Cauchy's Integral formula

Atabey Mahmudov

August 2019

1 Introduction

In this article we will introduce Cauchy's integral formula. This formula is one of the most important formulas in complex analysis,named after great mathematician Augustin-Louis Cauchy. It's very useful in evaluating complex integrals. It simply states that the values of a holomorphic(we will give definition of homorphicity below) function inside a disk are determined by the values of that function on the boundary of the disk.

2 Cauchy's integral formula

Definition 2.1. Let $U \subset \mathbb{C}$ be open set and let $f: U \mapsto \mathbb{C}$ be a complex function. Then f is analytic in U if and only if f is differentiable at each point in U

Theorem 1. Suppose C is a simple closed curve and the function $f(z)$ is analytic on a region containing C and its interior. We assume C is oriented counterclockwise. Then for any z_{0} inside C :

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} \tag{1}
\end{equation*}
$$

Proof. We know that if the function is analytic at some point then this function is also continuous at this point. We use this fact and integral of $\frac{1}{z-z_{0}}$ over the curve C in order to prove our theorem.
Firstly, let's evaluate integral. In order to integrate $\frac{1}{z-z_{0}}$ we'll parametrize it. Let $z=z_{0}+r e^{i} \theta$ where $0 \leq \theta \leq 2 \pi$. Then $d z=i r e^{i \theta} d \theta$. Then we have:

$$
\int_{C_{r}} \frac{1}{z-z_{0}} d z=\int_{0}^{2 \pi} i d \theta=2 \pi i
$$

Using this and fact that integral over the circle C_{r} and C have the same values, equation (1) can be written as:

$$
\begin{equation*}
\int_{C} \frac{f(z)}{z-z_{0}}=f\left(z_{0}\right) \int_{C} \frac{1}{z-z_{0}}=\int_{C} \frac{f\left(z_{0}\right)}{z-z_{0}} \tag{2}
\end{equation*}
$$

Since the function is continuous at the point z_{0}, by the definition of continuity at the point:
$\forall \epsilon>0 \quad \exists \delta=\delta(\epsilon)>0 \quad\left|z-z_{0}\right|<\delta \quad\left|f(z)-f\left(z_{0}\right)\right|<\epsilon$
Now we just have to show equation (2) is true.Let's estimate following absolute value:

$$
\left|\int_{C_{r}} \frac{f(z)}{z-z_{0}} d z-\int_{C_{r}} \frac{f\left(z_{0}\right)}{z-z_{0}} d z\right| \leq \int_{C_{r}}\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right| d z<\int_{C_{r}} \frac{\epsilon}{\left|z-z_{0}\right|} d z
$$

Now let's pick $r<\delta$.Now we get:

$$
\begin{equation*}
\int_{C_{r}} \frac{\epsilon}{\left|z-z_{0}\right|} d z=\frac{\epsilon}{r} \int_{C_{r}} d z \tag{3}
\end{equation*}
$$

Since the integral of the right hand side of (3) gives us length of circle C_{r}, which is $2 \pi r$ we get estimate:

$$
\left|\int_{C_{r}} \frac{f(z)}{z-z_{0}} d z-\int_{C_{r}} \frac{f\left(z_{0}\right)}{z-z_{0}} d z\right|<2 \pi \epsilon
$$

Now theorem is proved since ϵ can be made arbitrarily small.
Example. Compute

$$
\int_{C} \frac{(z-2)^{2}}{z+i} d z
$$

where C is the circle of radius 2 centered at origin.
Let $f(z)=(z-2)^{2}$, clearly f is analytic everywhere in the interior of C. Hence, by the Cauchy's integral formula:

$$
\int_{C} \frac{(z-2)^{2}}{z+i} d z=2 \pi i f(-i)=-8 \pi+6 \pi i
$$

Theorem 2. (Cauchy's integral theorem for derivatives) If $f(z)$ and C satisfy the same hypotheses for Cauchy's integral formula,then for all z_{0} inside C we have

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{(n+1)}}
$$

where, C is simple closed curve, oriented counterclockwise, z_{0} is inside C and $f(z)$ is analytic on and inside C.

