
ON CERTAIN Πq-IDENTITIES OF W. GOSPER

BING HE

Abstract. In 2001 W. Gosper introduced the q-trigonometric functions and
the constant Πq and conjectured many intriguing identities on these q-trigono-
metric functions and Πq . In this paper we employ some knowledge of mod-
ular equations with degree 5 to confirm several of Gosper’s Πq-identities. As
a consequence, a q-identity involving Πq and Lambert series, which was con-
jectured by Gosper, is proved. As an application, we confirm an interesting
q-trigonometric identity of Gosper.

1. Introduction

Throughout this paper we assume that |q| < 1. W. Gosper [5] first introduced
the q-constant Πq :

(1.1) Πq = q1/4 (q2; q2)2
∞

(q; q2)2
∞
,

where (a; q)∞ is defined by

(a; q)∞ =

∞∏
n=0

(1− aqn),

and then stated without proofs many identities involving Πq based on the computer
program MACSYMA. In particular, he [5, pp. 102–104] conjectured the following
Πq-identities:

Π2
q

Πq2Πq4
−

Π2
q2

Π2
q4

= 4,(1.2) √
ΠqΠq9(Πq + 3Πq9) = Π2

q3 + 3ΠqΠq9 ,(1.3)

Πq2Π4
q5(16Π4

q10 −Π4
q5) = Π3

q10(5Πq10 −Πq2)(Πq2 −Πq10)5,

Πq10Π4
q(16Π4

q2 −Π4
q) = Π3

q2(5Πq10 −Πq2)5(Πq2 −Πq10),

ΠqΠq5(16Π4
q2 −Π4

q)
2 = Π4

q2(5Πq5 −Πq)
5(Πq5 −Πq),

ΠqΠq5(16Π4
q10 −Π4

q5)2 = Π4
q10(5Πq5 −Πq)(Πq5 −Πq)

5,

(ΠqΠq10 −Πq2Πq5)2 = Πq2Πq10(Πq5 −Πq)(5Πq5 −Πq)
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and ∑
n≥1

q2n−1

(1−q2n−1)2 − 5
∑
n≥1

q10n−5

(1−q10n−5)2

Π2
q5

=

√
Π3
q

Π3
q5
− 2

Π2
q

Π2
q5

+ 5
Πq

Πq5

=

Π2
q5

Π2
q10

+ 16
Π2

q10

Π2
q5

Πq

Πq5
− 4− Πq5

Πq

.

The formula (1.2) was derived by Gosper [5, p. 93]. The Πq-identity (1.3) was
confirmed by the author and H.-C. Zhai [6] using an addition formula for the Jacobi
theta function of Liu [8, Theorem 1] (for applications of Liu’s addition formula,
please see [7]). See M. El Bachraoui [3] for some other Πq-identities.

In this paper we shall prove the following Πq-identities by using some knowledge
of modular equations with degree 5.

Theorem 1.1. We have

Πq2Π4
q5(16Π4

q10 −Π4
q5) = Π3

q10(5Πq10 −Πq2)(Πq2 −Πq10)5,(1.4)

Πq10Π4
q(16Π4

q2 −Π4
q) = Π3

q2(5Πq10 −Πq2)5(Πq2 −Πq10),(1.5)

ΠqΠq5(16Π4
q2 −Π4

q)
2 = Π4

q2(5Πq5 −Πq)
5(Πq5 −Πq),(1.6)

ΠqΠq5(16Π4
q10 −Π4

q5)2 = Π4
q10(5Πq5 −Πq)(Πq5 −Πq)

5,(1.7)

(ΠqΠq10 −Πq2Πq5)2 = Πq2Πq10(Πq5 −Πq)(5Πq5 −Πq).(1.8)

Theorem 1.2. We have

(1.9)

∑
n≥1

q2n−1

(1−q2n−1)2 − 5
∑
n≥1

q10n−5

(1−q10n−5)2

Π2
q5

=

√
Π3
q

Π3
q5
− 2

Π2
q

Π2
q5

+ 5
Πq

Πq5

=

Π2
q5

Π2
q10

+ 16
Π2

q10

Π2
q5

Πq

Πq5
− 4− Πq5

Πq

.

The identities (1.4)–(1.7) only contain three of the constants Πq,Πq2 ,Πq5 and
Πq10 , but the formula (1.8) includes all of these four constants. The structures of
these five identities are similar so that our proofs share the same pattern. The
identity (1.9) involves and Πq, which leads to its huge appearence and complicated
proof. The key to our proof of the identity (1.9) is to deal with the denominator∑

n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

and the constant √
Π3
q

Π3
q5
− 2

Π2
q

Π2
q5

+ 5
Πq

Πq5
.

In the next section we provide some auxiliary results, which are crucial in the
derivation of Theorem 1.1. Section 3 is devoted to our proof of Theorem 1.1. We
will show Theorem 1.2 in Section 4. As a result, we in Section 5 confirm a q-identity
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involving Πq and Lambert series, which was also conjectured by Gosper:

6

(∑
n≥1

qn

(1− qn)2
− 5

∑
n≥1

q5n

(1− q5n)2

)
+ 1

=

(
Πq

Πq5
+ 2 + 5

Πq5

Πq

)(∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

)
.

As an application, we employ Theorem 1.2 to confirm an interesting q-trigonometric
identity of Gosper:

sinq 5z =
Πq

Πq5
(cosq5 z)

4 sinq5 z −

√
Π3
q

Π3
q5
− 2

Π2
q

Π2
q5

+ 5
Πq

Πq5
(cosq5 z)

2(sinq5 z)
3

+ (sinq5 z)
5

in the last section.

2. Auxiliary results

In this section and throughout this paper we will adopt the notations of [1,
Chapters 5 and 6]. We begin this section with the definition of modular equations
[1, (6.3.2)].

Let 0 < k, l < 1 and let n be a positive integer. A relation between k and l
induced by the formula

n
2F1( 1

2 ,
1
2 ; 1; 1− k2)

2F1( 1
2 ,

1
2 ; 1; k2)

=
2F1( 1

2 ,
1
2 ; 1; 1− l2)

2F1( 1
2 ,

1
2 ; 1; l2)

is called a modular equation of degree n. Take α = k2, β = l2, we say that β has
degree n over α. The multiplier m is given by

m =
z1

zn
,

where

zn = ϕ2(qn)

and

ϕ(q) =

∞∑
k=−∞

qk
2

.

The value of m depends on n, but throughout this paper we only consider modular
equations of degree 5, then it is always assumed that n = 5 and

(2.1) m =
z1

z5
.

In order to prove Theorem 1.1 we need several auxiliary results.
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Theorem 2.1. If β has degree 5 over α, then

256
z1

z5

(
α

β

)1/2
1

β

(
1− 1

β

)
=

(
5− z1

z5

(
α

β

)1/2)(
z1

z5

(
α

β

)1/2

− 1

)5

,

(2.2)

256
z5

z1

(
β

α

)1/2
1

α

(
1− 1

α

)
=

(
5
z5

z1

(
β

α

)1/2

− 1

)5(
1− z5

z1

(
β

α

)1/2)
,

(2.3)

z5

z1

(
β

α

)1/4(
α− 1

)2

=
α

16

(
5
z5

z1

(
β

α

)1/4

− 1

)5(
z5

z1

(
β

α

)1/4

− 1

)
,(2.4)

z1

z5

(
α

β

)1/4(
β − 1

)2

=
β

16

(
5− z1

z5

(
α

β

)1/4)(
1− z1

z5

(
α

β

)1/4)5

,(2.5)

(
z1

z5

(
α

β

)1/4

− z1

z5

(
α

β

)1/2)2

=
z1

z5

(
α

β

)1/2(
1− z1

z5

(
α

β

)1/4)(
5− z1

z5

(
α

β

)1/4)
.

(2.6)

Proof. We first prove (2.2) and (2.5). According to [2, Chapter 19, (13.12)–(13.15)]
we have (

α

β

)1/4

=
2m+ ρ

m(m− 1)
,(2.7) (

β

α

)1/4

=
2m− ρ
5−m

,(2.8) (
1− β
1− α

)1/4

=
2m+ ρ

5−m
,

(αβ)1/2 =
4m3 − 16m2 + 20m+ ρ(m2 − 5)

16m2
,(2.9)

{(1− α)(1− β)}1/2 =
4m3 − 16m2 + 20m− ρ(m2 − 5)

16m2
,(2.10)

where
ρ = (m3 − 2m2 + 5m)1/2.

Then

β =

(
2m− ρ
5−m

)2
4m3 − 16m2 + 20m+ ρ(m2 − 5)

16m2
,(2.11)

1− β =

(
2m+ ρ

5−m

)2
4m3 − 16m2 + 20m− ρ(m2 − 5)

16m2
.(2.12)

Substituting (2.1), (2.7), (2.11) and (2.12) into both sides of each of the identities
(2.2) and (2.5), noticing that ρ = (m3−2m2 + 5m)1/2 and then simplifying we find
that both sides of each of the identities (2.2) and (2.5) are respectively equal to(

2

m− 1

)2

A(m)

and
m− 5

256m(m− 1)
B(m),
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where

A(m) = 4m9 − 24m8 +m8ρ+ 64m7 − 2m7ρ− 200m6 + 6m6ρ− 40m5 − 98m5ρ

− 40m4 + 80m4ρ− 1280m3 − 470m3ρ− 504m2 − 470m2ρ− 28m− 70mρ− ρ

and

B(m) = 2m6 − 10m5 +m5ρ− 5m4ρ+ 4m4 + 10m3ρ

− 4m3 − 102m2 − 42m2ρ− 18m− 27mρ− ρ.

These prove (2.2) and (2.5).
We now show (2.3) and (2.4). According to [2, Chapter 19, (13.12)] we get

(2.13)
(

1− α
1− β

)1/4

=
2m− ρ
m(m− 1)

.

It follows from (2.7), (2.9), (2.10) and (2.13) that

α =

(
2m+ ρ

m(m− 1)

)2
4m3 − 16m2 + 20m+ ρ(m2 − 5)

16m2
,(2.14)

1− α =

(
2m− ρ
m(m− 1)

)2
4m3 − 16m2 + 20m− ρ(m2 − 5)

16m2
.(2.15)

We subsitute (2.1), (2.8), (2.14) and (2.15) into both sides of each of the identities
(2.3) and (2.4), note that ρ = (m3 − 2m2 + 5m)1/2 and then simplify to deduce
that both sides of each of the identities (2.3) and (2.4) equal

− 212m2

(m− 5)12
C(m)

and
1−m

256m6(m− 5)
D(m)

respectively, where

C(m) = 28m9 + 2520m8−m8ρ+ 32000m7−350m7ρ+ 5000m6−11750m6ρ

+ 25000m5−58750m5ρ+ 625000m4 + 50000m4ρ−1000000m3−306250m3ρ

+ 1875000m2 + 93750m2ρ−1562500m−156250mρ+ 390625ρ,

and

D(m) = 18m6 + 510m5−m5ρ+ 100m4−135m4ρ−1050m3ρ

−500m3 + 1250m2ρ+ 6250m2−6250m−3125mρ+ 3125ρ,

which prove (2.3) and (2.4).
We finally prove (2.6). We subsitute (2.1) and (2.7) into both sides of (2.6) and

then simplify using the identity ρ = (m3 − 2m2 + 5m)1/2 to derive that both sides
of (2.6) are equal to

(m− 5)2(m3−m2 + 7m+ 2mρ+ 1 + 2ρ)

(m− 1)4
,

from which (2.6) follows readily. This finishes the proof of Theorem 2.1. �
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3. Proof of Theorem 1.1

Let

ψ(q) =

∞∑
n=0

qn(n+1)/2.

It follows from (1.1) and [1, (1.3.14)] that

(3.1) Πq = q1/4ψ2(q).

Then

(3.2) Πq5 = q5/4ψ2(q5).

Using these equations we see that the identities (1.4)–(1.8) are respectively equiv-
alent to

ψ2(q2)

ψ2(q10)

ψ8(q5)

ψ8(q10)

(
16q5 − ψ8(q5)

ψ8(q10)

)
=

(
5q2 − ψ2(q2)

ψ2(q10)

)(
ψ2(q2)

ψ2(q10)
− q2

)5

,

(3.3)

ψ2(q10)

ψ2(q2)

ψ8(q)

ψ8(q2)

(
16q − ψ8(q)

ψ8(q2)

)
=

(
5q2ψ

2(q10)

ψ2(q2)
− 1

)5(
1− q2ψ

2(q10)

ψ2(q2)

)
,

(3.4)

ψ2(q5)

ψ2(q)

(
16q

ψ8(q2)

ψ8(q)
− 1

)2

=
ψ8(q2)

ψ8(q)

(
5q
ψ2(q5)

ψ2(q)
− 1

)5(
q
ψ2(q5)

ψ2(q)
− 1

)
,(3.5)

ψ2(q)

ψ2(q5)

(
16q5ψ

8(q10)

ψ8(q5)
− 1

)2

=
ψ8(q10)

ψ8(q5)

(
5q − ψ2(q)

ψ2(q5)

)(
q − ψ2(q)

ψ2(q5)

)5

,(3.6) (
q
ψ2(q)

ψ2(q5)
− ψ2(q2)

ψ2(q10)

)2

=
ψ2(q2)

ψ2(q10)

(
q − ψ2(q)

ψ2(q5)

)(
5q − ψ2(q)

ψ2(q5)

)
.(3.7)

We temporarily assume that 0 < q < 1. Let β have 5 degree over α. According
to [1, Theorem 5.4.2 (i) and (iii)] we have

ψ(q) =

√
z1

2
(α/q)1/8,(3.8)

ψ(q2) =
1

2

√
z1(α/q)1/4,(3.9)

ψ(q5) =

√
z5

2
(β/q5)1/8,(3.10)

ψ(q10) =
1

2

√
z5(β/q5)1/4.(3.11)

It follows from (3.9), (3.10) and (3.11) that

ψ(q2)

ψ(q10)
=

√
z1

z5

(
α

β

)1/4

q,(3.12)

ψ(q5)

ψ(q10)
=

√
2

(β/q5)1/8
.(3.13)

Multiplying both sides of (2.2) by q12 and then using (3.12) and (3.13) in the
resulting equation we can easily obtain the identity (3.3).
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It is easily deduced from (3.8) and (3.9) that

(3.14)
ψ(q)

ψ(q2)
=

√
2

(α/q)1/8
.

Then (3.4) follows by substituting (3.12) and (3.14) into (2.3).
It is easily seen from (3.8) and (3.10) that

(3.15)
ψ(q5)

ψ(q)
=

√
z5

z1

(
β

α

)1/8

/q1/2.

Then (3.5) follows easily by dividing both sides of (2.4) by q and then using (3.14)
and (3.15) in the resulting identity.

Multiplying both sides of (2.5) by q and then employing (3.13) and (3.15) in the
resulting equation we can attain (3.6).

The identity (3.7) follows readily by multiplying both sides of (2.6) by q4 and
then using (3.12) and (3.15) in the resulting identity.

From these we see that (3.3)–(3.7) holds for 0 < q < 1. By analytic continuation,
these identities are also true for |q| < 1. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

We assume that 0 < q < 1 temporarily. We first prove the first equality of (1.9).
Let P (q) be one of the Ramanujan Eisenstein series:

P (q) = 1− 24

∞∑
n=1

nqn

1− qn
.

Since
x

(1− x)2
=
∑
n≥1

nxn, |x| < 1,

we see that

(4.1)
∑
m≥1

qm

(1− qm)2
=
∑
m,n≥1

nqmn =
∑
n≥1

nqn

1− qn
=

1

24
(1− P (q)).

Then ∑
n≥1

q2n−1

(1− q2n−1)2
=
∑
n≥1

qn

(1− qn)2
−
∑
n≥1

q2n

(1− q2n)2

=
1

24
(1− P (q))− 1

24
(1− P (q2))

=
1

24
(P (q2)− P (q))

and so ∑
n≥1

q10n−5

(1− q10n−5)2
=

1

24
(P (q10)− P (q5)).

Combining the above two identities we get

(4.2)

∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

=
1

24
[(P (q2)− 5P (q10))− (P (q)− 5P (q5))].
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Let β have degree 5 over α. According to [1, Theorem 5.4.9] we have

P (q) = (1− 5α)z2
1 + 12α(1− α)z1

dz1

dα
,(4.3)

P (q2) = (1− 2α)z2
1 + 6α(1− α)z1

dz1

dα
,(4.4)

P (q5) = (1− 5β)z2
5 + 12β(1− β)z5

dz5

dβ
,(4.5)

P (q10) = (1− 2β)z2
5 + 6β(1− β)z5

dz5

dβ
.(4.6)

In view of [2, Chapter 18, Entry 24(vi)] we conclude that

(4.7) β(1− β)z5
dz5

dβ
=
mα(1− α)

5
z1
dz5

dα
.

Since z1 = mz5, we know that

dz1

dα
= m

dz5

dα
+ z5

dm

dα
.

Substituting the identity

m
dz5

dα
=
dz1

dα
− z5

dm

dα

into (4.7) we get

β(1− β)z5
dz5

dβ
=
α(1− α)

5
z1
dz1

dα
− α(1− α)

5
z1z5

dm

dα
.

Substituting this equation into (4.5) and (4.6) gives

P (q5) = (1− 5β)z2
5 +

12

5
α(1− α)z1

dz1

dα
− 12

5
α(1− α)z1z5

dm

dα
,(4.8)

P (q10) = (1− 2β)z2
5 +

6

5
α(1− α)z1

dz1

dα
− 6

5
α(1− α)z1z5

dm

dα
.(4.9)

Differentiating the identity [2, Chapter 19, (14.2)] with respect to m using the
method of logarithmic differentiation and then simplifying yields

(4.10)
dm

dα
=

1− 2α

α(1− α)

m(m− 1)(5−m)

25− 20m−m2
.

We substitute (4.3), (4.4), (4.8) and (4.9) into (4.2) and then employ (4.10) in the
resulting identity to get

(4.11)

∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

=
1

8

(
αz2

1 − 5βz2
5 − 2α(1− α)z1z5

dm

dα

)
=
z2

5

8

(
αm2 − 5β − 2α(1− α)m

dm

dα

)
=
z2

5

8

(
αm2 − 5β − 2(1− 2α)

m2(m− 1)(5−m)

25− 20m−m2

)
.
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Substituting (2.11) and (2.14) into (4.11) and then simplifying using the identity
ρ2 = m3 − 2m2 + 5m we arrive at

(4.12)
∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2
=
z2

5(m2 − 5 + 2ρ)

16
.

Squaring this identity and simplifying yields

(4.13)

(∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

)2

=
z4

5(m4 + 4m3 − 18m2 + 4m2ρ+ 20m+ 25− 20ρ)

28
.

Using the identities (3.1) and (3.2) we know that

(4.14)
Π3
qΠq5 − 2Π2

qΠ
2
q5 + 5ΠqΠ

3
q5

= q2ψ6(q)ψ2(q5)− 2q3ψ4(q)ψ4(q5) + 5q4ψ2(q)ψ6(q5).

Substituting the equations (3.8) and (3.10) into (4.14) yields

(4.15)

Π3
qΠq5 − 2Π2

qΠ
2
q5 + 5ΠqΠ

3
q5

=
z1z5

16
[z2

1(α3β)1/4 − 2z1z5(αβ)1/2 + 5z2
5(αβ3)1/4]

=
mz4

5

16
[m2(α3β)1/4 − 2m(αβ)1/2 + 5(αβ3)1/4].

According to [2, Chapter 19, (13.10) and (13.11)] we get

(α3β)1/8 =
ρ+ 3m− 5

4m
, (αβ3)1/8 =

ρ+m2 − 3m

4m
.

We substitute these two equations and (2.9) into (4.15), note that ρ2 = m3−2m2 +
5m and then simplify to obtain

(4.16)
Π3
qΠq5 − 2Π2

qΠ
2
q5 + 5ΠqΠ

3
q5

=
z4

5(m4 + 4m3 − 18m2 + 4m2ρ+ 20m+ 25− 20ρ)

28
.

Combining (4.13) and (4.16) we are led to(∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

)2

= Π3
qΠq5 − 2Π2

qΠ
2
q5 + 5ΠqΠ

3
q5 .

Comparing the coefficient of q in
∑
n≥1

q2n−1

(1−q2n−1)2 −5
∑
n≥1

q10n−5

(1−q10n−5)2 and that of
q2 in Π3

qΠq5 − 2Π2
qΠ

2
q5 + 5ΠqΠ

3
q5 we deduce that

∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2
=
√

Π3
qΠq5 − 2Π2

qΠ
2
q5 + 5ΠqΠ3

q5 .

Dividing both sides of the above identity by Π2
q5 we see that (1.9) holds for 0 < q <

1.
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We now show the second equality. It follows from (3.1), (3.10) and (3.13) that

Π2
q5 = q5/2ψ4(q5) =

z2
5β

1/2

4
,(4.17)

Πq5

Πq10
=

ψ2(q5)

q5/4ψ2(q10)
=

2

β1/4
.

Then
Π2
q5

Π2
q10

+ 16
Π2
q10

Π2
q5

=
4

β1/2
+ 4β1/2.

Multiplying this identity by (4.17), using (2.3) in the resulting identity and simpli-
fying we obtain

(4.18) Π2
q5 ·
(

Π2
q5

Π2
q10

+ 16
Π2
q10

Π2
q5

)
=
ρm2 + 24m− 4ρm− ρ

16m
z2

5 .

It can be deduced from (3.1), (3.2) and (3.15) that

Πq

Πq5
− 4−

Πq5

Πq
=
z1

z5

(
α

β

)1/4

− 4− z5

z1

(
β

α

)1/4

.

Applying (2.1), (2.7) and (2.8) in this identity and simplifying yields

Πq

Πq5
− 4−

Πq5

Πq
=

2m3 − 16m2 − ρm2 + 22m+ 6ρm− ρ
(m− 1)m(5−m)

.

We multiply this equation by (4.12) and simplify using the identity ρ2 = m3 −
2m2 + 5m to arrive at

(4.19)

(
Πq

Πq5
− 4−

Πq5

Πq

)(∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

)

=
ρm2 + 24m− 4ρm− ρ

16m
z2

5 .

Combining (4.18) and (4.19) we deduce that(
Πq

Πq5
− 4−

Πq5

Πq

)(∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

)

= Π2
q5 ·
(

Π2
q5

Π2
q10

+ 16
Π2
q10

Π2
q5

)
.

Dividing both sides of this identity by

Π2
q5

(
Πq

Πq5
− 4−

Πq5

Πq

)
gives that the second equality of (1.9) holds for 0 < q < 1.

From the above we see that the two equalities of (1.9) are ture for 0 < q < 1. By
analytic continuation, these two equalities hold for |q| < 1. This finishes the proof
of Theorem 1.2.
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5. A q-identity involving Πq and Lambert series

Gosper [5, p. 104] conjectured the following q-identity:

(5.1)

6

(∑
n≥1

qn

(1− qn)2
− 5

∑
n≥1

q5n

(1− q5n)2

)
+ 1

=

(
Πq

Πq5
+ 2 + 5

Πq5

Πq

)(∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

)
.

In this section we will use (4.12) to confirm this identity. The key to our proof
of (5.1) is to handle the Lambert series∑

n≥1

qn

(1− qn)2
− 5

∑
n≥1

q5n

(1− q5n)2
.

Theorem 5.1. The identity (5.1) is true.

From (5.1) and the second equality of (1.9) we deduce∑
n≥1

qn

(1− qn)2
− 5

∑
n≥1

q5n

(1− q5n)2

=

Π2
q5

(
Πq

Πq5
+ 2 + 5

Πq5

Πq

)(
Π2

q5

Π2
q10

+ 16
Π2

q10

Π2
q5

)
−
(

Πq

Πq5
− 4− Πq5

Πq

)
6

(
Πq

Πq5
− 4− Πq5

Πq

) .

This indicates that the Lambert series∑
n≥1

qn

(1− qn)2
− 5

∑
n≥1

q5n

(1− q5n)2

can be represented as a rational function of Πq, Πq5 and Πq10 .
Proof of Theorem 5.1. We first assume that 0 < q < 1. Let β have degree 5 over
α. It follows from (4.1) that∑

n≥1

qn

(1− qn)2
− 5

∑
n≥1

q5n

(1− q5n)2
=

1

24
(1− P (q))− 5

24
(1− P (q5))

=
1

24
(5P (q5)− P (q))− 1

6
.

Using (4.3), (4.8) and (4.10) in the above identity gives∑
n≥1

qn

(1− qn)2
− 5

∑
n≥1

q5n

(1− q5n)2

=
1

24

(
5(1− 5β)z2

5 − (1− 5α)z2
1 − 12α(1− α)z1z5

dm

dα

)
− 1

6

=
z2

5

24

(
5(1− 5β)− (1− 5α)m2 − 12(1− 2α)

m2(m− 1)(5−m)

25− 20m−m2

)
− 1

6
.
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Substituting (2.11) and (2.14) into this identity and simplifying using the equality
ρ2 = m3 − 2m2 + 5m we get∑

n≥1

qn

(1− qn)2
− 5

∑
n≥1

q5n

(1− q5n)2
=

6m3 +m2ρ+ 14mρ− 30m+ 5ρ

96m
z2

5 −
1

6
.

Then

(5.2)
6

(∑
n≥1

qn

(1− qn)2
− 5

∑
n≥1

q5n

(1− q5n)2

)
+ 1

=
6m3 +m2ρ+ 14mρ− 30m+ 5ρ

16m
z2

5 .

It is deduced from (3.1), (3.2) and (3.15) that

Πq

Πq5
+ 2 + 5

Πq5

Πq
=

ψ2(q)

qψ2(q5)
+ 2 +

5qψ2(q5)

ψ2(q)

= m

(
α

β

)1/4

+ 2 +
5

m

(
β

α

)1/4

.

Then, by (2.7) and (2.8),

Πq

Πq5
+ 2 + 5

Πq5

Πq
=

2m+ ρ

m− 1
+ 2 +

5(2m− ρ)

m(5−m)
.

Multiplying this equation by (4.12) and then simplifying by employing the identity
ρ2 = m3 − 2m2 + 5m we have

(5.3)

(
Πq

Πq5
+ 2 + 5

Πq5

Πq

)(∑
n≥1

q2n−1

(1− q2n−1)2
− 5

∑
n≥1

q10n−5

(1− q10n−5)2

)

=
6m3 +m2ρ+ 14mρ− 30m+ 5ρ

16m
z2

5 .

Combining (5.2) and (5.3) produces that (5.1) holds for 0 < q < 1. By analytic
continuation, we see that (5.1) holds for |q| < 1. This ends the proof of Theorem
5.1. �

6. An application

The Jacobi theta functions θj(z|τ) for j = 1, 2 are defined by [10] [12, p. 464]:

θ1(z|τ) = −iq
1
4

∞∑
k=−∞

(−1)kqk(k+1)e(2k+1)zi,

θ2(z|τ) = q
1
4

∞∑
k=−∞

qk(k+1)e(2k+1)zi,

where q = exp(πiτ) and τ is a complex number with Im τ > 0. The notations
ϑ′1(τ) = θ′1(0|τ) and ϑ2(τ) = θ2(0|τ) will be used in this section. We have the
following relations:

θ1

(
z +

π

2
|τ
)

= θ2(z|τ), θ2

(
z +

π

2
|τ
)

= −θ1(z|τ).
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In [5] Gosper introduced q-analogues of sin z and cos z :

sinq(πz) := q(z−1/2)2
∞∏
n=1

(1− q2n−2z)(1− q2n+2z−2)

(1− q2n−1)2
,

cosq(πz) := qz
2
∞∏
n=1

(1− q2n−2z−1)(1− q2n+2z−1)

(1− q2n−1)2
.(6.1)

Gosper also gave two identities between sinq, cosq and the functions θ1 and θ2,
which are equivalent to the following:

(6.2) sinq z =
θ1(z|τ ′)
ϑ2(τ ′)

, cosq z =
θ2(z|τ ′)
ϑ2(τ ′)

,

where τ ′ = − 1
τ . He conjectured various identities involving sinq z and cosq z. In

particular, he stated [5, pp. 99–100]

(6.3)
sinq 2z =

Πq

Πq2
sinq2 z cosq2 z

=
1

2

Πq

Πq4

√
(sinq4 z)2 − (sinq2 z)4

,

(6.4)
sinq 3z =

Πq

Πq3
(cosq3 z)

2 sinq3 z − (sinq3 z)
3

=
1

3

Πq

Πq9
sinq9 z −

(
1 +

1

3

Πq

Πq9

)
(sinq3 z)

3

and

(6.5)
sinq 5z =

Πq

Πq5
(cosq5 z)

4 sinq5 z −

√
Π3
q

Π3
q5
− 2

Π2
q

Π2
q5

+ 5
Πq

Πq5
(cosq5 z)

2(sinq5 z)
3

+ (sinq5 z)
5.

.

The first equality in (6.3) was confirmed by Mező [11] by using the method of
logarithmic derivatives. The identity (6.4) and the second equality in (6.3) were
proved by M. El Bachraoui [4] by employing the theory of elliptic functions. The
identity (6.5) is a theta function (or q-)analogue for the well-known trigonometric
identity:

sin 5z = 5(cos z)4 sin z − 10(cos z)2(sin z)3 + (sin z)5.

In this section we will use Theorem 1.2 to prove (6.5).

Theorem 6.1. The identity (6.5) holds for any complex number z.

Our proof of the identity (6.5) is different from those of (6.3) and (6.4) and the
proof is more complicated. The key to proving the identity (6.5) is to determine
the constant

−

√
Π3
q

Π3
q5
− 2

Π2
q

Π2
q5

+ 5
Πq

Πq5

in front of (cosq5 z)
2(sinq5 z)

3. Theorem 1.2 plays an important role in determining
this constant.

In order to show Theorem 6.1 we also need the following interesting result.
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Theorem 6.2. [9, Theorem 2.2] Suppose that f1(z), f2(z), · · ·fr(z) are r linearly
independent nonzero entire functions of z and satisfy the functional equations:

(6.6) f(z) = (−1)rf(z + π) = (−1)rqre2rizf(z + πτ).

Let f(z) be any nonzero entire function satisfying (6.6). Then f(z) is a linear
combination of the functions f1(z), f2(z), · · ·fr(z).

We now in the position to prove Theorem 6.1.
Proof of Theorem 6.1. It is clear that all of the five entire functions

θ1(5z|5τ)

θ1(z|τ)
, θ4

2(z|τ), θ2
1(z|τ)θ2

2(z|τ), θ4
1(z|τ), θ1(2z|τ)

satisfy the functional equations:

f(z) = f(z + π) = q4e8izf(z + πτ).

We now prove that the four functions

θ4
2(z|τ), θ2

1(z|τ)θ2
2(z|τ), θ4

1(z|τ), θ1(2z|τ)

are linearly independent over C. Assume that

(6.7) C1θ
4
2(z|τ) + C2θ

2
1(z|τ)θ2

2(z|τ) + C3θ
4
1(z|τ) + C4θ1(2z|τ) = 0

for some complex numbers C1, C2, C3, C4. Setting z = 0 in (6.7) gives C1 = 0.
Replacing z by −z in (6.7) we have C4 = 0. Substituting C1 = C4 = 0 into (6.7),
dividing both sides of the resulting identity by θ2

1(z|τ) and then setting z = 0 we
obtain C2 = 0 and so C3 = 0. Hence, these four functions are linearly independent
over C.

In view of Theorem 6.2 we get

(6.8)
θ1(5z|5τ)

θ1(z|τ)
= D1θ

4
2(z|τ) +D2θ

2
1(z|τ)θ2

2(z|τ) +D3θ
4
1(z|τ) +D4θ1(2z|τ)

for some complex numbers D1, D2, D3, D4. These four constants are independent
of z but depend on τ, and we sometimes denote Di as Di(τ) in the sequel. Putting
z = 0 in (6.8) we are led to

(6.9) D1 =
1

ϑ4
2(τ)

lim
z→0

θ1(5z|5τ)

θ1(z|τ)
=

5ϑ′1(5τ)

ϑ4
2(τ)ϑ′1(τ)

.

Replacing z by −z in (6.8) gives

(6.10) D4 = 0.

We set z = π
2 in (6.8) to obtain

(6.11) D3 =
ϑ2(5τ)

ϑ5
2(τ)

.

Multiplying both sides of (6.8) by θ1(z|τ), replacing z by z + π/2 and substituting
(6.9), (6.10) and (6.11) into the resulting identity we get
(6.12)

θ2(5z|5τ) =
5ϑ′1(5τ)

ϑ4
2(τ)ϑ′1(τ)

θ4
1(z|τ)θ2(z|τ) +D2(τ)θ2

1(z|τ)θ3
2(z|τ) +

ϑ2(5τ)

ϑ5
2(τ)

θ5
2(z|τ).

It follows from (6.2) that

(6.13) sinq5 z =
θ1(z|τ ′/5)

ϑ2(τ ′/5)
, cosq5 z =

θ2(z|τ ′/5)

ϑ2(τ ′/5)
.
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According to [6, Lemma 3.1] we have

(6.14)
Πq

Πq5
=

5ϑ′1(τ ′)ϑ2(τ ′/5)

ϑ′1(τ ′/5)ϑ2(τ ′)
.

Dividing both sides of (6.12) by ϑ2(5τ), replacing τ by τ ′/5 and then applying
(6.13) and (6.14) in the resulting identity we find that

(6.15) cosq 5z =
Πq

Πq5
(sinq5 z)

4 cosq5 z + E(q)(sinq5 z)
2(cosq5 z)

3 + (cosq5 z)
5,

where

E(q) =
D2(τ ′/5)ϑ5

2(τ ′/5)

ϑ2(τ ′)
.

Noticing the difference between the identities (6.5) and (6.15), we only need to
determine the constant E(q) not D2. We now calculate the constant E(q).

Subtracting (cosq5 z)
5 from both sides of (6.15), dividing the resulting identity

by (sinq5 z)
2 , setting z → 0 and then using L’Hôpital’s rule two times we deduce

that

(6.16) E(q) =
25 cos′′q 0− 5 cos′′q5 0

2(sin′q5 0)2
.

From the definition of Πq [5, p. 85] we see that

sin′q 0 = −2 ln q

π
Πq,

and so

(6.17) sin′q5 0 = −10 ln q

π
Πq5 .

Differentiating both sides of (6.1) with respect to z using the method of logarithmic
differentiation and then setting z = 0 we have

(6.18) cos′′q 0 =
2 ln q

π2

(
1− 4 ln q

∑
n≥1

q2n−1

(1− q2n−1)2

)
.

Then

(6.19) cos′′q5 0 =
10 ln q

π2

(
1− 20 ln q

∑
n≥1

q10n−5

(1− q10n−5)2

)
.

We substituting (6.17), (6.18) and (6.19) into (6.16) and then employ the first
equality of (1.9) to get

E(q) = −

√
Π3
q

Π3
q5
− 2

Π2
q

Π2
q5

+ 5
Πq

Πq5
.

Then (6.5) follows readily by substituting this equation into (6.15) and then re-
placing z by z+π/2 in the resulting identity. This concludes the proof of Theorem
6.1. �
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