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Abstract

We present a method for learning a function over distributions. The method is based

on generalizing nonparametric kernel regression by using the earth mover’s distance as a

metric for distribution space. The technique is applied to the problem of learning the

dependence of pitcher performance in baseball on multidimensional pitch distributions that

are controlled by the pitcher. The distributions are derived from sensor measurements that

capture the physical properties of each pitch. Finding this dependence allows the recovery

of optimal pitch frequencies for individual pitchers. This application is amenable to the use

of signatures to represent the distributions and a whitening step is employed to account for

the correlations and variances of the pitch variables. Cross validation is used to optimize the

kernel smoothing parameter. A set of experiments demonstrates that the method accurately

predicts changes in pitcher performance in response to changes in pitch distribution.
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1 Introduction

An important application of machine learning is the recovery of a model from observed data.

We consider the problem of learning a function over distributions with the subsequent

goal of maximizing the function over low-dimensional subsets of the distribution space.

Nonparametric kernel regression can be used to estimate a function of unknown form and

has been applied in a wide range of settings [8]. Generalizing this approach to learn a

function over distributions requires a suitable metric for distribution space.

The Wasserstein metric or Earth Mover’s Distance (EMD) can be used to compare

distributions and has been applied to many problems in signal processing and machine

learning [9]. The EMD uses a cost function called the ground distance to determine the

minimum amount of work that is needed to transform one distribution into the other. The

computational cost of finding the EMD can be expensive which leads to the use of signatures

to approximate the distributions thereby enabling the use of efficient linear programming

methods [13].

We develop an algorithm that learns a function over distributions by generalizing non-

parametric kernel regression using the EMD as the distribution-space metric. The algorithm

is applied to the problem of optimizing pitch distributions which is one of the most challeng-

ing problems in baseball analytics. A nonparametric learning method is appropriate for this

application because the effectiveness of a pitch distribution has a complicated dependence

on the quality, frequency, and interaction of a pitcher’s set of pitches.

We represent a collection of pitches using a multidimensional distribution that is derived

from sensor measurements that capture the physical properties of each pitch. These proper-

ties have been shown to have a strong effect on pitch value [5]. Pitchers typically use a small

number of different pitch types which allows these distributions to be accurately encoded

using signatures. A whitening transform [1] is used by the EMD ground distance to account

for the variances and correlation structure of the component variables that define the dis-

tributions. A method that is similar to leave-one-out cross validation is used to optimize

the kernel smoothing parameter. After recovering the function over pitch distributions, an

efficient low-dimensional search can be used to find the optimal frequencies for a pitcher’s

various pitch types. We show that the new model accurately predicts the dependence of

pitcher performance on changes in pitch distribution.
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2 Learning a Function over Distributions

We develop a method for learning a function over distributions when the underlying struc-

ture of the function is unknown. The method is based on generalizing nonparametric regres-

sion using a whitened Earth Mover’s Distance as the metric for distribution space. Cross-

validation is used to optimize the smoothing parameter of the method. We will illustrate

properties of the algorithm with a set of experiments in Section 3.

2.1 Nonparametric Kernel Regression

Let (xi, yi) for i = 1, 2, . . . , n be a set of observations where x is the explanatory variable

and y is the response variable. The data can be modeled by

y = f(x) + ǫ (1)

where ǫ is an error term. Kernel regression [11] [16] is a non-parametric method that

constructs an estimate for f(x) using the weighted average

f̂(x) =

∑n
i=1 k(di)yi∑n
i=1 k(di)

(2)

where di = x−xi and k(·) is a kernel probability density function that is typically maximum

at zero and decreases with |di| so that the largest weights k(di) are given to the yi associated

with the xi that are closest to x. A popular kernel function is the zero-mean Gaussian

k(di) = g(di, σ) =
1√

2πσ2
e−

1

2
(di/σ)2 (3)

which depends on the smoothing parameter σ.

2.2 Earth Mover’s Distance

Given a set of observations (Xi, yi) where each Xi is a multidimensional distribution, we can

generalize equations (2) and (3) to approximate a function over distributions by replacing

di with a distance Di between the distributions X and Xi

f̂(X, σ) =

∑n
i=1 g(Di, σ)yi∑n
i=1 g(Di, σ)

(4)
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The Wasserstein metric which is also called the Earth Mover’s Distance (EMD) is a standard

method for computing the distance between distributions. The EMD utilizes a ground dis-

tance between individual points to determine the minimum amount of work that is required

to transform one full distribution into the other.

For many applications [13], a distribution can be accurately represented as a signature S

defined by a set of m clusters

S = {(µ1, w1), . . . , (µm, wm)} (5)

where µi is the mean vector for cluster i and wi is the fraction of the distribution repre-

sented by cluster i. Thus, the signature S approximates a distribution by a set of m point

masses at the locations µi with the weights wi where m depends on the distribution. An

established algorithm [13] for finding the EMD using signatures is based on the solution of

the transportation problem [7] for finding the minimum cost to move product from a set of

producers to a set of consumers with each having a known demand. For the transportation

problem, the ground distance is the cost to move one unit of product from a given producer

to a given consumer. The computation of the EMD using signatures can be formulated as

a linear programming problem for which efficient solutions [6] and software [15] exist.

2.3 Ground Distance

The computation of the EMD requires the specification of a ground distance between the

µi mean vectors that define the point masses for each distribution. The use of a Euclidean

distance between mean vectors is problematic because the component variables in the vectors

can have different variances and these variables may also have significant correlations. We

define the ground distance G(i, j) between µi and µj as the Mahalanobis distance [1]

G(i, j) =
[
(µi − µj)Σ

−1(µi − µj)
T
] 1

2

. (6)

where the covariance matrix Σ for the population of mean vectors µi serves to correct for

differences in the variances of the vector components and also for their correlation structure.

This distance is equivalent to a Euclidean distance after a whitening transform [1] has been

applied to transform the original variables to a new set of variables which are uncorrelated

and have unit variance.
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2.4 Finding the smoothing parameter using cross validation

The accuracy of kernel regression has a strong dependence on the smoothing parameter σ [1].

Let (Xi, yi) for i = 1, 2, . . . , n be a set of observations that associate distributions Xi with

responses yi. For the distribution Xj we can use equation (4) to compute

f̂(X = Xj, σ) =

∑

1≤i≤n

i6=j

g(Dij, σ)yi

∑

1≤i≤n

i6=j

g(Dij, σ)
(7)

where Dij is the whitened EMD between Xi and Xj as described in Sections 2.2 and 2.3

and the (Xj , yj) observation is excluded from the sums. The error in the approximation is

given by

Ej(σ) = yj − f̂(Xj , σ). (8)

We define the optimal smoothing parameter σ∗ as the value of σ that minimizes the total

absolute error in the approximation over the observations

σ∗ = argmin
σ

n∑

j=1

|Ej(σ)| (9)

Note that if we include the (Xj, yj) observation in the sums in (7), then as σ approaches

zero the approximation f̂(X, σ) approaches a sum of Dirac delta functions centered at the

observation points causing each Ej(σ) and the sum in (9) to approach zero. This yields a

poor approximation to the underlying f(X) function everywhere except at the observation

points. The method described in this section for finding σ∗ is similar to leave-one-out cross

validation methods that are used for density estimation [14].

3 Experimental Results

3.1 Learning Strikeout Rate over Pitch Distributions

Strikeout rate is a strong determinant of a pitcher’s success. We demonstrate the algorithm

described in Section 2 for the problem of learning the dependence of pitcher strikeout rate

on a multivariate pitch distribution defined over a vector of parameters derived from sensor

measurements. Figure 1, for example, plots the distribution of pitches thrown by left-handed
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pitcher Chris Sale in 2016 for variables that represent pitch speed (s) in miles per hour and

horizontal movement (bx) and vertical movement (bz) in inches. Different pitch types, e.g.

sinker or slider, are shown in different colors in the figure. Pitchers tend to throw a small

number of distinct pitch types which allows pitch distributions to be accurately modeled

using the signature representation of (5) where each pitch type corresponds to a cluster. The

ability to learn a function for predicting strikeout rate as a function of pitch distribution has

several important applications. Given a pitcher’s set of pitches, the function can be used

to determine the frequencies for each pitch type that maximize strikeout rate. In addition,

the function can be used to evaluate the potential value of new pitch types for improving

strikeout rate. Thus, the new algorithm can be used to develop tools that guide pitchers in

their quest to improve.
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Figure 1: Chris Sale pitches in 2016
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3.2 Sensor Data

The PITCHf/x optical video and TrackMan Doppler radar sensors [4] capture data during

baseball games that can be exploited to recover information about pitches. Our analysis

considers the estimated s, bx, and bz parameters for each pitch as reported by Brooks Base-

ball (www.brooksbaseball.net). The parameter s represents the speed of a pitch in three

dimensions and the pair (bx, bz) specifies the pitch’s horizontal and vertical movement rela-

tive to a theoretical pitch thrown at the same speed with no spin-induced movement [12].

The coordinate system origin is at home plate with positive x to the right from the catcher’s

perspective, positive z up, and positive y in the direction from home plate to second base.

By convention, Brooks Baseball reports s for y = 55 feet and (bx, bz) from y = 40 feet to

home plate. A pitcher’s success is highly dependent on the speed and movement of his

pitches. A larger speed s reduces the batter’s available reaction time while greater move-

ment (bx, bz) makes it more difficult for the batter to determine the optimal contact point.

In addition, the diversity of a pitcher’s distribution of pitches affects the batter’s ability to

anticipate the speed and movement of the next pitch.

A given pitch type has specific speed and movement characteristics. For example, a

fourseam fastball from a right-handed major league baseball (MLB) pitcher will typically

have a speed s above 90 miles per hour with a negative horizontal movement bx and a

positive vertical movement bz . A curveball from the same pitcher will typically have a speed

s of less than 80 miles per hour with a positive bx and a negative bz . For a left-handed

pitcher, the sign of the horizontal movement bx will reverse for these pitches. A pitcher can

benefit from having pitches with large differences in speed [3] or from having pitches with

similar speed that move in different directions [10]. Major League Baseball Advanced Media

(MLBAM) uses measured pitch parameters to classify the type of each pitch in real-time.

After each game, Pitch Info (www.pitchinfo.com) uses a manual review process to improve

on the accuracy of the MLBAM classifications.

3.3 Data Processing

3.3.1 Overview

We built the strikeout rate model as described in Sections 3.1 and 3.2 using 2016 sensor data

for each MLB pitcher who threw at least 1500 pitches during the season. This threshold

ensures the use of a reasonably large sample for generating the pitch distributions and
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strikeout rates and also removes pitchers who were used purely as relievers which often

results in a different style of pitching. There were 108 right-handed pitchers and 41 left-

handed pitchers who threw at least 1500 pitches in 2016.

The effectiveness of a given pitch depends on the handedness (left or right) of the bat-

ter and pitcher. Thus, we separately consider the dependence of strikeout rate on pitch

distribution for each of the four possible platoon configurations (RHP vs. RHB, RHP vs.

LHB, LHP vs. RHB, LHP vs. LHB). A pitcher’s strikeout rate for a platoon configuration

and year is defined as the ratio of strikeouts to the number of batters faced after removing

all matchups with a pitcher as a batter and also removing all matchups that resulted in

a bunt or an intentional walk. Using the 2016 constant of 4.262 batters per inning, the

FIP equation [2] predicts that an increase of 0.03 in strikeout rate leads to 0.26 fewer runs

allowed per game which is a significant improvement in pitcher performance.

3.3.2 Signature Model

The pitch distribution for a pitcher for a given year and platoon configuration is represented

using a signature as defined by (5). The number of clusters m corresponds to the number

of distinct pitch types as identified by the Pitch Info classifier where m can depend on both

the specific pitcher and the platoon configuration. For each pitch type i, µi is the pitch

parameter mean vector (si, bxi, bzi) and wi is the fraction of pitches of that type for the

pitcher and platoon configuration.

3.3.3 Computing the EMD

The signatures are used to compute the distance between distributions using the EMD as

described in Section 2.2 with the whitened ground distance defined in Section 2.3. As a

two-dimensional example of this process, Figure 2 is a scatterplot of the mean (si, bzi) values

for each pitch cluster in a signature for the right-handed pitcher versus right-handed batter

platoon configuration in 2016. We see that si and bzi have a large positive correlation so

that a pitch thrown with a higher speed will tend to have a larger vertical movement. The

variance of the si values is also larger than the variance of the bzi values. These effects are

addressed by using the Mahalanobis ground distance defined by (6). As a specific example,

a significant portion of the separation between the orange and red points in the figure is due

to the correlation between the variables which results in a Euclidean distance between these

points which is larger than the Euclidean distance between the orange and green points.
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The Mahalanobis distance accounts for this correlation and results in a distance between

the orange and red points which is less than the distance between the orange and green

points.
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Figure 2: Cluster means (si, zi) for RHP versus RHB configuration, 2016

3.3.4 Cross validation

The cross validation process described in Section 2.4 is used to find optimized values for the

smoothing parameter σ for each platoon configuration using the total absolute error

ET (σ) =
n∑

j=1

|Ej(σ)| (10)
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defined in (9). Figures 3 to 6 plot ET (σ) for each of the four platoon configurations. Since

two of the curves decrease rapidly before remaining nearly flat for a significant range of σ,

we select the optimal value σ∗ of the smoothing parameter as the smallest value of σ for

which

ET (σ) ≤ 1.001 ∗min [ET (σ)] . (11)

The resulting values of σ∗ are shown in Table 1.
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Figure 3: ET (σ) for RHP versus RHB configuration, 2016
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Figure 4: ET (σ) for RHP versus LHB configuration, 2016

10



0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.46

1.48

1.5

1.52

1.54

1.56

T
o

ta
l A

b
so

lu
te

 E
rr

o
r

Figure 5: ET (σ) for LHP versus RHB configuration, 2016
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Figure 6: ET (σ) for LHP versus LHB configuration, 2016

Table 1: Optimized σ∗ values found using cross validation

pitcher batter σ∗

RHP RHB 0.48
RHP LHB 0.34
LHP RHB 0.48
LHP LHB 0.39
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3.3.5 Finding optimized pitch frequencies

Given the estimated f̂(X, σ∗) for representing strikeout rate as a function of the pitch

distribution X, we can optimize the pitch frequencies for a pitcher with a given set of

pitches. If X is represented by a signature as in (5), the optimization requires a search over

the m weights wi to maximize f̂(X, σ∗) subject to the constraints w1 + w2 + . . .+ wm = 1

and wi ≥ 0. The number of pitch types m is typically small which allows an exhaustive

search to be performed efficiently.

We illustrate this process for left-handed pitcher Danny Duffy for the LHP vs. LHB

platoon configuration using his 2016 signature as shown in Table 2. Figure 7 is a visualization

of f̂(X, σ∗) for pitch distributions X formed by varying the frequency w1 of his fourseam

and w2 of his slider. In order to limit the plot to two dimensions, the wi for his two least

frequent pitches are set to their 2016 values so that w4 = 0.0252, w5 = 0.0069, and w3 is

then constrained to w3 = 1 − (w1 + w2 + w4 + w5). The red point in the figure indicates

the location of Duffy’s 2016 signature and corresponds to an actual strikeout rate of 0.330

and an estimated strikeout rate using f̂(X, σ∗) of 0.317. We see that the model predicts

that the pitcher could improve his strikeout rate by increasing w1 (fourseam frequency) and

reducing w2 (slider frequency). In 2017, Duffy’s w1 and w2 frequencies for this configuration

moved in the opposite direction to the point shown in black in the figure. This resulted in

a reduced strikeout rate of 0.245 in 2017 which is consistent with a reduced strikeout rate

model prediction as shown in Figure 7.

Table 2: Pitch signature for LHP Danny Duffy versus LHB for 2016

Pitch type index w s bx bz
Fourseam 1 0.6156 95.96 4.72 11.73
Slider 2 0.2357 84.43 -2.24 -0.85
Sinker 3 0.1167 95.39 8.02 9.21
Change 4 0.0252 86.21 9.79 8.08
Curve 5 0.0069 80.26 -4.26 -5.52

3.3.6 Predicting strikeout rate changes

We can examine the ability of the f̂(X, σ∗) model estimated from 2016 sensor data to predict

pitcher strikeout rate changes as pitch distributions change from 2016 to out-of-sample data

in 2017. For this purpose, we considered the 72 right-handed pitchers and 27 left-handed
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Figure 7: Danny Duffy f̂(X, σ∗) for LHP versus LHB configuration, 2016

pitchers who threw at least 1500 pitches in both 2016 and 2017. We define a pitcher’s

actual change in strikeout rate ∆ and his predicted change in strikeout rate ∆̂ for a platoon

configuration by

∆ = (2017 strikeout rate)− (2016 strikeout rate) (12)

∆̂ = (2017 predicted strikeout rate)− (2016 strikeout rate) (13)

where 2017 predicted strikeout rate is computed by evaluating f̂(X, σ∗) for the pitcher’s

2017 pitch distribution. Figure 8 is a scatterplot with 198 points that represent (∆̂,∆) for

each of the 72 right-handed and 27 left-handed pitchers against each handedness of batter.

We see that the points have a positive correlation. In particular for the 25 points with

strong positive predictions ∆̂ > 0.03 we have 21 points (84.0%) with a positive ∆ in actual

strikeout rate. For the 39 points with strong negative predictions ∆̂ < −0.03 we have 24

points (61.5%) with a negative ∆ in actual strikeout rate. Thus, the model is useful for

predicting the dependence of changes in strikeout rate on changes in pitch distribution.
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Figure 8: Predicting strikeout rate changes using f̂(X, σ∗)

4 Conclusion

We have developed and evaluated an algorithm for learning a function over distributions.

The algorithm employs the earth mover’s distance as a metric for distribution space within a

nonparametric kernel regression scheme. We have demonstrated the algorithm for the task of

learning a pitcher’s strikeout rate as a function of a multidimensional pitch distribution that

is generated from pitch trajectory measurements. The algorithm efficiently represents the

pitch distributions using signatures and compensates for the correlation of the trajectory

variables with a whitening step. The smoothing parameter for the regression kernel is

learned using cross validation. The algorithm can be used by pitchers to find optimized

pitch distributions or to evaluate the utility of adding a new pitch type. By utilizing physical

measurements, the algorithm also allows the comparison of pitchers across environments.

This enables, for example, a prediction of how a college pitcher would perform in major

league baseball after optimizing his pitch distribution. We assessed the algorithm for the

prediction of strikeout rate from pitch distributions on out-of-sample data. The method for

learning a function over distributions can be easily adapted for other application areas.
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