℏ. For a free particle in spacetime, one has Ū = 0,L̄ = m
2 (

x−y
ϵ )2 and S = m(x−y)2

2ϵ ,

which leads to

Ψ(x, t+ ϵ) = A

∫
e

im(x−y)2

2ℏϵ Ψ(y, t)dy (7.9)

Setting y − x = ξ and α = − im
2ℏϵ , it can be written in terms of

Ψ(x, t+ ϵ) = A

∫
e−αξ2Ψ(x+ ξ, t)dξ (7.10)

= A

∫
e−αξ2(Ψ(x, t) + ξ

∂Ψ

∂x
+

1

2
ξ2
∂2Ψ

∂x2
+O(ξ4))dξ

With the properties of Gaussian integral∫
e−αξ2dξ =

√
π

α
(7.11)∫

e−αξ2ξdξ = 0 (7.12)∫
e−αξ2ξ2dξ =

1

2α

√
π

α
(7.13)

we can obtain

Ψ(x, t+ ϵ) = A(

√
π

α
Ψ(x, t) +

1

4α

√
π

α

∂2Ψ

∂x2
+O(α− 5

2 )) (7.14)
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Setting A =
√

α
π , we have

Ψ(x, t+ ϵ)−Ψ(x, t) = ϵ∂tΨ(x, t) =
1

4α

∂2Ψ

∂x2
(7.15)

From this integral, We observed that the most important contribution comes from y − x =

ξ ∝
√
ϵ, where the speed of particle is y−x

ϵ ∝
√

ℏ
mϵ , we see here when ϵ → 0, the speed

divergent in order
√

1/ϵ. The paths involved are, therefore continuous but possess no

derivative, which are of a type familiar from study of stochastic process. With the isotropy

of space, we have

∂tΨ(x⃗, t) =
1

4αϵ
∇2Ψ(x⃗, t) (7.16)

Corresponding to the Eq. (7.6), if one requires the equivalence between path integral for-

mulation and MIP, there must be

iℜ =
1

4αϵ
(7.17)

ℜ =
1

4iαϵ
=

1

4i(− im
2ℏϵ )ϵ

=
ℏ
2m

(7.18)

Notice that ℜ is only an arbitrary parameter in the Eq.(5.31). The consistency between

path integral and MIP requires ℜ = ℏ
2m . An arbitrary finite time interval ∆t, can be

cut into infinitely many slides of infnitesimal time interval ϵ. And in each ϵ, the collisions

leads to many different paths, one can pick one path and consectively another along the time

direction, this will end up a path in ∆t, sum over all possible paths in ∆t gives an integration

over path space, which is the celebrated historical summation or path integral. The method

here can be straightforwardly generalised to the particle in the external potential as in

following section.

7.2 Path Integral of Particle in an External Potential and Spacetime Interac-

tion Coefficient

In an external potential U , one has Ū = U(x+y
2 ) and L̄ = m

2 (
x−y
ϵ )2, which leads to the

action

S =
m(x− y)2

2ϵ
− U(

x+ y

2
)ϵ (7.19)

According to the path integral formulation, it must satisfy

Ψ(x, t+ ϵ) = A

∫
e

im(x−y)2

2ℏϵ −
iU(

x+y
2

)ϵ

ℏ Ψ(y, t)dy (7.20)

= A

∫
e

im(x−y)2

2ℏϵ (1−
iU(x+y

2 )ϵ

ℏ
)Ψ(y, t)dy

To the lowest order of ϵ, it shows

U(
x+ y

2
)ϵ = U(x+

ξ

2
)ϵ = U(x)ϵ (7.21)

Ψ(x, t+ ϵ) = A

∫
e−αξ2(1− iU(x)ϵ

ℏ
)Ψ(x+ ξ, t)dξ (7.22)
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From the properties of Gaussian integral in the previous section, we obtain

Ψ(x, t+ ϵ) = A(1− iU(x)ϵ

ℏ
)

√
π

α
Ψ(x, t) +A

1

4α

√
π

α

∂2Ψ

∂x2
(7.23)

Setting A =
√

α
π , ϵ→ 0, we have

∂tΨ(x⃗, t) =
1

4αϵ
∇2Ψ(x⃗, t) +

1

iℏ
UΨ(x⃗, t) (7.24)

To be consistent with the case of free particle, let’s take ℜ = ℏ
2m which leads to

∂tΨ(x⃗, t) = iℜ∇2Ψ(x⃗, t) +
1

iℏ
UΨ(x⃗, t) (7.25)

Therefore we have derived the equation of motion from MIP.

8 STP Vortices as an origin of photon

8.1 Essential Properties of Electronic Charge In Modern Physics

In framework of modern physic, fundamental matter particles are all electric charged. The

fundamental electric charge is defined as the amount of charge of an electron or a positron.

For electric charge 5, there are five fundamental properties. Firstly, there are only two kinds

of charges, as known as the positive and negative charges. The characteristic quantum

numbers of positron and electron are 1 and -1. Secondly, same charges repel each other,

different charges attract each other.Thirdly, the interaction between charges is known as

the Coulomb force, obeys the inverse square law. Electron and positron can annihilation

each other, emit photons.Forthly, in an isolated system, the algebraic amount of charges are

conserved. Finally, the amount of fundamental charge is 1.6× 10−19C.

Since there are no interactions between STP, the differential dynamics of STP is discribed

by a massless free scale field theory, its Lagrangian is:

LST = ∂µϕ∂
µϕ . (8.1)

The dynamic equation is the 3+1 dimentional Klein-Gordon equation,

∂µ∂
µϕ = 0, (8.2)

the solution of above equation is a wave solution, it can be written as follow

ϕ(x⃗, t) =
∑

E2=
∑3

i=1 p2
i

f(E, p⃗) exp(iEt− ip⃗ · x⃗), (8.3)

in which f(E, p⃗) is an analytic function in momentum space.

Now let us consider putting a particle into space-time. The impact of introducing the matter

particle into space-time scalar field, is somehow like dropping a cobble into the water surface

5We will use charge instead of electric charge in this section, for simplicity.
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of a peaceful lake, leads to the ripple effect. Compare to the fluctuation of space-time, the

matter particle introduces a non-perturbative effect, which will bring into the space-time a

strong potential. The reason that the matter particle results a strong potential is as follows

Any perturbative disturbance will be get drowned out by the fluctuation of microscopic

space-time energy fluctuation. In general, strong perturbation will lead to nonlinear effects,

especially non-perturbative soliton effect. The soliton effect is steady and relatively large

than STP. We know STP are local excitation of space-time energy, obviously, a cluster

of STP describes a “huge” excitation of space-time energy. So it is nature to introduce

solitons into space-time field since a local non-perturbative energy disturbance leads a local

space-time soliton, discribing a cluster effect of STP.

8.2 2+1-dim Complex Scalar Space-time field

In modern quantum field theory, the microscopic energy can be non-conserved locally, which

is saying the vacuum can excit any pair of virtual conjugated particles. In framework of

MIP, the fluctuations of space-time energy are STP. The non-conservation nature of local

space-time energy is saying the number of STP are locally non-conserved. However, in a

global viewpoint, the energy of STP are conserved.

In framework of MIP, we introduce a local companion for STP field, which is a local field

that can interact with STP. Howerver, in global, the companion field will decouple with the

STP field. The existence of the local companion field also implies in local there is a kind of

local symmetry, which is broken in global. In fact, when the local symmetry is U(1) , STP

are excitations of a complex scalar field.

In framework of MIP, matter particle experiences quantum Brownian motion, which essen-

tially is a Markov progress. This implies the past and future of the matter particle are

causual irrelated. So at an arbitrary point of time, one can cut the slice vertical to the

direction of the velocity of the matter particle, as known as the normal slice. The dynamics

of matter particle on normal slice is a 2+1-dim dynamics. The whole 3+1-dim dynamics

could be extented from the dynamics on slices. Notice there are two kinds of dynamics on

the 2+1-dim normal slice, one for matter particle, the other for STP, respectively.

We now consider the 2+1 dimensional dynamics of STP. As is stated above, the matter

particle drops a cobble into the STP lake and results a period potential. We denote the

potential as V (ϕ, ϕ∗), thus the Lagrangian of complex STP field now becomes

LST = −1

2
∂jϕ∂

jϕ∗ + V (ϕ, ϕ∗), j = 0, 1, 2. (8.4)

8.3 Abrikosov-Nielsen-Olesen-Zumino Vortex

In 2+1 dimension, the famous non-pertubative solution for a complex scalar field is the

Abrikosov-Nielsen-Olesen-Zumino(ANOZ) vortex solution. The Lagrangian supports the
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ANOZ vortex is

L = −∂jϕ∗∂jϕ−
λ

2

(
ϕ∗ϕ− F 2

)2
(8.5)

The minimum of the potential is obvious, it is

ϕ = F · eiφ

which is a cycle with radius F . Notice this configuration is compatible with the “ripple”

effect of matter particle acting on STP field. It also introduces a symmetry U(1) . Since

this U(1) now is a local symmetry, it implies there should be a gauge field companion with

the STP field. The soliton solution is obtained when introducing the boundary condition at

infinity, that is

|x| → ∞ : ϕ⃗→ F
x⃗

|x|
, ϕ→ Feiφ. (8.6)

However, the soliton solition suffers an energy divergence because

E =

∫
d2x

(
∂⃗ϕ∗∂⃗ϕ+ V (ϕ, ϕ∗)

)
(8.7)

goes to infinity. One can check this as follows

|x| → ∞ : ∂iϕj →
F

|x|

(
δij −

xixj
|x|2

)
2∑

i,j=1

(∂iϕj)
2 → F 2

|x|2∫
d2x∂⃗ϕ∗∂⃗ϕ → 2π

∫ ∞

0

d|x|F
2

|x|
: Log divergent. (8.8)

We saw the energy of the vortex is divergent at spatial infinity, this is unphysical since it

implies there is an infinity energy source at spatial infinity. To avoid this divergence, the

way out is to introduce a gauge vector field to smear the infinity energy on whole 2+1-dim

normal slice. In fact, the local non-conservation of space-time energy implies we need a

companion field for STP field in the first place. Here it is clear that the field is a gauge

field. To do so, we need introduce the covariant derivative for STP field, instead of original

derivative, as well as a kinetic term for the gauge field. Now the Lagrangian is

L = −1

2
Dµϕ

∗Dµϕ− 1

4
FµνF

µν − V (ϕ, ϕ∗) (8.9)

Dµϕ = ∂µ − igAµ (8.10)

The complex STP field degenerates into a real scalar field. This is because the energy

non-conservation is recovered in global. The complexity of the STP field reflects the local

property of STP. At spatial infinity,

ϕ→ Feiφ|φ=0 = F (8.11)

the gradient of STP field is

∂⃗ϕ = (∂rϕe⃗r + ∂φϕe⃗φ)φ=0 = iF/r (8.12)
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and the gauge field becomes pure gauge field (with vanishing field strength), that is

A⃗→ 1

ig
ϕ−1∂⃗ϕ (8.13)

In form of polar coordinates,

Ar = 0, Aφ =
1

gr
(8.14)

In general, we can not let a complex scalar field directly equals to a real scalar field at

an arbitrary spatial point. However, we can let them equals to each other up to a gauge

transformation, say

ϕ→ ΩF, Ω(x⃗) = eiφ(x⃗) (8.15)

and then we have

A⃗→ − 1

ig
Ω∂⃗Ω−1 (8.16)

Actually, under this general configuration, the divergence of energy will be strictly vanished,

as

D⃗ϕ→
(
∂⃗Ω+ Ω(∂⃗Ω−1)Ω

)
F = Ω∂⃗(Ω−1Ω)F = 0 (8.17)

In terms of component, the gauge field reads

Ai = −
1

g
ϵij
xj
r2

(8.18)

From the Stokes theorem, we have

Φ ≡
∮
C=n·∂Σ

A⃗dx⃗ =

∫
Σ

B⃗dσ⃗ =
2πn

g
≡ gm (8.19)

here we recognize the famous Dirac quantization condition [9] for electronic charges, say

g · gm = 2πn, n ∈ Z (8.20)

This implies if there was an ANOZ vortex solution, the electronic charge is quantized. When

n is a negative integer, it describes an opposite spinning vortex solution and also describes

a negative charge. In modern physics, there should be a Dirc monople to support the Dirac

quantization condition of charges. In framework of MIP, the only origin of quantized charge

is the STP field.

8.4 From 2+1-d to 3+1-d

In 3+1 Minkowski space-time, the local space-time symmetry is Lorentz symmetry, denoted

by SO(3, 1). In Lie group theory, SO(3, 1) is algebraic isomorphism to SU(2)×SU(2) , that

is

so(3, 1) ∼= su(2)× su(2) ∼= so(3)× so(3). (8.21)

In fact, this isomorphism reveals locally, the 3+1-dim space-time equals to cross extension

of two 2+1-dim space-time.
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Now we consider how this local extension of dimension can be done from Lie algebra. Notice

the six generator of Lorentz group can be written explicityly as

Ki ≡ L0i = t∂i − xi∂t i, j, k ∈ [1, 2, 3] (8.22)

Rk = ϵijkLij = ϵijkxi∂j (8.23)

The two algebra su(2) are isomorphic to so(3) , in terms of derivative, they are

Sa = ϵabcra∂rb (8.24)

S̃a = ϵabcla∂lb (8.25)

in which there are six degrees of freedom, in the meaning of linear space, they are

r1, r2, r3, l1, l2, l3

Though the Lie algebras of SO(3, 1) and SU(2)× SU(2) is isomorphic to each other, from

the viewpoint of degree of freedom, they are not the same. Notice there is a hidden duality,

which maps 2-dim surface to 1+1-dim surface and vice versa, as follows

⋆ : e0 ⊗ ei → ϵ jk
0i ej ⊗ ek

⋆ : ej ⊗ ek → ϵ0ijke0 ⊗ ei (8.26)

This duality is actually the Hodge duality in differential geometry. It implies extension rules

should be followed when extending a theory from 2+1-dim to 3+1-dim.

In conclude, we know the rule guiding the extension from 2+1-dim to 3+1-dim is Hodge

duality. In the vortex situation considered at hand, the Hodge duality actually corresponds

to a resolving of singularity. The vortex has a singular tube which shrinks to a point when

goes to its center. If one wants to resolving the singularity, the general way in differential

topology is to introduce a finite size sphere instead of the singularity. The resolving operation

can be done by two steps: cut the vortex tube at a finite size, which will be a circle, then

rotate the circle into a sphere. This rotation was been done in 3+1-dim and is the physical

saying of the Hodge duality.

8.5 The Origin of Photon from ANOZ Vortex

In discussion of ANOZ Vortex, we obtained the gauge constraint and the quantization con-

dition of electric charge, however, we didn’t obtain the dynamics of the vortex. Because

vortex is not a fundamental excitation, its dynamics can not be analytically achieved from

fundamental STPs. So in order to obtain the vortex dynamics. We need to introduce the

Lagrangian for vortices.

8.5.1 Dynamics on normal slice

For the kinetic part of STPs field, say,

Lϕ =
1

2
D⃗iϕ

∗D⃗iϕ =
1

2
|(∂i − igAi)ϕ|2 (8.27)
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in this subsection, i, j, k, l,m, n = 0, 1, 2 label indices on the 2+1-dim normal slice. We only

consider the excitations nearby the vortex potential, which is ϕ = Feiφ. The above STP

field kinetic Lagrangian can be written as

Lϕ =
1

2
F 2 (∂iφ− gAi)

2
(8.28)

After a simple square matching operation, we arrive a linear form

Lϕ = − 1

2F 2
ξiξi + ξi(∂

iφ− gAi) (8.29)

here ξi is a static auxillary field. Notice that for vortex solution, the phase angle field φ is

singular at the vortex center, we now separate the phase angle into two parts, one is smooth

and the other is for vortex, say,

φ = φ0 + φvortex (8.30)

The smooth part does not have a significant effect on what we concerned, we integral it out

and it results a constraint equation for the auxillary field,

∂iξ
i = 0 (8.31)

This reveals the auxillary field is a 2+1-dim sourceless field, and it can be rewritten as a

pure curl as

ξi = ϵijk∂jak (8.32)

On the other hand, the equation of motion of auxillary field ξ can also be obtained from

Euler-Lagrange equation, it reads

ξi = F 2(∂iφ− gAi) (8.33)

The above two equations define a hidden duality as follow

F 2(∂iφ− gAi) = ϵijk∂jak (8.34)

Substitute it into equation (8.29), we obtain

Lϕ =
1

2F 2
ξiξi =

1

2F 2
ϵijk∂jakϵimn∂

man

=
1

2F 2
f jkfjk (8.35)

here

fjk = ∂jak − ∂kaj (8.36)

is the field strength of a field. Here we saw the dynamics of the STP field on normal slice

is fully equivalent to a vector field a . Recall the kinetic term of gauge field A , we obtain a

effective Lagrangian on normal slice

Ltotal = LA + Lϕ = − 1

4g2
F jkFjk +

1

2F 2
f jkfjk (8.37)
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8.5.2 The Hodge duality

Notice in the dynamics of 2+1-dim vortex, the singularity of the phase angle is essential,

which results that the corresponding gauge field A is also singular at the center of the vortex.

This singularity could be resolved in higher dimension, for example, in 3+1-dim space-time,

we can extend the 2+1-dim Hodge duality (8.34) to 3+1-dim. This 3+1-dim Hodge duality

reflects the local duality of 3+1-dim Lorentz group, as revealed in last subsection. In 3+1-

dim, the complex STPs field becomes real because the phase angle is fixed to zero and has

no dynamics at all, leads a free STP scalar field in 3+1-dim. Actually, in 3+1-dim, we can

define the Hodge duality of a field as:

F ′αβ =
√
2gF iϵαβijf

ij (8.38)

from which we has defined a gauge field A′ , its field strength is

F ′αβ = ∂αA′β − ∂βA′α (8.39)

It is an extension of a field in 3+1-dim and on any 2+1-dim sub-manifold of the 3+1-dim

space-time, its dynamics is equivalent to field a . In total, we know

Ltotal = −
1

4g2
F jkFjk −

1

4g2
F ′αβF ′

αβ (8.40)

Actually, in 3+1-dim, the two parts of above Lagrangian can be written as a single term

when defined a new field Ã satisfying

1

g
F̃ij = Fij ,

1

g
F̃αβ = F ′

αβ (8.41)

Notice the above equations are six equations, which are

∂0Ã1 − ∂1Ã0 = g(∂0A1 − ∂1A0) (8.42)

∂0Ã2 − ∂2Ã0 = g(∂0A2 − ∂2A0) (8.43)

∂1Ã2 − ∂2Ã1 = g(∂1A2 − ∂2A1) (8.44)

∂0Ã3 − ∂3Ã0 = g(∂0A
′
3 − ∂3A′

0) (8.45)

∂1Ã3 − ∂3Ã1 = g(∂1A
′
3 − ∂3A′

1) (8.46)

∂2Ã3 − ∂3Ã2 = g(∂2A
′
3 − ∂3A′

2) (8.47)

On 0-1-2 normal slice, we can assume

Ã0|Σ=(t,x1,x2) = gA0, Ã1|Σ=(t,x1,x2) = gA1, Ã2|Σ=(t,x1,x2) = gA2 (8.48)

here Ãi|Σ=(t,x1,x2) denotes the reduced field of the four dimensional gauge field Ã onto

normal slice Σ = (t, x1, x2, 0). Hence from eq.(8.45-8.47) we see, the constraint equations

require that on x3 direction, Ã0, Ã1, Ã2 should coincide with A′
0, A

′
1, A

′
2 ,

Ai(0, 0, 0, x3) = A′
i(0, 0, 0, x3), i = 0, 1, 2 (8.49)

then we obtain

Ã3(t, x1, x2, x3) = gA′
3(t, x1, x2, x3) (8.50)
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Actually, the A′
3 is a new component of the gauge field results from the Hodge duality, it

is unique up to a pure gauge with vanishing field strength. Now we see how to extend the

gauge field on 2+1-dim to 3+1-dim guiding by the Hodge duality. A simple extension is

Ãi(t, x1, x2, x3) = g(Ai(t, x1, x2, 0) +A′
i(0, 0, 0, x3)), i = 0, 1, 2 (8.51)

Ãi(t, x1, x2, x3) = gA′
3(t, x1, x2, x3) (8.52)

Under this extension, we arrive a simple Lagrangian

Leff
3+1d = −1

4
F̃µν F̃

µν , µ, ν = 0, 1, 2, 3 (8.53)

it is the famous Lagrangian for 3+1-dim gauge field, the field strength is the same as Maxwell

field strength. In three dimensional form, the field strength can be written as electric and

magnetic field strengths as

Ei = F̃0i, Bi = ϵijkF̃
jk, i, j, k = 1, 2, 3 (8.54)

In above derivation, we saw that the dynamic effects of STP ANOZ vortex and 3+1-dim

electromagnetic field are completely equivalent. This reveals an important assertion: pho-

tons are companion particles of STP vortices. In 3+1-dim space-time, Maxwell field strength

is a derived result because of vanishing of the ANOZ vortex singularity.

In conclusion, when introducing the third spatial dimension, the singularity of ANOZ vortex

is vanished. Meanwhile the equation of motion for ANOZ vortices is equivalent to 3+1-dim

Maxwell equations, they are

∇⃗ · E⃗ = 0 (8.55)

∇⃗ · B⃗ = 0 (8.56)

∇⃗ × E⃗ = −∂B⃗
∂t

(8.57)

∇⃗ × B⃗ =
∂E⃗

∂t
(8.58)

Here what we obtained is the source-free Maxwell equations because we didn’t consider

the effect of matter particles, which will couple to gauge field as will considered in next

subsection.

8.6 The Coulomb Force

We now consider the force between two matter particles. In hydrodynamics, two vortices

will repel each other if their handing of spins are the same, and will attract each other if

their handing of spins are different. This is a nature derivation from Bernoulli principle.

There are only two kinds of charity for 2+1-dim vortices, left and right, respectively.

More than two decades ago, people had already found the correspondence between equations

of motions of hydrodynamics and Maxwell eletromagenetism [27]. This correspondence was

supported by [28] with a detailed derivation. The correspondence between hydrodynamics

and eletromagnetism is much more like a coincidence in previous researches. However, in
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framework of the STP vortex, the fluid-eletromagnetism correspondence now has a concrete

theoretic origin.

In previous subsections, we only considered dynamics of STP and gauge fields, leaving the

matter particle as a source of potential. It is nature to consider the interaction between

matter field and gauge field as well. To do so, we introduce the matter field in Lagrangian

as follow

Ltotal = −
1

4
F̃µν F̃

µν − iψ̄γµD̃µψ +mψ̄ψ (8.59)

D̃µ ≡ ∂µ + ieÃµ (8.60)

This interaction can be understood as an effective representation of the collision between

matter particle and STP vortices, though their are no terms representing vortices in the

Lagrangian. This is because the dynamics of vortices now is equivalent to gauge field in

3+1-dim. Other collisions between matter particle and STP are not considered in this

section, as we will see, they also play important roles in deriving gravity between matter

particles.

In global, the STP and gauge field are decoupled, hence all local dynamics have been reduced

to gauge field dynamics in 3+1-dim space-time. Notice the Lagrangian we obtained above is

the same as that in famous QED [29]. Under standard calculation, the interaction between

matter particles will be the Coulomb interaction. However, in framework of MIP, the gauge

field is not originated from matter field, but from STP vortices. This is an essential difference

between modern quantum field theory and the MIP proposed in this article.

Define the four dimensional current as

jµ ≡ iψ̄γµψ (8.61)

we can explicitly see the minimal couple between gauge field Ã and the electronic current j.

The equation of motions now becomes the famous sourced Maxwell equation, as known as

∇⃗ · E⃗ = j0 (8.62)

∇⃗ · B⃗ = 0 (8.63)

∇⃗ × E⃗ = −∂B⃗
∂t

(8.64)

∇⃗ × B⃗ = j⃗ +
∂E⃗

∂t
(8.65)

8.7 Another Derivation of EoM of Photons

In framework of MIP, we had obtained four properties of charges, they are: 1. There are

only two kinds of charges corresponding to left and right chiralities of STP vortices. Same

charges repel each other while different ones attract each other. 2. The charges are quantized

guiding by the Dirac quantization condition derived from STP vortex. 3. Force between

charges are mediated by photons. 4. The force between charges is the Coulomb force.
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Figure 4: Photon as a topolotical excitation: a Hopf link

Based on calculations in previous subsections and discussion of the Hodge duality, we know

some properties of phtons in frame work of MIP. At first, it companies with the non-

pertubative solition solution, as known as the vortex solution. Secondly, it is a gauge field in

2+1-dim normal slice on which another effective auxillary gauge field lives as well. Thirdly,

the 3+1-dim Hodge duality acts on the effective auxillary gauge field does not only resolve

the phase singularity of the STP vortex, it introduces the dual part of 2+1-dim gauge field.

So the 2+1-dim gauge field and its Hodge dual merged into a 3+1-dim gauge field, which is

the photon field, which means on 3+1-dim space-time, the photon field can be understood

as toplogical excitations of 2+1-dim gauge field, the topological configuration is known as

the Hopf link excitation. We now clarify the conclusion in detail since it is very important

to understand the spin of photon, which has a zero mass.

In framework of STP vortex, the vortex tube is made of two fields, one is the STP field ϕ ,

whose gradient defines the flow direction of the vortex, the other is 2+1-dim gauge field A

whose field strength characterizes the spinning direction of the vortex. So in this picture,

A describes the rotation and ϕ the flowing. Under the Hodge duality, the dynamics of the

soliton part of STP field is equivalent to another gauge field A′ , which is Hodge dual to A.

Topologically, the vortex tube reprensents a Wilson loop, its Hodge duality is t’Hooft loop.

Put them together forms a famous topological object, the Hopf link, as shown in Fig.4. The

Hopf link is obvious a non-local object. The topological stability of the Hopf link protects it

from pertubative destruction, so it can propagate in space-time without dissipation unless it

meets another vortex. This is very similar to what happens in electromegnatic interaction,

where photons propagates the interaction between charges. We had seen the equation of

motion of the Ã, aka the joint representation of A and A′ , is nothing but the Maxwell

equations. The Ã field is an effective representation of the Hopf link.

There are two circles in a Hopf link, they wind the topological subgroup (mathematically,

the minimal torus) of Lorentz group separately. As we knew in previous section, they are left

and right hand topological circles, each corresponds to a spinor fiber. However, in physics,

there are no purely topological objects. So we need to consider the dynamics of the Hopf

link, say, the effect resulted from deformation of either circle.

Consider an arbitrary deformation on one of the two circles, it will affect the whole Hopf
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link and defines a self isomorphism as follow

A : ΛL ⊗ ΛR → ΛL ⊗ ΛR (8.66)

here A denotes the self isomorphism on ΛL⊗ΛR, ΛL and ΛR are left and right spinor firbers

respectively. In appendix E, we proved that such a self isomorphism should be a vector map.

Relatively, all derivatives should be changed into covariant derivatives, as

∂µ → Dµ = ∂µ + igAµ (8.67)

This leads to non-trivial local transmition that

[Dµ, Dν ] = DµDν −DνDµ = ig(∂µAν − ∂νAµ). (8.68)

This reflects the local homomorphism deformation. The strength of the deformation is

described by the coefficient g, which relates to charge of matter particle. So we could propose

an assertion: the amount of electric charge reflects the strength of local deformation of local

space-time. The RHS of above equation is nothing but a field strength of four dimensional

gauge field

Fµν = ∂µAν − ∂νAµ (8.69)

Since

Dµ[Dµ, Dν ] = ig∂µ(∂µAν − ∂νAµ)− g2Aµ(∂µAν − ∂νAµ)

= −ig□Aν + ig∂ν(∂
µAµ)− g2∂µ(AµAν) + g2(∂µA

µ)Aν

=
1

2
g2∂ν(AµA

µ) (8.70)

under Lorentz gauge ∂µA
µ = 0,the above equation only have pure derivation contributions,

with vanishing contributions for no-boundary free field. So this equation can be simply

written as

DµFµν = 0 (8.71)

In three dimensional form, it can be written as

∇⃗ · E⃗ = 0 (8.72)

∂tE − ∇⃗ × B⃗ = 0 (8.73)

In another way, because the Hopf link configuration is unchanged under left-right flop sym-

metry, this leads to a electromagnetic duality for field strength Fµν . The left-right flop

symmetry actually means a flop between pair of indices (0, i)↔ (j, k) , this can be achieved

by introducing the Levi-Cevita connection

ϵ0ijk : (0, i)→ (j, k) (8.74)

thus for the field strength Fµν , we have the following dual relation

F̃αβ ≡
1

2
ϵµναβF

µν (8.75)

The Levi-Cevita connection flip electric and magnetic fields in three dimensions, and the

above dual relation reads

E⃗ → B⃗, B⃗ → −E⃗ (8.76)
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electron positron

Figure 5: Photons deliver the interaction between electron and positron

The dual equation in four dimensional is written as

DµF̃
µν = 0 (8.77)

In three dimension, it becomes two equations

∇⃗ · B⃗ = 0 (8.78)

∂tB⃗ − ∇⃗ × E⃗ = 0 (8.79)

Equations (8.72,8.73,8.78,8.79) are Maxwell equations for source-free electromagnetic fields,

which proves in 3+1-dim, the Hopf link transforms the local deformation just the same as

photon propagates in space-time.

The figure fig.5 shows how a deformation propagates from an electron to a positron, where

red upper arrows denote left topological circles and blue downer arrows denote right topo-

logical circles.

8.8 Photon and vortex tube

We had already known that in framework of MIP, the spins of matter particles are originated

from collisions between them and STP along topological circles in local space-time. Now

we knew the photon could be represented as a Hopf link, which also is winding topological

circles in 3+1-dim local space-time. So it is possible the spin of photons are also originated

from STP.

In case of matter particles, for examples, electron and positron, their spins are sourced from

local winding along left and right topological circles U(1)L and U(1)R in local space-time,

respectively. At arbitrary moment, electron or positron has a phase angle φL or φR. These

two phase angles are undetermined. It means electron or positron has a local phase angle

symmetry, which is U(1) symmetry. Because it is deduced from local space-time symmetry,

it is a gauge symmetry.

Let us choose the phase angle be θ . The identical principle for fundamental particles

requests the following equations

ψ → ψe−iφL ≡ ψe−iθ, ψ̄ → ψ̄e−iφR ≡ ψeiθ (8.80)

from which we know

φL = −φR = θ (8.81)

It means the gauge group U(1) is the diagonal subgroup of U(1)L×U(1)R , with transition

matrix be -1. This perspective could be extend to higher dimensional transition matrices,

which will leads to non-Abelian gauge groups, for example, SU(2) or SU(3) .
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In this picture, photon is represented as a Hopf link of 2+1-dim gauge fields, it is massless.

However, it carries the information of collisions between matter particle and STP vortices.

So it will also record the motion of the matter particle, as well as its spin. Since it is a (1, 1)

representation of the topological subgroup of Lorentz group. Therefore, from the Hopf link

proposition, we obtained photon has spin 1, and massless, and satisfies Maxwell equations.

It actually explains how a massless photon has non-zero spin.

8.9 The generation of charged leptons in MIP

In the frame of MIP, there are no more than 3 generations of charged leptons.

According to MIP, the mass of matter particles is a statistical mass deriving from collision

of STP. This collision effects of STP can be described by an effective potential V (x) ,which

reflects the strength of the interactions between STP and matter particles and will vary with

the statistical mass: the bigger the statistical mass, the stronger effective potential you will

get. If the particle is massless, there is no collision. Therefore the space is homogeneous

and isotropic so that we can write V (x) = 0. On the other hand the previous discussion

has shown us that the 3+1-dimensional electromagnetic field is born in vortex solution in

2+1-dimensional spacetime.

In the following we will make a study of the number of generations of charged leptons in

the Standard Model, which is still an open question. Crossing any point O in 3-dimensional

space there are 3 independent orthogonal 2-dimensional planes. Take O as the origin and

choose rectangular coordinate system with the coordinates (x0, x1, x2, x3) . The Lagrangian

equipped with vortex solution in the 2+1-dimensional subspaces can take the following forms

L2+1
a = ∂µϕ

∗∂µϕ− λa
2

(
ϕϕ∗ − F 2

)2
, (8.82)

with a = 1, 2, 3 respectively corresponding to 3-dimensional spacetime:

(x0, x2, x3), (x0, x1, x3), (x0, x1, x2),

λa is the coupling constant which reflects the strength of the effective potential and is closely

related to the statistical mass of the particle. If λa = 0, that is V (x) = 0, indicating the

particle is massless ,there is neither collision nor vortex solution. So the statistical mass is

an essential prerequisite for a particle to get charge. Following the steps in the previous

section, bring in the gauge field A⃗ and investigate the excited states near the lowest point

of the potential. From (8.27), we get

L2+1
a = LĀ + Lϕ = −1

4
FijF

ij +
1

4
fijf

ij , (8.83)

with (i, j) taking values in the corresponding subspace. For the sake of simplicity, we have

chosen the coupling constants of the gauge fields to be 1. Now the Lagrangians do not

obviously involve λa any more and therefore have nothing to do with the statistical mass of

the particle. Take Hodge ∗ duality, and lift the 2+1-dimensional theory to 3+1-dimensional
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spacetime. We take the notation Fαβ = iϵijαβfij . For L
2+1
1 ,

L2+1
1 = −1

4
FijF

ij +
1

4
fijf

ij (8.84)

Here the indexes i, j come from the subspace (x0, x2, x3), with i, j = 0, 2, 3. The independent

components of the field strength are F02, F03, F23, f02, f03, f23. and
Fαβ = iϵ02αβf02 ⇒ F13 = −if02
Fαβ = iϵ03αβf03 ⇒ F12 = if03

Fαβ = iϵ23αβf23 ⇒ F01 = −if23

(8.85)

Here we take the usual notations as gµν = diag(1,−1,−1,−1), ϵ0123 = 1. So that for L2+1
1

in the 3+1-dimensional spacetime, we have

L3+1
1 = −1

4
F̃µν F̃

µν = −1

4
F̃ijF̃

ij +
1

4
F̃αβF̃

αβ

= −1

4
F̃ijF̃

ij − 1

4
f̃ij f̃

ij (8.86)

with

F̃µν =


0 −if̃23 F̃02 F̃03

if̃23 0 if̃03 −if̃02
−F̃02 −if̃03 0 F̃23

−F̃03 if̃02 −F̃23 0

 (8.87)

Following the same way, for L2+1
2 , we get

Fαβ = iϵijαβfij ⇒


Fαβ = iϵ01αβf01 ⇒ F23 = if01

Fαβ = iϵ03αβf03 ⇒ F12 = if03

Fαβ = iϵ13αβf13 ⇒ F02 = if13

(8.88)

L3+1
2 = −1

4
F̃µν F̃

µν = −1

4
F̃ijF̃

ij +
1

4
F̃αβF̃

αβ

= −1

4
F̃ijF̃

ij − 1

4
f̃ij f̃

ij (8.89)

with

F̃µν =


0 F̃01 if̃13 F̃03

−F̃01 0 if̃03 F̃13

−if̃13 −if̃03 0 if̃01

−F̃03 −F̃13 −if̃01 0

 . (8.90)

For L2+1
3 , we can obtain

Fαβ = iϵijαβfij ⇒


Fαβ = iϵ01αβf01 ⇒ F23 = if01

Fαβ = iϵ02αβf02 ⇒ F13 = −if02
Fαβ = iϵ12αβf12 ⇒ F03 = −if12

(8.91)

L3+1
3 = −1

4
F̃µν F̃

µν = −1

4
F̃ijF̃

ij +
1

4
F̃αβF̃

αβ

= −1

4
F̃ijF̃

ij − 1

4
f̃ij f̃

ij (8.92)
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with

F̃µν =


0 F̃01 F̃02 −if̃12
−F̃01 0 F̃12 −if̃02
−F̃02 −F̃12 0 if̃01

if̃12 if̃02 −if̃01 0

 . (8.93)

According to the above, starting with 3 different 2+1-dimensional Lagrangians L2+1
a , we

end up with the 3+1-dimensional Lagrangians which have the uniform description as

L3+1
a = −1

4
F̃µν F̃

µν = −1

4
F̃ijF̃

ij +
1

4
F̃αβF̃

αβ

= −1

4
F̃ijF̃

ij − 1

4
f̃ij f̃

ij . (8.94)

In fact they are the same one since they can be converted to each other by rotating the

proper coordinate axis as follows

L3+1
1 ← (ê1 ↔ ê2)→ L3+1

2 ← (ê2 ↔ ê3)→ L3+1
3 , (8.95)

which is equivalent to internal rotations of the gauge fields A⃗, a⃗. For the electromagnetic

field arising from the lepton with fundamental charge in 3+1-dimensional spacetime, when

we trace back to its birth in 2+1-dimensional subspace, we will find out we have 3 degrees

of freedom described by λa, a = 1, 2, 3, and just corresponding to the 3 different subspaces.

Therefore the type of charged leptons is no more than 3. Actually the modern science

has told us there are 3 generations of charged leptons in our real world, which is just in

accordance with λ1 ̸= λ2 ̸= λ3 ̸= 0 in our framework and from the aspect of STP the local

isotropy of spacetime is broken. In conclusion, in the frame of MIP, there are no more

than 3 generations of charged leptons, which is firmly rooted in the fact that we live in a

3+1dimensional spacetime.

8.10 Conclusion of the section

In this section, from the MIP picture, we explained the origin of electromagnetic interac-

tion in detail. In framework of MIP, the 3+1-dim electromagnetic field represents itself as

a Hopf link exicitation made of 2+1-dim gauge field and its Hodge dual partner. It is a

topological state. From this topological configuration, we obtained the Maxwell equations

in two different ways, also from which, we explained why massless photons have spin 1. In

this section, we studied four properties of electric charges, say, positive and negative, quan-

tization, repelling and attracting , Coulomb inverse square law ,and equations of motions of

photons, which propagates the Coulomb interaction between charged particles. In addition,

together with the charge amount calculated in section 5, we obtained all five properties of

the electric charge.

There is one additional expression for the STP vortex configuration.In this section, we

only considered the non-pertubative potential came from matter particle. However, a non-

pertubative disturbance of space-time energy does not only have such a single origin in our

universe. In early universe, the disturbance is very large and STP vortices could also be gen-

erated as well as its partner field, the photon field. It implies in early time, the universe was
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dominated by radiation, which coincides with observations in cosmology. Another example

for non-pertubative potential is black holes, near the horizon of a black hole, the space-time

energy disturbance is quite large, and it will also generate electromagnetic radiation. This

kind of radiation has a completely different origin comparing with Hawking radiation. This

may offer quite a lot of new perspectives on black hole and cosmology researches.

Last and most importantly, we derived the generation for charged leptons. This is a com-

pletely new result and one can not derive this law in current quantum field theory framework.

Within the MIP framework, by invoking the STP vortices, the generation is a direct infer-

ence.

9 Radiation of charged particles in the MIP framework

In classical physics, there is an obvious difficulty from the stable existence of atoms. Accord-

ing to Maxwell’s electromagnetic theory, accelerated electrons radiate energy in the form of

electromagnetic waves. The electrons orbiting the nucleus are constantly accelerating, so

the orbiting electrons should continue to radiate energy, causing the electrons to spiral into

the nucleus, and stable atoms will cease to exist.

Bohr broke the law of classical physics by postulating that electrons do not emit photons as

they accelerate around the nucleus. Radiation occurs only when electrons transition from a

higher energy level to a lower energy level. More than a hundred years since Bohr model,

the original difficult question still exists: Why don’t electrons radiate photons when they

orbit in hydrogen atoms? According to classical electrodynamics, accelerating electrons will

radiate electromagnetic waves, resulting in continuous loss of energy. However, the Bohr

model cannot explain why electrons in a stationary state do not emit electromagnetic radi-

ation.

Although the Bohr model was only the initial attempt of quantum mechanics, this difficult

issue was also covered up in the Copenhagen interpretation after the mature development of

quantum mechanics. Copenhagen interpretation’s answer to this question contains several

interrelated but not completely unified guidelines:

1. Wave-particle duality. When an electron is detected by an experimental instrument, it is

a localized particle. When experimental instruments do not detect electrons, electrons are

non-local waves. Therefore one cannot talk about the speed and acceleration of electrons.

2. The probability wave from Born’s rule is also an important part of Copenhagen interpre-

tation, which believes that the waves in the wave-particle duality are not real fluctuations,

but fluctuations of probability amplitude. If it is a physical wave, then the charge will have

a distribution in space. However, experiments have proved that the charge is quantized and

always localized.

3. Uncertainty relationships. An electron cannot have a definite velocity and coordinates at

the same time. Therefore, electrons do not have a trajectory, so the radiation predicted by

classical electrodynamics is out of the question.

The above views were originally just the opinions of the Copenhagen school, but later

gradually evolved into the mainstream interpretation in the physics community. This inter-
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pretation does not really solve the problem of orbiting electronsin hydrogen atoms and not

emitting photons from first principles. According to the MIP proposed in this article, the

trajectory of electrons in hydrogen atoms is real, which has real physical coordinates and

speeds. As a real object, electrons move locally in atoms and cannot maintain a state of lin-

ear and uniform motion, so they must have acceleration. How to make electrons accelerate

without radiating at the same time is the core issue of this chapter.

9.1 Radiation of free charged particles

Let’s first look at the electromagnetic field generated by an arbitrary moving point charge a

ϕ =
e

R(1− v⃗·ˆ⃗n
c )

(9.1)

A⃗ =
ev⃗

cR(1− v⃗·ˆ⃗n
c )

(9.2)

Where R⃗ = Rˆ⃗n is the radial vector from the point where the charge is located to the

observation point, and v⃗ is the speed of the charged particle. If it is a free electron performing

Brownian motion, the random collision of STP is isotropic. In the MIP framework, the

average number of STP collisions with electrons within one second is about 1020 times. In

other words, the typical time scale discussed in the theory derived fromMIP is 10−20 seconds.

The interval between collisions is extremely short. Within the experimentally measurable

time interval △t, the average speed and average acceleration of charged free particles are

zero

< v⃗ >= 0 (9.3)

< ˙⃗v >= 0 (9.4)

Below we denote the radial probability distribution of free electrons in velocity space as ρf (v).

Its angular distribution is spherically symmetric, which is different from the probability

distribution ρb of the bound state. Note that the time of experimental observation is t, and

the time when radiation occurs is t′, and the two satisfy t′ + R(t′)
c = t. With 10−20s ≪

△t≪ t− t′, the displacement of charged particles caused by a single STP collision is much

smaller than R, therefore the displacement of the electron within the time interval △t and
the time difference of a single collision can be ignored, that is, multiple collisions within

the time interval △t are considered to occur simultaneously. According to the definition of

electromagnetic field

E⃗ = −1

c

∂A⃗

∂t
−∇ϕ (9.5)

B⃗ = ˆ⃗n× E⃗ (9.6)

The radiated electric field generated by an arbitrary moving point charge is

E⃗ =
e

c2R(1− v⃗·ˆ⃗n
c )3

ˆ⃗n× ((ˆ⃗n− v⃗

c
)× ˙⃗v) (9.7)

The corresponding radiated magnetic field is

B⃗ = ˆ⃗n× E⃗ (9.8)
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Due to the spherical symmetry of the probability distribution, without loss of generality,

taking the z axis along the direction of ˆ⃗n, we can write down the radiated electromagnetic

field in spherical coordinates as

E⃗ =
e

c2R(1− v cos θ
c )3

{ d
dt′

(
v

c
cos θ)(v sin θ cosϕêx + v sin θ sinϕêy) (9.9)

−(1− v

c
cos θ)

d

dt′
(v sin θ cosϕêx + v sin θ sinϕ ˆey)}

B⃗ =
e

c3R(1− v cos θ
c )3

{ d
dt′

(
v

c
cos θ))(v sin θ cosϕêy − v sin θ sinϕêx) (9.10)

−(1− v cos θ) d
dt′

(v sin θ cosϕêy − v sin θ sin phi ˆex)}

Therefore, the statistical average collision effect of STP within △t is

< E⃗ >=
1

4π

∫ π

0

sin θdθ

∫ 2π

0

dϕ

∫
dvE⃗ρf (v) (9.11)

< B⃗ >=
1

4π

∫ π

0

sin θdθ

∫ 2π

0

dϕ

∫
dvB⃗ρf (v) (9.12)

where ρf (v) is the velocity distribution function of Brownian motion independent of time,

that is, we have

<
d
dt′ (v sin θ sinϕêx − v sin θ cosϕêy)

(1− v
c cos θ)

2
>=

d

dt′
<

(v sin θ sinϕêx − v sin θ cosϕêy)
(1− v

c cos θ)
2

> (9.13)

Therefore we can get

< E⃗ >=< B⃗ >= 0 (9.14)

We have proved that free electrons do not radiate electromagnetic waves when performing

Brownian motion. The electromagnetic field generated by a single collision in STP is mag-

ically canceled due to the existence of spherical symmetry of the probability distribution!

The above proof has two important meanings:

1. In the Copenhagen interpretation, free particles are not moving in a straight line at

a uniform speed, because uniform straight line motion has well defined trajectory, that is

having well defined momentum and position at every moment. In other words, Copenhagen

interpretation itself cannot prove that free electrons do not emit photons.

2. Maxwell’s electromagnetic theory still holds true in the microscopic world. Only by com-

bining electromagnetic theory with Brownian motion, the preposition that free electrons do

not emit photons can be proved. It is this combination that provides the objective reality

picture of quantum mechanics.

9.2 Radiation of charged particles in bound state

Now let’s study electrons in the hydrogen atom as an example. We investigate the most

important case first, where the hydrogen atom is in its lowest energy state (the ground

state). When the electrons are in the ground state, it takes about 1.5 × 10−15 seconds for
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the electrons to orbit the nucleus. This time scale is still five orders of magnitude larger than

the time scale of STP collisions. Therefore, the collision time interval is extremely short,

and the assumption in the previous section that multiple collisions occur simultaneously still

holds. For a stationary hydrogen atom, the wave function of the electron bound state is

ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ) (9.15)

The probability distribution of the radial position of the electron, that is, regardless of the

direction, the probability of finding an electron in the spherical shell (r, r + dr) is

r2dr

∫
dΩ|ψnlm|2 =

∫
χ2
nl(r)dr (9.16)

The probability of an electron depending on the angle is

|Ylm(θ, ϕ)|2dΩ ∝ |Pm
l (cos θ)|2dΩ (9.17)

The distribution of electrons in the ground state of the hydrogen atom is a spherically

symmetric function, that is, the distribution function Y 0
0 (θ, φ) has nothing to do with the

spherical coordinate angles θ and φ

Y 0
0 (θ, φ) =

√
1

4π
(9.18)

It should be noted that although the Hamiltonian of the hydrogen atom system has spherical

symmetry, only the electron distribution of the S state preserve this symmetry. This proof

is actually universal and applies to S states of any energy level (l = 0 is called S state),

such as 1S, 2S, 3S, etc. The distribution of electrons in hydrogen atoms in any S state is

a spherically symmetric function. There is also a distribution function Y 0
0 (θ, φ) that has

nothing to do with the spherical coordinate angles θ and φ. Through the Fourier transform,

we can find the wave function in the momentum space

Υnlm(P,Θ,Φ) =

{
1√
2π
e±imΦ

}{√
(2l + 1)(l −m)!

2(l +m)!
Pm
l (cosΘ)

}
(9.19)

×

{
π22l+4l!

(γh)3/2

√
n(n− l − 1)!

(n+ l)!

ζl

(ζ2 + 1)l+2
Cl+1

n−l−1(
ζ2 − 1

ζ2 + 1
)

}

Where γ = Z
na0

, ξ = P
ℏγ , a0 is the Bohr radius. For the hydrogen atom Z = 1, the probability

density of the momentum space is ρnlm = |Υnlm(P,Θ,Φ)|2. For any S state, the probability

density of momentum space simplifies to

ρn00 = |Υn00(P,Θ,Φ)|2 = ρn00(P ) (9.20)

It can be seen that in any S state, the probability distribution of momentum space is spheri-

cally symmetric. The probability density of the velocity space ρb(v) can be obtained through

P = mv. Because the angular distribution of this probability is spherically symmetrical, it

can be obtained with the same method in the previous section

< E⃗ >=

∫ π

0

sin θdθ

∫ 2π

0

dϕ|Y 0
0 (θ, φ)|2

∫ ∞

0

dvE⃗ρb(v) = 0 (9.21)
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< B⃗ >=

∫ π

0

sin θdθ

∫ 2π

0

dϕ|Y 0
0 (θ, φ)|2

∫ ∞

0

dvB⃗ρb(v) = 0 (9.22)

Where leads to an important conclusion: the electrons in the ground state do not radiate

photons, which guarantee the stability of the ground state. The electrons will not continu-

ously radiate photons and eventually fall into the nucleus.

Therefore, we have proved that the bound charged particles do not radiate electromagnetic

fields in any S state. From the perspective of classical physics, the electrons in hydrogen

atoms are interacting with a centripetal force and must move in a plane, so it is impossible

to have a spherically symmetrical distribution. It is the random collision of STP that causes

electrons to be distributed on the spherical surface with equal probability, and they can

move back and forth between different spherical surfaces. Within the framework of MIP,

the existence of any S state of electrons in hydrogen atoms is precisely the objective proof

of STP.

For stationary states other than the S state, the probability density of the electron momen-

tum space is ρnlm = |Υnlm(P,Θ,Φ)|2 = ρnlm(P,Θ), the probability density of the velocity

space ρb(v,Θ) can be obtained through P = mv. It can be seen that due to the existence of

angular momentum, the spherical symmetry of the velocity probability angular distribution

is destroyed, so the observation point cannot be taken on the z-axis generally. However,

according to the axial symmetry, the observation point can still be taken on the xoz plane.

The corresponding calculation is much more complicated, but we believe that under the

action of the atomic nucleus at △t time interval, the electromagnetic fields generated by

multiple collisions of STP still have similar mutual cancellation. Eventually, electrons can-

not continuously radiate electromagnetic waves in any steady state of hydrogen atoms.

Starting from the random collision of STP under MIP, we demonstrated three important

conclusions:

1. Free electrons do not radiate photons.

2. The electrons in the S state (the ground state is the S state with the lowest energy) in

the hydrogen atom can not radiate photons continuously.

3. Only by combining electromagnetic theory and Brownian motion, the radiation problem

of microscopic charged particles can be perfectly solved.

Based on these three conclusions, we have fundamentally solved the difficult problems that

have never been truly solved from the Bohr model to the Copenhagen interpretation. There-

for, we have constructed a physical picture about the motions of charged particles in the

microscopic world.

9.3 Copenhagen interpretation revisited

The Einstein-Bohr debate over quantum mechanics has never ended since a century ago.

Einstein held the view of physical realism and strongly believed that a complete theory can

not only explain and predict experimental results, but also describe the objective reality of

the physical world. For this reason, Einstein proposed the EPR paradox to firmly oppose

that the wave function of quantum mechanics is already a complete description of physical

reality. Bohr and the Copenhagen school led by Bohr believed that before experimental mea-

surement, the objective reality of the physical world could not be completely described by
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any theory. To give a famous example, the Copenhagen interpretation believes that before

people detect electrons experimentally, we cannot even say that electrons exist objectively.

The Einstein-Bohr debate had long remained at the level of philosophy or thought exper-

iments until the discovering of sophisticated experimental results of Bell’s inequality. The

experimental results definitely violate Bell’s inequality, which deny the possibility of any

local hidden variable theories replacing quantum mechanics. These experiments seemed

to be a great victory for Copenhagen interpretation, so criticisms of Copenhagen interpre-

tation gradually became a forbidden area in modern physics, where all the loopholes of

Copenhagen interpretation are covered up. The problem of charged particle radiation dis-

cussed in detail in this chapter is a typical example. Whether it is a free electron or an

electron in a bound state, Copenhagen interpretation cannot directly answer a question:

Why don’t electrons continuously radiate electromagnetic waves if they are not moving in

a straight line at a uniform speed? In our view, this is a very serious problem that must

be focused on, because there is the big question of the objective reality of the microscopic

world: How do electrons move before they are detected by experimental instruments? On

the one hand, this motion must be consistent with all quantum mechanical experiments.

On the other hand, it must not violate the predictions of electromagnetic theory. Only by

solving this big problem, we can truly establish a materialist explanation of the microscopic

world. According to MIP, we gave direct answers to following questions: 1. Before the

electrons are detected by experimental instruments, the free electron performs frictionless

Brownian motion. The electrons are not interfered by any human experimental behaviors,

therefore Brownian motion is the underlying reality of the objective world. For the first

time, we gave precise answers to questions that Copenhagen interpretation believed could

not be asked or answered. Starting from this answer, a series of fundamental results such as

Schrödinger’s equation, Born’s rule and Heisenberg’s uncertainty principle can be naturally

obtained. 2. Free electrons can not continuously radiate electromagnetic waves. The reason

is that the high-frequency random collisions of STP cause the electromagnetic waves radi-

ated by every instantaneous accelerated motion to cancel each other out. If there is no STP

and no Brownian motion of electrons caused by STP, free electrons will inevitably radiate

electromagnetic waves continuously which is a huge contradiction with the experimental

results. 3. The electrons in the S state in the hydrogen atom will not continuously radiate

electromagnetic waves, because the formation of spherically symmetric S state is precisely

the result of the high-frequency random collision of STP. If there is no STP, electrons can

only move in a plane under the action of centripetal force and there is no possibility for a

spherically symmetric distribution. This spherically symmetric distribution combined with

the characteristics of Brownian motion, ensures that the electromagnetic waves radiated by

the instantaneous acceleration motion of the S-state electrons cancel each other out. 4. The

analysis in this chapter logically leads to a major conclusion: electromagnetic theory is fully

applicable in the microscopic world. The underlying motion of microscopic charged particles

is purely classical and classical electrodynamics can be accurately described, provided that

the Brownian motion is caused by the high-frequency collision of STP. There is no need to

artificially postulate that the stationary state does not radiate like the Bohr model. The

characteristics of Brownian motion will offset the electromagnetic radiation generated in-

stantaneously. We must emphasize that classical physics cannot be assumed wrong in the
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microscopic world. Classical physics must be analyzed in depth from first principles. It is

imprecise and wrong to conclude that classical electrodynamics is not applicable to micro-

scopic particles based solely on the experimental stability of atoms, which obviously is not

radiating electromagnetic waves. Within the framework of MIP, we proved that Maxwell’s

electromagnetic theory is fully applicable in the microscopic world. Free charged particles

and S-state electrons of hydrogen atoms do not radiate electromagnetic waves. In summary,

we have overcome the big problems that have existed since the beginning of Bohr’s model,

and brought a final end to the century-old debate between Einstein and Bohr. Einstein be-

lieved that the wave function cannot be a complete description of physical reality. This view

is correct because the Brownian motion of material particles caused by STP is a complete

description of physical reality. However, the idea that “God does not play dice” is wrong, by

which Einstein meant that the behavior of the material world at its most fundamental level

is not probabilistic. Because the underlying objective reality is that material particles are

constantly performing Brownian motion. Every step of Brownian motion is probabilistic by

its own nature . Only the existence of STP can present the probabilistic quantum mechan-

ical behavior of microscopic particles and construct an objective and realistic picture of the

microscopic world at the same time. This is the true essence of materialist interpretation of

quantum mechanics proposed in this article.

10 STP Vortices as an origin of fermion spin

In this chapter, we will discuss the essence of spin from the topological structure of STP

vortex.

While introducing into the gauge field in the 2+1 dimensional normal space, the singularity

at the center of votex was resolved as a S1. On the differential geometry point of view, this

S1 can be seen as the spatial edge of the vortex. Because of Hodge duality, we can obtain the

dual S1 which will be denoted as S1⋆. Hence in the 3+1 dimensional space-time, the simplest

topological structure involving S1 and S1⋆ is a Hopf link, which is a direct intersection of

these two circles. As known in knots theory, there are more fundamental connect way for

S1 and S1⋆. The fundamental stone of topological intersection is the famous skein relation,

which can be explicit as in the Fig.6

A single Hopf link actually have two twisted points, each of them is the mirror image of the

other one. Mathematically, the two twisted points Hopf link is not the most fundamental

topological structure. The most fundamental one is the single twisted point connection,

which is shown in Fig.7

Within the STP vortex configuration, we could have the following algebra-knot correspon-

dence: the fundamental representation of the Lorentz group corresponds to the single twisted

point connection of two cirles, which are edges of two dual vortices. The two twisted points

connection corresponds to the adjoint representation of the Lorentz group.Under this frame-

work, the algebraic representation of Lorentz group and the topological knot representation

has a deep and explicit corelation.
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Even in mathematics, this correspondence is a new conjecture, we do not have a direct

proof at this stage. However, the indirect way to proof the conjecture is worth to study. For

example, connect the affine representation to each other, that is saying, finding an integrable

correlation between Schur polynomial and Jones polynomial.

α β+ γ+ = 0

Figure 6: Skein relation

10.1 Topological phase transition of STP vortices

There are vortices on the tangent space and the normal space, since from the point view

of isotropic STPs, there are no differences between these two spaces. Actually, in previous

chapter, what we solved on the normal space has its Hodge dual on the tangent space.

Therefore, in 3+1 dimensional space-time, we need to understand the interaction theory of

two vortices living on dual spaces.

The interaction between two vortices can make centers of them fuse or intersect to each other.

As we had known in previous chapter, because of the existence of gauge field, the singular

center of the vortex had been resolved into a S1. If there are no interactions between S1 and

its dual S1⋆, the dynamics on tangent space and normal space will completely decoupled.

If this is the case, the dynamic of STPs around the matter particle will be un-isotropic and

un-uniform. This obviously violates the physical fact. In other words, if the dynamics on

tangent space and the one on normal space do not couple to each other, the space-time will

be choked as slides. Hence the naturally way to couple these two dynamics of STPs leads

to a phase transition.

The simplest topological phase transition is as shown in Fig.7. Notice that Edward Witten

had used the skein relation developed by John Conway in 1969 to study knot invariant. It

Figure 7: Topological phase transition of STP vortices
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is amazing that the topological phase transition shown in7 is the same as John Conway’s

skein relation.

Therefore, we have already known the two vortices on tangent space and normal space

respectively can form a topological twisted point through topological transition as well as

the skein relation. For current double vortex case, because we could related the two vortices

to each other by a single Lorentz rotation. This means the double vortex sysem has an

internal symmetry. A careful study reveals the group is a double cover of SO(3), respect to

the Z2 symmetry of the double vortices. this is because the center of STP vortex is what the

matter particle sit on, hence in 3+1 dimensional spacetime, the two vortices have the same

center. We splitted these two vortice by hand is a convenient way to explictly reprensent

them. Therefore, the rotation subgroup of Lorentz group is the double cover of SO(3) , that

is, SU(2). This concludes the internal consistence between topological twisted point and

spin.

10.2 The isotropic vortex

In previous chapter, we introduced into the 2+1 dimensional gauge field for vanishing the

energy singularity at the center of STP vortex. The resolving of the singularity as an S1

is the same as to introducing a U(1) principal bundle structure in mathematics. The 2+1

dimensional gauge field is nothing but the connection on this principal bundle. However,

the resolving operation blows up the singularity on the center of STP vortex does not

reconfiguration all properties the singularity. As the center of STP vortex, the singularity

is isotropic, but the circle S1 is orientable. This means we covered the un-orientability

of the singularity by the resolving operation. Now it is clear that we need to recover the

un-orientability on the circleS1.

In 1976, T. Martin [30] noticed that there is a correspondence in mathematics as follows.

The rotation and translation effects can be separated geometrically. Hence there are two

connections correspond to rotation and translation, respectively. The rotation connection

corresponds to the torsion tensor, which has the similar meaning as curvature to translation

effects.

We now consider the 2+1 dimensional STP vortex, it is nothing but a microscopic space-

time. In this space-time, the torsion can not be negligible. The existence of microscopic

torsion has no influence to the general relativity, since the geodesic line is unrelying on the

torsion at all.

As saying in MIP, the matter particle obtains the mass property by collision of STPs and

itself. In this picture, without STPs, the matter particle generated a space-time potential.

The potential leads to a curved space-time around the matter particle. Microscopically, the

metric around the matter is curved.

Before introducing the torsion tensor, we need to introduce the everywhere othogonal tangent
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vielbein field ea(x) as following

ea(x) = eia
∂

∂xi
, a = 0, 1, 2 (10.1)

it satisfies the relation as:

gij = ηabeiae
j
b, ηab = gije

j
ae

i
b . (10.2)

It is natural to define the dual cotangent vielbein field, as:

θa(x) = θai dx
i (10.3)

they satisfies the normal condition

< θa, eb >= δab (10.4)

and

gij = ηabθ
a
i θ

b
j , ηab = gijθai θ

b
j (10.5)

now the differential interval

ds2 = gijdx
idxj = ηabθ

a
i θ

b
jdx

idxj = ηabθ
aθb (10.6)

the spin connection can be defined by covariant differential on tangent vielbein field, as:

ωb
iaeb = Diea, ωb

ia =< Diea, θ
b > (10.7)

where ωb
ia(x)is the spin connection coefficient, and

ωb
a(x) = ωb

ia(x)dx
i (10.8)

is the spin connection 1-form field. The covariant differential now is defined as following:

D′ = ∂ + ω (10.9)

when acting on a vector field ξa(x),

D′
iξ

a =
∂ξa

∂xi
+ ωa

ibξ
b (10.10)

Now we can discuss the coupling between spinor field and space-time under local Lorentz

symmetry. If there is a spinor field ψ(x), aka a spin representation of local Lorentz group,

then on dynamical point of view, the momentum term of this spinor field can be written as:

D′
iψ = ∂iψ +

1

2
ωab
i Σabψ (10.11)

here Σab is the spin representation of Lorentz algebra,

[Σab,Σcd] = ηbcΣad + ηadΣbc − ηacΣbd − ηbdΣac (10.12)

Introducing the spin connection ωab
i , the parallel transition of cotangent field θ(x) defines

the torsion of this manifold

τaik = D′
iθ

a
k −D′

kθ
a
i

=
∂θak
∂xi
− ∂θai
∂xk

+ ωa
ibθ

b
k − ωa

kbθ
b
i (10.13)
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it is the field strength of the cotangent vielbein. When it is not zero, the manifold is not

torsion-free and hence intrinsic twisted.The un-vanishing of the field strength of cotangent

vielbein implies there is a multi-value property when we joint two 2+1 dimensional theories

into a single 3+1 dimesnional theory. We know there exists a sigularity at the center of STP

vortex, meanwhile the vielbein rounds the singularity, the vielbein will generate a mon-

odromy matrix at the singularity. To incomplete the contribution of this 2× 2 monodromy

matrix, we need to consider the following action:

I =

∫
d3xTr[ϵijkθai τ

a
jk] +

∫
d3x⋆Tr[ϵijkθa⋆i τa⋆jk ] (10.14)

here the Tr means summation on vielbein indices. The ⋆ indices means those torsion related

variables are defined on dual 2+1 dimensional space-time. As we saw, (10.14) actually is a

simple split joint of two 2+1 dimensional Chern-Simons theory defined on different boundary

of the 3+1 dimensional space-time. Therefore, we need to introduce the joint constraint,

which is obvious the Hodge duality. It is easy to proof that within the following constraint,

the first term and the second term in (10.14) Hodge dual to each other. The constraint is :

ϵijkθai = ϵijklτa⋆il , ϵijklτajk = ϵijlθa⋆j (10.15)

Now the two 2+1dimensional Chern-Simons theory is fused into a 3+1 dimensional instanton

interaction:

I = 2

∫
d4xϵijklTr

(
τa⋆il τ

a
jk

)
(10.16)

We see, under the fused situation, the contribution of cotangent vielbein is completely equiv-

alent to a topological instanton contribution of a gauge field. The instanton contribution is

nothing but a constant, so now the task is to calculate this constant factor.

Written (10.16) as the differential form, it can be recognized as a characteric number in

3+1dimensional space-time. Notice when accomplish with the cotangent vielbein, on the

2+1 dimensional space-time, the boundary of the vortex could be seen as an S2. We now

joint two S2 into a boundary of 3+1 dimensional space-time. If the concatenation is trivial,

then the 3+1 dimensional spacetime has a boundary with topology S2 × I. However, the

3+1 dimensional space-time is R3,1, when there exists no particles, the boundary is a null

set. The boundary can be seen as an S3 within the matter particle. So it means when

we transform the two 2+1 dimensional vortices, the concatenation of their boundaries (S2)

is non-trivial. The final result of this concatenation is to generate an S3. In fact, this is

the way how the two 2+1 dimensional vortices become a microscopic stable configuration

around the matter particle in 3+1 dimensional space-time.

Now consider the cobordism characteristic number of (10.16), it discribes the phase angle

changing from S2× I to S3. The phase angle difference describes the charactersitic number,

we obtain:

I = 2× vol(S3)

vol(S2)
×N = 2× 2π2

4π
×N = πN (10.17)
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Here N is the topological number according to torsion τ , also known as the winding number.

It describes the multiplicity of the mapping from S2 × I to S3 . In physics, it is the theta

contribution.

When considering the wave function of matter particle, we do not see the contribution of

the characteristic number. Therefore the topological phase transition just contributes the

signature of the wave function, as:

Ψ[N ] = ψ(x, t) exp(iI) = (−)Nψ(x, t) (10.18)

when the particle rotate around some fixed axe one whole circle, the corresponding 2+1

dimensional STP vortex also rotated one times around the S3 , the result is the topological

winding number changes by 1, now

Ψ[N ] → Ψ[N+1] or Ψ[N−1] (10.19)

as

Ψ→ −Ψ (10.20)

so we have proved the spin of matter particle should be 1/2, as known as the Fermionic

property.

From which we observed above, we obtain an important conclusion. The spin statistical

property of matter particle is originate from the un-orintable of singularity sitting on the

center of STP vortex around matter particle. This singularity is double covered, there are two

2+1 dimensional vortices around it. The two vortices reconstruct the singularity by manifold

cobordism and thus incomplete the isotropic property of the singularity. The spin property

of matter particle corresponds to the topological phase transition at the cobordism. In

general, in the frame of MIP, the spin of matter particle describes the topological order that

corresponding to topological phase transition of STP vortices around the matter particle.

10.3 Pauli exclusion principle

We now use s to label the topological order according to the topological phase transition of

STP vortices. For union definition convenience, we let the topological order as a quantum

evolution operator, that is:

e
i
ℏ ŝθ|Ψ⟩ = eiθ/2|Ψ⟩ (10.21)

From this definition we could take this topological order as an operartor that has eigenvalue
ℏ
2 , for example, ⟨ŝ⟩ = ℏ

2 . The parameter of rotation one circle is θ = 2π, subsitute this pa-

rameter into previous equation, one obtains the Fermionic statistical property immediately.

Now let us consider a permutation of two coincident particles. Suppose particle 1 is on the

state |Ψx1
(p)⟩ and particle 2 is on the state |Ψx2

(p)⟩. Then the direct product system of

these two particle is on the state |Ψx1
(p)⟩ ⊗ |Ψx2

(p)⟩. We could rotate the |Ψx1
(p)⟩ as well

as the|Ψx2
(p)⟩ half a cirlce around the center between x1, x2 . Because the vortices around
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these two particles also rotated two half a circles, hence

Tx1,x2
eiπŝ|Ψx1

(p)⟩ ⊗ |Ψx2
(p)⟩ = ei

π
2 |Ψx2

(p)⟩ ⊗ eiπ
2 |Ψx1

(p)⟩

= −|Ψx2
(p)⟩ ⊗ |Ψx1

(p)⟩ (10.22)

here Tx1,x2
exchanges x1, x2. Therefore if there are two coincident matter particles, on the

same state, and sit on a same position, then it is easy to see a direct result from (10.22):

|Ψx(p)⟩ ⊗ |Ψx(p)⟩ = −|Ψx(p)⟩ ⊗ |Ψx(p)⟩ (10.23)

when and only when |Ψx(p)⟩ ⊗ |Ψx(p)⟩ = 0 the previous result can be the case. however,

|Ψx(p)⟩ ⊗ |Ψx(p)⟩ = 0 means the state actually does not exist! So the Pauli exclusive

principle is a natural result in the frame of MIP.

10.4 STP as shepherd of matter particles

MIP explains all the essences of quantum mechanics both qualitatively and quantitatively

without relying on any special hypothesis, which sweeps away the last traces of idealism in

quantum mechanics from the Copenhagen interpretation. Fundamentally, MIP requires a

massless and spinless scalar particle, i.e. STP. The existence of STP is an objective fact

in physics, which is different from the wave function of quantum mechanics. Therefore,

this paper can thoroughly solve a series of extremely important problems that cannot be

answered by quantum mechanics alone:

How can a matter particle be sure that its momentum and position satisfy a certain uncer-

tainy relationship? Why can a matter particle exhibit wave-particle duality? How does a

matter particle know energy levels where it can go and where it absolutely cannot go, that

is , how can they satisfy the Pauli exclusion principle? Quantum mechanics only reles on a

series of postulations to avoid the above problems. MIP not only solves the above problems

by mathematical derivations, but also allows matter praticles behave exactly as required by

quantum mechanical postulations.

At the level of objective reality, all the microscopic behaviors of matter particles are rooted

in their commen shepherd– STP. The random collision of STP, which seems to be chaotic,

is actually the supervisor of all microscopic behaviors of matter particles. The wonderful

quantum world was born because of these ubiquitous supervisors.

Quantum mechanics, as one of the most successful physical sciences, ultimately cannot avoid

the problem of its completeness. In an era where the fundamental question of how matter

particles obey the postulations of quantum mechanics cannot be answered, the completness

of quantums mechanics cannot be treated properly. When the theory of STP and MIP are

discovered, in which STP is the supervisor and shepherd of all quantum behavious of matter

particles, the question of quantum mechanical completeness are ready for profound inves-

tigations. MIP and its STP have taken a big step forward to finally slove the long lasting

puzzle of quantum mechanical completeness.
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11 Muon physics and MIP

11.1 Theoretical framework

Under the framework of MIP, STPs collide with material particles. In quantum field theory,

this is equivalent to introduce a massless scalar field into the theory and its interaction with

material particles. Therefore, the Standard Model of particle physics needs to be revised as:

L = LSM + LST + Lint (11.1)

In the above formula, LSM is the Lagrangian of the standard model of particle physics; LST

is the kinetic energy term of the STPs scalar field, which can be expressed as for:

LST =
1

2
∂µϕ∂

µϕ (11.2)

Since the strength of the collision between STPs and material particles is proportional to the

mass of the particles, the interaction term between STPs and material particles is expressed

as:

Lint = λ
∑

i∈all matter fields

miϕψ̄iψi . (11.3)

Where ψi represents the material particles in the Standard Model, that is, leptons and

quarks. mi is the mass of the corresponding material particles.

Obviously, for material particles, the mass itself already reflects the information of the

collision and interaction between STPs and material particles. So at the tree level, the

interaction (11.3) does not change any physics. But at the order of loop diagrams, the

interaction of the above equation is ignored by the Standard Model of particle physics.

In this chapter, we will consider the modification of muon physics caused by the interaction

of STPs with muons, which includes two aspects. One is the correction of muon anomalous

magnetic moment. The second is the lifetime of muon. Muon physics is considered because

muons are two hundred times more massive relative to electrons. This means that at the

loop diagrams, STPs are about 104 times larger than electrons for the correction of muon

physics. On the other hand, electrons do not decay, and the effect of STPs cannot be verified

in experiments.

11.2 muon anomalous magnetic moment

The anomalous magnetic moment of the muon is contributed by a triangular Feynman

diagram. The single loop contribution of the STPs scalar field to the muon anomalous

magnetic moment can be represented by a Feynman diagram 8. As early as 1972, Jackiw

and Weinberg have calculated the contribution of this graph [31], and its contribution to

the muon anomalous magnetic moment is:

∆gµ =
3λ2m2

µ

8π2
. (11.4)
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Figure 8: Feynman diagram of the contribution of STPs to the anomalous magnetic moment

of muon

Jackiw and Weinberg call this contribution in their paper the ”virtual scalar field” contribu-

tion. Since this ”virtual scalar field” does not exist in the Standard Model, the contribution

of this scalar field is not considered in subsequent experimental verifications. But in MIP,

this scalar field exists undoubtedly , and it refers to the scalar field of STPs. Therefore we

need to consider its contribution to the anomalous magnetic moment of muon.

As early as 2006, Brookhaven National Laboratory in the United States discovered experi-

mentally that there is a 3.3σ difference between the anomalous magnetic moment of muon

and the prediction of the Standard Model[32], that is,

aµ(BNL) = 116592080(63)× 10−11(0.54ppm).

Where aµ =
gµ−2

2 is the difference value of muon anomalous magnetic moment. In 2021, the

Fermi National Laboratory in the United States accurately measured the difference value of

the muon anomalous magnetic moment[33], and the result was:

aµ(FNAL) = 116592040(54)× 10−11(0.46ppm).

Combining two experiments, the average of anomalous magnetic moment is:

aµ(EXP) = 116592061(59)× 10−11(0.35ppm).

From the standard model, the theoretical value of aµ is:

aµ(SM) = 116591810(43)× 10−11(0.37ppm).

The deviation between experiment and theory is:

aµ(EXP)− aµ(SM) = 251± 59× 10−11.

This deviation reaches 4.2σ, so it is a very significant deviation. This means there is a

high probability that the contribution of a certain particle is missing from the Standard
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Model. Under the MIP framework, we believe that this deviation comes entirely from the

contribution of STPs. From this deviation, the coupling constant λ of STPs and material

particles can be determined, Its value is given as follows:

λ2 = (aµ(EXP)− aµ(SM))
16π2

3m2
µ

= 1.18349(±0.27819)× 10−11MeV−2 (11.5)

λ = 3.44019+0.38300
−0.43137 × 10−6Mev−1 (11.6)

Therefore, the introduction of the interaction between STPs and muon can completely match

the theoretical and experimental results of muon anomalous magnetic moment.

11.3 Muon decay problem

Furthermore, to demonstrate the self-consistency of the scalar field introduced into STPs,

we also need to consider the corresponding physics of the single loop interactions between

STPs and material particles. In other words, if the introduction of the STPs scalar field and

its coupling strength λ results in a contradiction between the theory of a certain physical

process and the corresponding experimental results, it is proved that the STPs scalar field

is not the source of the deviation of the muon anomalous magnetic moment. Therefore,

we consider the single loop process in the muon decay problem. With the participation of

STPs, the corresponding Feynman diagram is shown in Figure 9:

Figure 9: Feynman diagram of the single loop contribution of STPs to the muon decay
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The scattering amplitudeM of this box Feynman diagram is:

iM = −g
2
wλ

2mµme

8

∫
d4k

(2π)4
D(k, p,m)

N (k, p,m)
(11.7)

D(k, p,m) = v̄(p2)γ
µ(1 + γ5)(k/+mµ)u(p1)×

ū(p3)(k/− p/3 − p/4 +me)γµ(1− γ5)v(p4) (11.8)

N (k, p,m) =
[
(k2 −m2

µ + iϵ)
] [
((k − p2)2 −m2

W + iϵ)
]
×[

(k − p3 − p4)2 −m2
e + iϵ

] [
(k − p1)2 + iϵ

]
(11.9)

Without introduction of the STP scalar field, the scattering amplitude of the muon decay

can be labeled as follows:

MST =Mtree +M1−loop +M2−loop + · · ·

After introducing the STP scalar field, the absolute square of the scattering amplitude can

be written as:

|M|2 = (MST +M) (M∗
ST +M∗)

= |MST |2 + 2Re

 ∑
all spins

M∗
treeM

+ higher order terms (11.10)

therefore, we only need to calculate Re
[∑

all spinsM∗
treeM

]
to get the correction of the

scattering amplitude.

Figure 10: muon decay tree diagram

Mtree represents the contribution of figure 10, and its expression is as follows:

M∗
tree = −

g2w
8m2

W c2
ū(p1)γ

µ
(
1− γ5

)
u(p2)v̄(p4)

(
1 + γ5

)
γµu(p3) (11.11)

Condensing all Dirac matrices and using Casimir’s trick, we finally get:∑
all spins

M∗
treeM = i

4g4wλ
2mµme

m2
W c2

∫
d4k

(2π)4
[(k + p1) · p4] [(k + p1 − 2p4) · p2]

N (k, p,m)
(11.12)
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We compute this integral using the Mellin–Barnes (MB) representation [34, 35, 36, 37, 38]

developed by V. A. Smirnov et al. (See Appendix F)For the integral kernel in (11.12),

we can do the substitution k + p1 → k, and then use the Mellin–Barnes representation

to express it as factor multiple form of the Γ function(See Appendix F), and finally the

MB integral is used to do the appropriate contour integration. Since there are multiple Γ

function poles that overlap, the order of the contour integration needs to be evaluated at

multiple singular points. We denote the result of the integration of k as F(s, t,m), where

s = (p1 − p2)2, t = (p1 − p3)2 is the Mandelstam variable. In muon’s stationary reference

frame, where p1 = (mµc
2, 0, 0, 0), the decay rate of muon is

dΓ =
⟨|M|2⟩
2ℏmµ

(
d3p2

(2π)32|p2|

)(
d3p3

(2π)32|p3|

)(
d 3p4

(2π)32|p4|

)
× (2π)4δ4(p1 − p2 − p3 − p4) (11.13)

The momentum of the electron, anti-electron neutrino and muon neutrino are also clearly

written down, which are:

p2 = (|p2|c,p2), p3 = (
√
|p3|2c2 +m2

ec
4,p3), p4 = (|p4|c,p4) (11.14)

Substituting the above formula and the momentum of muon p1 into F(s, t,m), it becomes

F(|p2|, |p3|,me,mµ,mW ) Then the change of decay rate caused by STP is:

∆ΓST = − g4wλ
2me

8π3m2
W c2ℏ

∫ mµc/2

0

d|p2|
∫ mµc/2

mµc/2−|p2|
d|p3|Im (F(|p2|, |p3|,me,mµ,mW ))

(11.15)

Substituting into the numerical calculation shows that:

∆ΓST = 1.2141± (0.2854)s−1 (11.16)

The muon decay rate calculated from the Standard Model is:

ΓSM = 455169.311s−1 (11.17)

Therefore, the lifetime of muon under the action of STP is:

τµ = 1/(ΓSM +∆ΓST ) = 21969788(±14)× 10−13s (11.18)

Experimentally, the muon lifetime is

τµ(Exp) = 21969811(±22)× 10−13s (11.19)

It can be seen that after adding the contribution of the STP scalar field, the theoretical

lifetime of the muon perfectly matches the experimental observations.

Just as we finished the writting work on this article, we noticed the breaking news about

the mass of W boson. In this article [44], the mass of W boson is given as:

mW = 80433.5(±9.4) MeV/c2 . (11.20)

Using this new W boson mass, we recalculated the STP scalar field contribution, and it

shows:

∆Γnew
ST = 0.9273± (0.2180)s−1, (11.21)
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hence the new lifetime of muon under the action of STP is:

τnewµ = 1/(ΓSM +∆Γnew
ST ) = 21969802(±10.5)× 10−13s . (11.22)

This result is even better fitting the experiment result than the privious one, which provides

strong support on our propose of STP. We also noticed the breaking news about the mass of

W boson [44], which says that there is a significiant deviation between the standard model

prediction and experiment. Using this new boson mass, we recalculated the STP scalar field

contribution, which shous the result obtained in (11.12) is not sensitive to the new W boson

mass. This is because in this article the Feynman diagrams we calculated for interaction

between STP and W boson is not sensitive to the mass of W boson.

11.4 Lepton anomalous magnetic moment and MIP

We have considered the effects of MIP in muon physics. Introducing the STP scalar field,

the anomalous magnetic moment of the muon and the decay lifetime can be well explained.

Correspondingly, we can consider the deviations of other leptons after the introduction of

STP.

11.4.1 Electron anomalous magnetic moment

The measurement of the electronic anomalous magnetic moment has been very accurate.

The current experimentally determined electron anomalous magnetic moment is[39]:

ae(Exp) = (1159652180.91± 0.26)× 10−12 (11.23)

On the other side, in framework of standard model, the calculation of the anomalous mag-

netic moment of electron, strongly depends on the accurate value of fine structure constant

α , which determined by experiment. At the level of 10−12, the deviation of α is relative big.

Therefore the theoretical calculation for anomalous magnetic moment of electron spands on

a relative big range[40, 41, 42]. The results obtained by the theoretical calculation of the

standard model are:

aSMe (Rb) = (1159652180.252± 0.095)× 10−12 (11.24)

aSMe (Cs) = (1159652181.61± 0.23)× 10−12 (11.25)

The differences between the theoretical calculation and experimental value are:

∆ae(Rb) = aSMe (Rb)− ae(Exp) = −(0.658± 0.355)× 10−12 (11.26)

∆ae(Cs) = aSMe (Cs)− ae(Exp) = +(0.7± 0.49)× 10−12 (11.27)

After introducing STP, the correction value of the electronic magnetic moment is:

∆aMIP
e =

3λ2m2
e

16π2
=

3× (1.18349± 0.27819)× (0.51099895)2 × 10−11

16× 3.14159265362

= (0.0587± 0.0138)× 10−12 (11.28)
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According to above calculation, we know the correction due to STP scalar field is one level

smaller than current theory-experment gap. However, the gap is mainly caused by the

accuracy of fine structure constant, which is an experimental error. Therefore, under the

current experiments, the electronic anomalous magnetic moment does not have a bigger

deviation due to the existence of STP. The deviation due to STP field, is consistent with

current experiments on the anomalous magnetic moment of electron.

11.4.2 Tauon anomalous magnetic moment

Due to the relatively short lifetime of tauon, it is difficult to accurately measure its anomalous

magnetic moment in such a short time. The relative experiment only can give a very rough

region as follows [43]:

−0.052 < aτ (Exp) < 0.013 (11.29)

with confidential level 95%.

The tauon anomalous magnetic moment calculated by the current standard model is[43]:

aτ (SM) = (117721± 5)× 10−8 (11.30)

After the introduction of STP, the corrected value of tauon magnetic moment is:

∆aMIP
τ =

3λ2m2
τ

16π2
=

3× (1.18349± 0.27819)× (1776.86)2 × 10−11

16× 3.14159265362

= (7.0986± 1.6686)× 10−7 (11.31)

The ratio of this corrected value to the theoretical value is

ρτ =
∆aMIP

τ

aτ (SM)
≃ 0.0006 (11.32)

In fact, this correction ratio is the largest among the three generations of leptons. However,

the experiment on tauon anomalous magnetic moment is quite difficult, the experiment

uncertainty is huge comparing to the deviation due to STP field. Though we can predict

the STP scalar field would bring in a small correction, the current tauon experiments are far

away to the correction. However, the deviation due to STP field, is consistent with current

experiments on the anomalous magnetic moment of tauon.

11.5 Summary

In this chapter, we consider two modifications for muon physics due to STP. First, we con-

sider the correction of the STP scalar field to the muon anomalous magnetic moment. The

interaction strength λ between the STP scalar field and the matter particle is determined.

Second, we calculate the correction of the STP scalar field for muon decay, which makes the

theoretical predictions agree with the experimental observations perfectly. It can be seen

that we only need to introduce one free parameter, the STP scalar field interaction strength,

we achieved a great triumph in the area of muon physics.
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12 Entropy in MIP

Phase space is a delicate concept. Within the framework of MIP, the coordinates and

momentum of particles can be completely independent, so the phase space has real physical

meaning. Discussing the issue of entropy for non-interacting particle in the phase space will

be more clear and insightful.

12.1 Entropy in phase space

Let us first consider a matter particle of mass m in a harmonic oscillator potential. The

energy of a particle is the sum of its kinetic energy and potential energy

E =
p2

2m
+

1

2
kx2 (12.1)

Where k is the stiffness coefficient of the spring. According to Newton’s second law

mẍ = F = −dV
dx

= −kx (12.2)

and

k = mω2 (12.3)

Where ω is the frequency of particle vibration.

The state of a particle is characterized by (x, p). In the (x, p) space, each point rep-

resents a state of the particle. This space is named phase space, and the motion of the

particles constitutes the trajectory in the phase space.

For each fixed energy E, the particle’s trajectory in phase space is an ellipse. According to

the definition of ellipse, we can write

p2

2mE
+

x2

2E
mω2

= 1 (12.4)

We can determine the two axis lengths of the ellipse

a =
√
2mE (12.5)

b =

√
2E

mω2
(12.6)

According to MIP, a particle moves along an ellipse in phase space for a period, and it must

exchange with the STP an integer multiple of the Planck constant∮
pdx = nh (12.7)

It can be seen from the geometric meaning of the integral that the integer value corresponds

exactly to the area of the ellipse ∮
pdx = πab =

2πE

ω
(12.8)
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From this we get important results

E = nℏω (12.9)

This proves that every possible state occupies the same area in the phase space. This is the

most important difference between quantum mechanics and classical mechanics: The energy

levels are discrete, which means not all energy levels are allowed for real motions. In the

phase space, only discrete ellipses are possible movements, corresponding to possible states.

With this important result, we can start to count the number of possible states to de-

termine the entropy. Intuitively, for the elliptic family of phase space, the volume of the

phase space occupied by each possible E (for the sake of intuition, we are talking about

one-dimensional motion, the corresponding phase space is 2 dimensions, and therefore the

area), which is exactly The area A surrounded by two adjacent ellipses. The most important

thing is that this area A is a constant. Similarly we can calculate this constant as

A =

∮
E=(n+1)ℏω

pdx−
∮
E=nℏω

pdx = h (12.10)

If we further consider the net effect 1 + 1 + 1 + ... = ζ(0) = − 1
2 of the infinite collisions of

STP, we can get the complete result of quantum mechanics: The energy level of a simple

harmonic oscillator is E = (n+ 1
2 )ℏω.

12.2 Entropy at absolute zero

Let us first consider the entropy at absolute zero, and then discuss the entropy of thermo-

dynamics. The entropy at absolute zero must be equal to zero, according to the definition

of Boltzmann entropy, which means the entropy is the logarithm of all possible microscopic

states at the same energy. It is equivalent to say that there can be only one state at absolute

zero, so its entropy is 0.

If we look at the typical time scale of quantum mechanics, this conclusion is correct. Due

to STP colliding at the short time scale of MIP, the wave function formed on the quantum

mechanical time scale is a pure state, and its entropy must be zero.

Free particles in quantum mechanics can be characterized by plane waves eip⃗·x⃗/ℏ, where

p⃗ · x⃗/ℏ is called the phase factor of the wave function. In the time scale of MIP, we will

generalize this key factor.

First, in this extremely short time scale, according to Section 3.5, we generalized the momen-

tum of quantum mechanics p⃗ to instantaneous momentum P⃗i. Second, the instantaneous

momentum is not a conserved quantity. The original phase factor p⃗ · x⃗ must be generalized

to
∫
γ
P⃗i · dx⃗. Third, for non-interacting particles, aka free particles, we can always choose

an inertial frame of reference with zero classic statistical velocity. Furthermore, the integral

of the random velocity through the path γ on the time scale of quantum mechanics is 0.

Therefore, the contribution only comes from envelope velocity.

The number of all possible microscopic states of a particle can be characterized by its enve-

lope velocity u. Within a short time scale, different envelope velocity can represent different
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possible states. We can construct entropy Within the framework of MIP, and then find the

following way to pass to the long-term scale, the result of quantum mechanics about entropy.

Based on the above three points about particles traveling a path γ at the time scale of

quantum mechanics, we can generalize the phase factor in quantum mechanics to

Ki =
1

ℏ

∫
γ

P⃗i · dx⃗ =
mst

h

∫
γ

u⃗i · dx⃗ (12.11)

All the possible state under the time scale of MIP are represented by different i and Ki

is a dimensionless quantity. From the conclusion of Chapter 5, the envelope velocity is an

irrotational field

∇× u⃗ = 0 (12.12)

So Ki does not depend on the path γ, which is just a function of the endpoint. It must be

noted that entropy is a variable of state, regardless of how to reach the state.

The probability of possible state i is defined as

pi =
1

N
e2Ki (12.13)

Where the normalization constant

N =
∑
i

e2Ki (12.14)

In order to guarantee that the probability sum of various possible states equals to 1, we have∑
i

pi = 1 (12.15)

and the probability of all possible states are greater than 0.

Within the framework of MIP and the probability of possible states on a short time scale,

we can define the corresponding entropy as

S = −
∑
i

pi log pi (12.16)

By this definition, we claim that all results of quantum mechanical entropy can be derived.

The derivation is as follows:

Obtaining the gradient on both sides of Equation 11:

∇Ki =
mst

h
u⃗i (12.17)

For each possible state i, the wave function ψi will emerge on the quantum mechanical time

scale as

|ψi| =
1√
N
eKi (12.18)

In every possible state, Ki corresponds exactly to the original potential function R. Thus

our definition of entropy is equivalent to

S = −
∑
i

2|ψi|2 log |ψi| (12.19)
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This is completely equivalent to the definition of von Neumann entropy in quantum me-

chanics. We choose the envelope velocity to define the probability of microscopic states,

so that the corresponding probability will match the probability from Born’s interpretation

exactly, which is the absolute square of wave functions. In this way, we guarantee that our

definition of entropy can go back to the quantum mechanical definition of entropy. The

principle of entropy increasing proved by MIP is the same principle in statistical physics.

Therefore, from the microscopic behavior of the envelope velocity in the short time scale of

MIP, quantum mechanical entropy in the long time scale is derived.

We can summarize this section: at absolute zero and within the time scale of MIP, the

entropy of matter particles is not zero, and its various microscopic states are characterized

by different envelope velocities. According to the conclusions in Chapter 5, reaching the

time scale of quantum mechanics after a long time of random collision, the material par-

ticles at absolute zero appear as a pure state wave function, and its evolution satisfies the

Schrödinger equation. Then the probability of only one state i is 1, and the probability of

other states is 0, which naturally leads to the conclusion of quantum mechanics: the entropy

is 0 at absolute zero .

12.3 Entropy at finite temperature

When we consider not only the quantum behavior of single particle but also the thermody-

namic properties of multiple particles without interactions, the work in the previous section

needs to be further generalized. In the first step, we generalize to the case of two particles.

The probability that one is in state i and the other is in state j is pip̃j . If they are identical

particles, two probability distribution functions are the same. According to the definition

of entropy, the entropy of two particle systems is

S = −
∑
ij

(pip̃j) log(pip̃j) = −
∑
ij

pip̃j log pi −
∑
ij

pip̃j log p̃j

= −
∑
i

pi log pi
∑
j

p̃j −
∑
j

p̃j log p̃j
∑
i

pi

= −
∑
i

pi log pi −
∑
j

p̃j log p̃j

= S1 + S2

(12.20)

Additivity is obtained, which is the fundamental property of entropy. This can be directly

extended to the entropy of any multi-particle system, which is equal to the sum of the

entropy of each single particle. That is to say, the macroscopic thermodynamic entropy is

the sum of the entropy of each part of the subsystem. And we treat each single particle as

an independent subsystem, which is the smallest subsystem possibly. To be connected with

thermodynamic entropy, we need to introduce temperature.

The second step is to define the temperature in the MIP framework as following. We have

proved the additivity of entropy from MIP. Use this basic property to define the physical

84



quantity of temperature. Assuming that the energy of two subsystems is E1 and E2, the

total energy of the system E = E1+E2 is a conserved quantity. By the additivity of entropy,

we have

S(E) = S1(E1) + S2(E2) (12.21)

The total system is a closed system. When in equilibrium, the derivative of both sides with

respect to E1 leads to

0 =
dS1

dE1
+
dS2

dE2

dE2

dE1
=
dS1

dE1
− dS2

dE2
(12.22)

It can be seen that there is a physical quantity in equilibrium, which is possessed by all

subsystems equally. We call this physical quantity the temperature T, which is defined as

dS

dE
=

1

T
(12.23)

That is
dS1

dE1
=

1

T1
=
dS2

dE2
=

1

T2
(12.24)

In the third step, we introduce temperature into the definition of entropy, in order to study

the entropy of thermodynamics under the framework of MIP. Let us consider the microscopic

collision process under the MIP framework. When a material particle collides with an STP,

the material particle is in state a and the STP is in state b. After the collision, the state of

the material particle changes to c, and the STP state changes to d. The probability of this

process is proportional to nanb, that is, in the initial state, there are na material particles

in state a, and nb material particles are in state b. Then we consider a reverse process

whose probability is proportional to ncnd. According to MIP, the STP collision process has

time-reversal symmetry and the material particles must reach an equilibrium state with the

STP, that is, the average number of particles in each state does not change. Then we have

nanb = ncnd (12.25)

Conservation of energy of the collision process leads to

ϵa + ϵb = ϵc + ϵd (12.26)

It can be proved that

ni = Ce−βϵi (12.27)

Among them, the constant C is given by∑
i

ni = N (12.28)

According to the basic definition of probability theory, the probability of being in the i state

is

pi =
ni
N

=
1∑

i e
−βϵi

e−βϵi (12.29)

This pi is the generalization of the probability distribution at a finite temperature. According

to the definition of temperature, it can be proved that the coefficient β must be equal to 1
T .

From this we get the entropy at finite temperature

S = −
∑
i

pi log pi (12.30)
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We can directly substitute the specific expression of the probability distribution pi to get

the thermodynamic entropy as

S = −
∑
i

1∑
i e

−βϵi
e−βϵi log

1∑
i e

−βϵi
e−βϵi =

E − F
T

(12.31)

In this way, the general expression of thermodynamics is obtained, where the free energy of

thermodynamics reads

F = −T log
∑
i

e−ϵi/T (12.32)

And internal energy as

E =
1∑

i e
−ϵi/T

∑
i

ϵie
−ϵi/T (12.33)

Within the framework of MIP, the energy of non-relativistic free material particles is ex-

pressed in terms of true velocity

ϵ =
1

2
mV 2 (12.34)

Substituting the distribution function of the true velocity of the material particles at a finite

temperature

Φ(V 2) = (
m

2πT
)3/2e−

mV 2

2T (12.35)

Then we can further give the definition of classical statistical velocity in the decomposition

of three velocities

v =

∫
V Φ(V 2)d3V =

√
8T

mπ
(12.36)

which shows a deeper understanding of the physical meaning of the decomposition of three

velocities. The entropy at absolute zero corresponds to the quantum envelope velocity

of material particles, while the entropy at finite temperature includes the contributions

from all three velocities. From finite temperature to absolute zero, the physical quantity

describing the system has undergone a fundamental change. Therefore, thermodynamics

cannot determine the value of entropy at absolute zero, which can be obtained naturally

under the MIP framework.

12.4 Comparing between entropy at finite temperature and absolute zero

In modern information theory, entropy (Shannon entropy) is a measure of uncertainty. This

basic concept is consistent with MIP. The study of the diffusion coefficient of material parti-

cles at finite temperature shows that, the uncertainty of the thermodynamic contribution of

finite temperature is much smaller than the quantum contribution at absolute zero in MIP.

MIP shows that matter particles do Brownian motion under random collisions of STP, the

most important property of this motion is

< X2 >= 2ℜt (12.37)

Where ℜ is the space-time diffusion coefficient ℜ = ℏ
2m . Obviously, this is a result at absolute

zero, has nothing to do with temperature, purely caused by Planck’s constant.
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In the framework of classical physics, the Planck constant is 0, so there is no such diffusion

coefficient, and of course there is no such Brownian motion. However, there will still be

Brownian motion caused by thermal motion. So the space-time diffusion coefficient has

two parts, one is ℜ independent of the temperature T , and the other is related to the

temperature T.

Our goal is the principle of entropy increasing, which is the thermodynamic properties of

matter particles. How the diffusion coefficient depends on temperature T? Which part is

more important?

The material particles do Brownian motion under the random collision of STP. According

to the estimation in Section 3.4, the most important physical parameter is the average time

interval between two collisions τ as

τ ≈ 10−20s (12.38)

The time scale of electrons in quantum mechanics is τ ≈ 10−16s.Therefore, the electrons in

hydrogen atoms are much larger than the time scale of MIP. We will explicitly construct the

average time interval τ into the equation of motion:

m
dV

dt
= −mV

τ
+ F (t) (12.39)

We are able to get the answers to the above two questions at the same time as follows:

Multiply both sides of the equation by X, using

d(XV )

dt
= V 2 +X

dV

dt
(12.40)

We can get

m
d(XV )

dt
= mV 2 − mXV

τ
+ F (t)X (12.41)

Taking the average of both sides of the equation, at a temperature of T the average kinetic

energy of the particles is
1

2
m < V 2 >=

1

2
kT (12.42)

Substitute

m
d(< XV >)

dt
= kT −m< XV >

τ
(12.43)

Combined with the initial condition X(t = 0) = 0, we solve this differential equation as

< XV >=
kTτ

m
(1− e−t/τ ) (12.44)

and

< XV >=
1

2

d < X2 >

dt
(12.45)

Solve another differential equation to get

< X2 >=
2kTτ

m
(t− τ(1− e−t/τ )) (12.46)

This result is very important because it has both the properties wanted:

1. Under very short time scale t≪ τ

< X2 >=
kT

m
t2 (12.47)
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At this time scale, the particles are moving at a uniform linear velocity, which comes from

thermal motion
√

kT
m .

2. More importantly, under the time scale observed in the experiment, t≫ τ

< X2 >=
2kTτ

m
t = 2ℜT t (12.48)

It shows that at this time scale, the particles are diffusive. Compared with equation (12.37),

we can calculate the ratio of the diffusion caused by thermal motion to the diffusion at

absolute zero. Assuming the system at room temperature 300K, the ratio will be

ℜT

ℜ
≈ 10−6 (12.49)

Therefore, the results we obtained without considering the temperature effect are very good

approximations. The diffusion effect of material particles due to thermal motion can be

ignored, and the diffusion coefficient at absolute zero based on MIP calculation is very accu-

rate. In MIP, whenever considering quantum effects only, the entropy at finite temperature

can be ignored, just as in the Schrödinger equation where is no need for a term directly

related to temperature.

12.5 Proof of entropy increasing principle

Within the framework of MIP, we can use the definitions of entropy, combining with the gen-

eral nature of Markov process, to prove the entropy increasing principle for non-interacting

particle, both at finite temperature and absolute zero.

S = −
∑
i

pi log pi (12.50)

Straightforwardly, proving the entropy increasing principle means

dS

dt
⩾ 0 (12.51)

Use the definition of probability ∑
i

pi = 1 (12.52)

we have ∑
i

dpi
dt

= 0 (12.53)

Then the definition of entropy goes to

dS

dt
= −

∑
i

(
dpi
dt

log pi +
dpi
dt

) = −
∑
i

dpi
dt

log pi (12.54)

If there is equal probability distribution, all pi are equal to constant

pi =
1

Ω
(12.55)

which is a very useful constraint. We will use it below.
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The STP collision causes the transition between different states of material particles, which

is a Markov process. For the Markov process, the following mathematical properties

dpi
dt

=
∑
j

(pj − pi)gij (12.56)

dpj
dt

=
∑
i

(pi − pj)gji (12.57)

This property has already been used in Section 3.3 equation (3.23), which is a special case

of this mathematical property. If the probability distribution is equal, the probability no

longer changes. It is an important step to prove that the collision of STP is invariant in

time reversal, requiring the transfer matrix g to have

gij = gji ⩾ 0 (12.58)

Therefore, the transition between various states is reversible on the time scale of STP colli-

sion, because the matter particle’s Brownian motion in spacetime is frictionless. The proof

of entropy increasing principle is irrelevant about the specific expression of entropy, whether

or not including the temperature T. From this microscopic reversibility, it is possible to

deduce the irreversibility of entropy on the macroscopic time scale, which is the essence

point.

With this mathematical property, we get

dS

dt
= −1

2
(
∑
i

dpi
dt

log pi +
∑
j

dpj
dt

log pj)

= −1

2
(
∑
ij

(pj − pi)gij log pi +
∑
ij

(pi − pj)gji log pj)

=
1

2

∑
ij

(pj − pi)gij(log pj − log pi) (12.59)

If pj ⩾ pi, then log pj ⩾ log pi, which guarantees dS
dt ⩾ 0.

If pj ⩽ pi, then log pj ⩽ log pi, which also guarantees dS
dt ⩾ 0.

So the entropy increasing principle has been proved. This principle has profound significance

in physics and other scientific fields, and can be used as a criterion for irreversibility and

time flow. However, it must be emphasized that this principle is still an empirical law in

modern physics and cannot be explained from the first principle. Therefore, our results

are of great significance. In MIP, the random collision of STP can naturally generate the

fundamental principle of increasing entropy. Within the framework of MIP, we unify the

concept of entropy both at finite temperature and absolute zero and prove that both types

of entropy are never decreasing with time.

12.6 Why did nature choose Brownian motion?

In the previous section, we generally proved the principle of entropy increasing. Now let us

use the properties of Brownian motion to calculate the entropy of free particles quantita-

tively. From this we can see how entropy increases over time in the framework of MIP. we
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taking the state label i as the particle coordinate x, then the definition of particle entropy

can be written as

S = −
∫
dxp(x) ln p(x) (12.60)

With the mathematical properties of Brownian motion of free particles, we know that the

probability distribution is

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (12.61)

Where µ is the initial position of the free particle (it can also be set to zero, the result has

nothing to do with the initial position), and the variance of the particle coordinates is

σ2 = 2Rt (12.62)

where R is our diffusion coefficient as

R =
h

2mST
(12.63)

Substituting the specific expression of the above probability distribution into the definition

of entropy, we get

S = 1
2 (1 + ln(4πRt)) (12.64)

Because the logarithmic function is a monotonically increasing function, we have obtained

the specific expression of entropy increasing quantitatively. Mathematically speaking, there

are many types of random motion. Even given a mean and a variance at a certain moment

as

∫
dxxp(x) = µ (12.65)

∫
dx(x− µ)2p(x) = σ2 (12.66)

There are still infinitely many types of probability distribution p(x), and each probability

distribution p(x) corresponds to a specific kind of random motion, that is, there are infinitely

many types of random motion. Why does nature choose the type of Brownian motion due

to STP randomly colliding with material particles? There is a good answer to this question

under the framework of MIP: when a material particle chooses Brownian motion, its entropy

happens to be the largest, which is greater than any other probability distribution p(x). The
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proof is given as following. According to the definition of entropy, under the two constraints

of mean and variance, the functional form of p(x) is determined so that S can be maximized,

which is a variational problem in mathematics. With two constraints, we introduce two

Lagrange multipliers Λ0 and Λ as

L =

∫ ∞

−∞
p(x) ln(p(x)) dx− Λ0

(
1−

∫ infty

−∞
p(x) dx

)
− Λ

(
σ2 −

∫ ∞

−∞
p(x)(x− µ)2 dx

)
(12.67)

Let its variation be 0 as

δL =

∫ ∞

−∞
δp(x)

(
ln(p(x)) + 1 + Λ0 + Λ(x− µ)2

)
dx = 0 (12.68)

Which leads to

p(x) = e−Λ0−1−Λ(x−µ)2 (12.69)

Substituting two conditions of constraints, we can determine two Lagrange multipliers to

get the final result as

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (12.70)

This happens to be the probability distribution of Brownian motion. Q.E.D.

Substituting p(x) into the definition of entropy, we get

S = 1
2 (1 + ln(2πσ2)) (12.71)

At any given moment, choosing this special random motion precisely maximizes the entropy

of material particles. This random movement is the most disorder and unpredictable. We

can clearly say that STP randomly collides with material particles, so that the material

particles choose Brownian motion, which is not accidental at all. Furthermore, with time

evolving, we have

σ2 = 2Rt (12.72)

The entropy of material particles increases monotonically with time until reaching the relax-

ation time of the system. At the relaxation time, the system reaches an equilibrium state,

which is the state of maximum entropy. The entropy no longer increases.
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12.7 Summary

Entropy is a concept of fundamental importance in physics and has significant applications in

many fields of physics. The concept of entropy is introduced because of its special properties,

the most important of which is the law of entropy increasing. However, it must be noted that

the law of entropy increasing is still an empirical law in the current framework of physics.

This law is summarized from countless experiences in the real world, which cannot actually

be proved from the first principle. It can be clearly seen from the mathematical definition

of entropy that entropy depends on the probability of each state. Therefore, entropy is a

characterization of random events. The modern physics framework does not fully understand

the origin of the random motions of microscopic material particles. The MIP proposed in

this article fundamentally explains the reason why material particles move randomly, that

is, the random collision of STP. In this new picture, we go beyond the framework of modern

physics and are able to provide a proof of the law of increasing entropy. This key proof

is extremely important for the concept of entropy, and is equally important for the MIP

proposed by this article. Proving the law of entropy increasing under the MIP framework is

in itself a strong support for MIP. At the same time, in the process of proof, we discovered

the underlying reason why nature chooses material particles to perform Brownian motion.

This special type of random motion has many wonderful properties, which is not only the

cornerstone of the microscopic explanation of quantum mechanics, but also the root of the

second law of thermodynamics.

13 Summary

Starting from the fundamental concept innovation of statistical mass, this paper proposes

MIP: material particles will be subjected to random collision of STP’s which is ubiquitous

in spacetime to make frictionless quantum Brownian motion. The change of the action of

material particles in each collision is integer multiple of Planck constant h. From MIP, we

can prove all the important results of quantum theory. The quantum theory obtained within

the framework if MIP is fully compatible with the existing quantum theory. The advantage

of this new framework is that it does not require the introduction of additional wave func-

tion assumptions, and is able to derive the Schrödinger equation directly. In particular, the

concept of wave pack collapse is not required to be introduced under our MIP framework.

The Heisenberg uncertainty principle no longer has a fundamental position but a natural

inference under the MIP framework. From the statistical uncertainty between inertial mass

and spacetime diffusion coefficient, the most basic coordinate momentum uncertainty rela-

tionship of quantum mechanics can be derived. Therefore, it is proved that the wave-particle

duality is a property exhibited by the STP colliding particles under the MIP framework.

Furthermore, we apply MIP to quantum measurement problems, and have a new break-

through interpretation of the EPR paradox problem that has confused physics for nearly

a century. The STP colliding matter particles is a zero-spin scalar particle without mass.

According to MIP, the topological properties and dynamic properties of STP can explain the

nature of photons, and thus naturally obtain the complete electromagnetic theory and all
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important properties of charge. More importantly, the classical electromagnetic theory we

have obtained is completely applicable in the microscopic world. Combined with Brownian

motion at the underlying level of the microscopic world, classical electromagnetic theory can

prove that the accelerated motion of free electrons and electrons outside the nucleus do not

cause electromagnetic radiation, thus truly solving the problem of atomic stability for the

first time.

Furthermore, from the vortex structure of spacetime, we obtain the origin of the spin and

the relationship between spin and mass. Going back to the 2+1d vortex when we investigate

the electromagnetic fields in 3+1d spacetime, we prove the strong constrain on the number

of generations of charged leptons, at most three generations.

Due to the random collisions between STP and matter particles, matter particles are able

to behave exactly as requiered by the postulations of quantum mechanics, which shows that

STP is the supervisor and shepherd for all the microscopic behaviors of matter particles,

MIP also creates the foundation for further investigation on the completeness problem of

quantum mechanical descriptions.

Last but not least, MIP requires a novel massless scalar particle STP. The random collision

between STPs and muons is the crucial step beyond standard model. Our extension of stan-

dard model is minimal, which only introduce on free parameter decribing the interaction

strength between STPs and muons, then we are able to explain two key experiments of muon

simultaneously. By thorough calculations of corresponding Feyman’s diagrams, the contri-

butions from random collisions between STPs and muons explain the anomalous magnetic

moment of muon and its lifetime excellently, which solve a world class puzzle about the

anomalous magnetic moment of muon, and give a self-consistent explanation to the lifetime

discrepancy of muon at the same time. Recent experomental results from FermiLab are the

most precision verfication of MIP, which guarantee the correctness of MIP and the advan-

tages over other alternative theories. Finally, starting from MIP, we produce the entropy of

material particles at the microscopic level, establish the corresponding concept of entropy at

absolute zero and unify the entropy at absolute zero and the entropy at finite temperature.

Furthermore, we prove the principle of entropy increasing in the non-interacting particle

systems.

In summary, MIP is the origin of quantum mechanics. MIP is able to revise standard model

at minimal cost to explain the anomalous magnetic moment of muon, which provides a whole

new framework to research phenomena beyond standard model.

Appendix A: Brown Motion and Markov Process

When the displacement of the material particle X(t) satisfies the following conditions, we

call the material particle doing Brownian motion:

1.X(0) = 0.

2. On any finite disjoint interval set (si, si + tt), the displacement of the particle is X(si +

tt)−X(si) , which are random variables that are independent of each other.

93



3. For each s ⩾ 0, t ⩾ 0, X(s+ t)−X(s) obeys the normal distribution N(0, t).

For each constant a, the process X(t) + a is called the Brownian motion starting from a.

For the Brownian motion that is physically free of friction, we call it the quantum Brownian

motion in this paper.

Consider any past set of times (· · · , p2, p1), any ”current time” s, and any ”future time” t,

all of which are within the range of X, if any

· · · < p2 < p1 < s (13.1)

Then the Markov property is established, and the process is a Markov process, but only if:

Pr
[
X(t) = x(t) | X(s) = x(s), X(p1) = x(p1), X(p2) = x(p2), . . .

]
= Pr

[
X(t) = x(t) | X(s) = x(s)

]
(13.2)

Set up for all time sets. Then calculate the conditional probability

Pr
[
X(t) = x(t) | X(s) = x(s), X(p1) = x(p1), X(p2) = x(p2), . . .

]
(13.3)

Future state is independent of any historical state and is only relevant to the current state.

In summary, the quantum Brownian motion studied in this paper is a Markov process.

Appendix B: Decomposition of Random Variables

In the Langevin equation, the true velocity of particle motion V⃗ contains three parts: the

classic statistical velocity v⃗ , quantum envelope velocity u⃗ and Gaussian noise ν⃗

We do not consider the impact of classic statistical velocity. Then the random motion of

the particles will be determined by the quantum envelope motion and Gaussian noise. The

fact that we need to prove is that we can distinguish the quantum envelope motion u⃗ in

the strict mathematical differential sense. The quantum envelope motion corresponds to the

smooth continuous part of the random motion, and the Gaussian noise corresponds to the

continuous non-differentiable part of the random motion.

First, for any random variable r(x, t), if a smooth function f(x, t) is superimposed, the result

is still a random variable. which is a random variable, as

w(x, t) = r(x, t) + f(x, t) (13.4)

But if r(x, t) or w(x, t) has a finite order autocorrelation association, then theoretically we

can strictly distinguish w(x, t) and other two random variables of r(x, t), which is:

⟨r(x1, t1)r(x2, t2) · · · r(xn, tn)⟩r = Fn(x⃗, t⃗), mod(n,N) ≡ 0 (13.5)

⟨r(x1, t1)r(x2, t2) · · · r(xn, tn)⟩r = 0, mod(n,N) ̸= 0 (13.6)
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Then there is

⟨w(x1, t1)w(x2, t2) · · ·w(xN , tN ) · · ·w(xn, tn)⟩r ̸= 0, n > N (13.7)

Therefore, it can be strictly distinguished mathematically. In the case we considered, Gaus-

sian noise ν⃗ has a second-order correlation

⟨νi(t)νj(t′)⟩ = Ωδi,jδ(t− t′) (13.8)

And all odd-order associations are zero

⟨ν(t)⟩ν = 0

So obviously

w⃗(t) = u⃗(t) + ν⃗(t)

The odd-order correlation is not zero. So you can strictly distinguish between w⃗(t) and ν⃗(t).

Due to the MIP, there is only one kind of Gaussian noise, and there is no other noise source.

So continuous functions other than noise are smooth and differentiable functions. So u⃗ is a

smooth function.

Appendix C: Additional Physics Example with Three-

speed Decomposition

The superposition of orbitals and the formation of chemical bonds, which are common in

chemistry, involves quantum superposition states. In the simplest case, the ground state of

the hydrogen atom and the first excited state are superimposed with equal probability as

ψ(r, t) = ψ100e
−iE1t + ψ200e

−iE2t (13.9)

Where E1 = −13.6ev,E2 = −13.6/4ev = −3.4ev, the wave function of the ground state of

the hydrogen atom and the first excited state are

ψ100 =
1√
πa3

e−r/a (13.10)

ψ200 =
1√
2a3

e−r/2a(1− r

2a
) (13.11)

Where a is the Bohr’s radius a = 0.529× 10−10m.

With the Euler formula, we can write the superimposed wave function as

ψ = [ψ100cos(E1t) + ψ200cos(E2t)]− i[[ψ100sin(E1t) + ψ200sin(E2t)] (13.12)

From the real and imaginary part, the two potential functions R and I of the superposition

wave function can be further determined. It is found by equation (5.34) and (5.35) that the

electrons u and v are not zero in this state.

This physics example is not a special case, and has general physical meaning. When the

quantum state has definite energy, its classical statistical velocity v must be zero. Generally

speaking, the particle is in the superposition state of the energy eigenstate, and its three

speeds are not zero which has clear physical meaning.
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Appendix D: From MIP to the Uncertainty Principle

We believe that the uncertainty principle comes from the kinematic equation of stochastic

spacetime motion, which is rooted in the non-differentiable motion path, i.e. the particle

coordinate x⃗(t) derivative of time dx⃗/dt does not exist. Therefore, it must be noted that

the particle’s momentum p⃗ = mdx⃗/dt cannot be well defined. The momentum is defined as

follows

p⃗ = mDx⃗ = mv⃗ +mu⃗ (13.13)

Kinematic equation

u⃗ = ℜ∇ρ
ρ

(13.14)

For the sake of simplicity, the following discussion uses only one component in the x direction,

and all vector equations become equations of one component. For any random variable O,

the statistical average is < O >=
∫
Oρ(x)dx. Multiplying both sides of the equation by ρ

and integrate x, we can get the x and ux covariance

σ(x, ux) =< (x− < x >)(ux− < ux >) >= −ℜ (13.15)

The covariance represents the total error of two variables, which is different from the variance

that only represents the error of one variable. If two variables change in the same directions,

then the covariance between two variables is positive. If two variables change in opposite

directions, the covariance between two variables is negative. For any two real random

variables A and B, there is the Schwarz inequality |σ(A,B)| ⩽ σ(A)σ(B), which leads to

σ(x)σ(ux) ⩾ ℜ = ℏ/2m (13.16)

The statistical definition of uncertainty is

σ(x) =
√
< x2 > − < x >2 (13.17)

σ(ux) =
√
< u2x > − < ux >2 (13.18)

So far we have proved the uncertainty relationship between the position of random spacetime

moving particles and the fluctuation speed. Further, if the uncertainty of momentum has

two parts of contributions

σ2(p) = m2(σ2(v) + σ2(u)) (13.19)

That is, σ(p) ⩾ mσ(u), the uncertainty of the position and the fluctuation speed can be

obtained.

σ(x)σ(px) ⩾ ℏ/2 (13.20)

The proof of our paper interprets Heisenberg’s uncertainty principle as the uncertainty re-

lationship between random spacetime moving particle position and fluctuation speed.The

random spacetime motion has no friction and no irreversible dissipation.

The uncertainty of the fluctuation speed is entirely from spacetime fluctuations. According

to Heisenberg’s original statement, the measured action inevitably interferes with the state
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of the particles being measured, thus creating uncertainty. Later that year, Kennard gave

another statement. The following year, Herman also obtained this result independently.

According to Kennard’s statement, the uncertainty of position and the uncertainty of mo-

mentum are the nature of the particle, and cannot be suppressed below a certain limit,

regardless of the measured action. Thus, for the principle of uncertainty, there are two

completely different interpretations. Landau believes that the two interpretations are equiv-

alent, so one expression can be derived from another expressions (Ref. quantum mechanics

of Landau). However, in the latest experimental progress, Japanese scholars published on

January 15, 2012, the empirical results of the Heisenberg uncertainty principle. They used

two instruments to measure the spin angle of the neutron and obtained a smaller measure-

ment than the Heisenberg limit, which proves the measurement interpretation by Heisenberg

is wrong. However, the principle of uncertainty is still correct, because this is the quantum

nature of the particle.

The derivation process of this paper has nothing to do with the measurement theory, and

it has nothing to do with the internal properties of the particles. It is believed that the

uncertainty principle is rooted in the fluctuation of spacetime. Under the non-relativistic

framework, spacetime fluctuations are only related to the mass of the particles. The mass

of a particle is the only perceptible property of the particle in spacetime.

Appendix E: Self Isomorphism on Direct Product Spin

Clusters

We hope to prove the following conclusions in this appendix:

Theorem 2: Given any topological excited state deformation: A : ΛL ⊗ ΛR 7→ ΛL ⊗ ΛR,

where A For automorphism mapping, ΛL,ΛR represent the left-hand spin cluster and the

right-hand spin cluster, respectively, and A is the vector map.

Proof: First of all, from the symmetry of the spin structure, it is not difficult to know that

we only need to prove arbitrary automorphism: A : ΛL 7→ ΛL Both are vector maps. This

is because if we can determine that A is a vector map, we can get it through conjugate

expansion: Ã : ΛL ⊗ ΛR 7→ ΛL ⊗ ΛR for vector mapping.

To prove that any automorphism: A : ΛL 7→ ΛL is a vector map, we need to consider

the model on the left-handed spin sector, which is corresponding to the Clifford algebra

.Proposition 1.3.2 by [45] It can be seen that for the finite form Clifford algebra, the

following forms are isomorphic:

Clr,s ∼= Cl1 ⊗̂... ⊗̂ Cl1⊗̂ Cl∗1... ⊗̂ Cl∗1.

Among them, the number of Cl1 corresponds to r, and the number of Cl∗1 corresponds to s.

From the theorem 1.5.4 of [45], all Clifford K− means that ρ can be decomposed into

straight sums of irreducible algebra representations of the following form:

ρ = ρ1 ⊕ ...⊕ ρm.
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The feature subspace Wi corresponding to ρi is the smallest subspace.

In additions, by the Bott cycle law theorem [45], we can get the algebraic representation

of all Clm, (m = 1, ...8), and the representation follows the indicator m Repeated with a

period of 8. That is: we can get the algebra of any Clm as follows:

Cl1 = C, Cl2 = H, Cl3 = H⊕H, Cl4 = H(2),

Cl5 = C(4), Cl6 = R(8), Cl7 = R(8)⊕ R(8), Cl8 = R(16). (13.21)

For any combination of the above forms, the straight and broken parts ρi Can be split into

direct product form:

Clr,s ∼= Cl1 ⊗̂... ⊗̂ Cl1 ⊗̂ Cl∗1...⊗̂ Cl∗1.

The automorphism mapping between any part of the above direct product form can be made

by Cl1 = C, ...Cl8 = R(16) Algebraic combination between parts. Since the above parts are

all vector spaces, the automorphism must be a vector mapping, that is, the automorphism

of ρi must correspond to the matrix form.

In addition, from the algebraic decomposition process described above, it is not difficult to

know that the homomorphic mapping between all corresponding different sub-blocks is also

a vector mapping. Finally, we will be ρi, i = 1, ...8 All of them are combined together in a

straight form, and we can get the automorphism A : ΛL 7→ ΛL when i = 1, ...8 for vector

mapping. When the indicator i is greater than 8, by the Bott cycle law, we can still get

the automorphism mapping by the above process. A is the vector map. The conclusion is

proved.

Appendix F: Field Theory Calculations for Fermionic

Loop Integral

We consider the following Fermion loop momentum integrals∫
ddk

Dn1
1 Dn2

2

= iπd/2(−p2)d/2−n1−n2G(n1, n2) , D1 = −(k + p)2 , D2 = −k2 (13.22)

Noting that in the denominator, D1, D2 should actually have an infinitesimal analytic con-

tinuation (−i0+). But for the sake of simplicity, we don’t explicitly write it out. After

analysing the continuation, we need to consider the contribution of p2 < 0, and the power

contribution of −p2 can be easily obtained from dimensional analysis. In fact, what needs

to be calculated now is the dimensionless function G(n1, n2); to simplify the calculation,

we can let −p2 = 1. When n1 ≤ 0 or n2 ≤ 0, the score can be strictly calculated and

G(n1, n2) = 0 can be obtained.

Using Wick rotation and α parameterization, we can rewrite G(n1, n2) as:

G(n1, n2) =
π−d/2

Γ(n1)Γ(n2)

∫
e−α1(k+p)2−α2k

2

αn1−1
1 αn2−1

2 dα1 dα2 d
dk . (13.23)
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Let

k′ = k +
α1

α1 + α2
p ,

We can get

G(n1, n2) =
π−d/2

Γ(n1)Γ(n2)

∫
exp

[
− α1α2

α1 + α2

]
αn1−1
1 αn2−1

2 dα1 dα2

∫
e−(α1+α2)k

2

ddk

=
1

Γ(n1)Γ(n2)

∫
exp

[
− α1α2

α1 + α2

]
(α1 + α2)

−d/2αn1−1
1 αn2−1

2 dα1 dα2 .

(13.24)

Using the substitution α1 = ηx, α2 = η(1− x), the above formula can be rewritten as

G(n1, n2) =
1

Γ(n1)Γ(n2)

∫ 1

0

xn1−1(1− x)n2−1dx

∫ ∞

0

e−ηx(1−x)η−d/2+n1+n2−1dη

=
Γ(−d/2 + n1 + n2)

Γ(n1)Γ(n2)

∫ 1

0

xd/2−n2−1(1− x)d/2−n1−1dx .

(13.25)

The integrand is an Euler B function, so we can get the final result

G(n1, n2) =
Γ(−d/2 + n1 + n2)Γ(d/2− n1)Γ(d/2− n2)

Γ(n1)Γ(n2)Γ(d− n1 − n2)
. (13.26)

For all positive integers n1,2 they are proportional to

G1 = G(1, 1) = − 2g1
(d− 3)(d− 4)

, g1 =
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
, (13.27)

The scale factor is a rational function of d.

Noting that at k →∞, the denominator part of (13.22) behaves as (k2)n1+n2 . Therefore,

this integral is divergent when d ≥ 2(n1 + n2).
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