Cauchy's Integral formula

Atabey Mahmudov

August 2019

1 Introduction

In this article we will introduce Cauchy's integral formula. This formula is one of the most important formulas in complex analysis, named after great mathematician Augustin-Louis Cauchy. It's very useful in evaluating complex integrals. It simply states that the values of a holomorphic (we will give definition of homorphicity below) function inside a disk are determined by the values of that function on the boundary of the disk.

2 Cauchy's integral formula

Definition 2.1. Let $U \subset \mathbb{C}$ be open set and let $f : U \mapsto \mathbb{C}$ be a complex function. Then f is analytic in U if and only if f is **differentiable** at each point in U

Theorem 1. Suppose C is a simple closed curve and the function f(z) is analytic on a region containing C and its interior. We assume C is oriented counterclockwise. Then for any z_0 inside C:

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0}$$
(1)

Proof. We know that if the function is analytic at some point then this function is also continuous at this point. We use this fact and integral of $\frac{1}{z-z_0}$ over the curve C in order to prove our theorem. Firstly, let's evaluate integral. In order to integrate $\frac{1}{z-z_0}$ we'll parametrize it.

Let $z = z_0 + re^{i\theta}$ where $0 \le \theta \le 2\pi$. Then $dz = ire^{i\theta}d\theta$. Then we have:

$$\int_{C_r} \frac{1}{z - z_0} dz = \int_0^{2\pi} i d\theta = 2\pi i$$

Using this and fact that integral over the circle C_r and C have the same values, equation (1) can be written as:

$$\int_{C} \frac{f(z)}{z - z_0} = f(z_0) \int_{C} \frac{1}{z - z_0} = \int_{C} \frac{f(z_0)}{z - z_0}$$
(2)

Since the function is continuous at the point z_0 , by the definition of continuity at the point:

 $\begin{array}{ll} \forall \epsilon > 0 & \exists \delta = \delta(\epsilon) > 0 & |z - z_0| < \delta & |f(z) - f(z_0)| < \epsilon \\ \text{Now we just have to show equation (2) is true.Let's estimate following absolute value:} \end{array}$

$$\left| \int_{C_r} \frac{f(z)}{z - z_0} dz - \int_{C_r} \frac{f(z_0)}{z - z_0} dz \right| \le \int_{C_r} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| dz < \int_{C_r} \frac{\epsilon}{|z - z_0|} dz$$

Now let's pick $r < \delta$.Now we get:

$$\int_{C_r} \frac{\epsilon}{|z - z_0|} dz = \frac{\epsilon}{r} \int_{C_r} dz \tag{3}$$

Since the integral of the right hand side of (3) gives us length of circle C_r , which is $2\pi r$ we get estimate:

$$\left|\int_{C_r} \frac{f(z)}{z-z_0} dz - \int_{C_r} \frac{f(z_0)}{z-z_0} dz\right| < 2\pi\epsilon$$

Now theorem is proved since ϵ can be made arbitrarily small.

Example. Compute

$$\int_C \frac{(z-2)^2}{z+i} dz$$

where C is the circle of radius 2 centered at origin.

Let $f(z) = (z-2)^2$, clearly f is analytic everywhere in the interior of C. Hence, by the Cauchy's integral formula:

$$\int_C \frac{(z-2)^2}{z+i} dz = 2\pi i f(-i) = -8\pi + 6\pi i$$

Theorem 2. (Cauchy's integral theorem for derivatives) If f(z) and C satisfy the same hypotheses for Cauchy's integral formula, then for all z_0 inside C we have

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{(n+1)}}$$

where, C is simple closed curve, oriented counterclockwise, z_0 is inside C and f(z) is analytic on and inside C.