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Abstract

We investigate some properties of balayage of measures and their potentials on

domains or open sets in �nite-dimensional Euclidean space. Main results are Duality

Theorems for potentials of balayage of measures, for Arens � Singer and Jensen measures

and potentials, and also a new extended and generalized variant of Poisson � Jensen

formula for balayage of measure and their potentials.
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We have are considered in the survey [37] various general concepts of balayage. In this
article we deal with a particular case of such balayage with respect to special classes of
subharmonic functions. We use in this paper part of the results from the previous article
[34]. But the main results on potentials from Sec. 2 in its main part are new, although studies
on the of Jensen and Arens-Singer potentials and their special classes with applications were
partially carried out in Gamelin's monograph [10, 3.1, 3.3], in articles [1], [46], [43], as well
as the �rst of the authors together with various co-authors previously in articles [18]�[36],
[5], [38], [39], [44], and also in [41, III,C], [6] etc.

1 De�nitions, notations and conventions

The reader can skip this Section 1 and return to it only if necessary. We use de�nitions,
notations and conventions from [34] with some additions.

1.1 Sets, order, topology

As usual, N := {1, 2, . . . }, R and C are the sets of all natural, real and complex numbers,
respectively; N0 := {0} ∪ N is French natural series, and Z := N0 ∪ N0.

For d ∈ N we denote by Rd the d-dimensional real Euclidean space with the standard
Euclidean norm |x| :=

√
x21 + · · ·+ x2d for x = (x1, . . . , xd) ∈ Rd and the distance function

dist(·, ·). For the real line R = R1 with Euclidean norm-module | · |,

R−∞ := {−∞} ∪ R, R+∞ := R ∪ {+∞}, | ±∞| := +∞; R±∞ := R−∞ ∪ R+∞ (1.1∞)

is extended real line in the end topology with two ends ±∞, with the order relation ≤ on R
complemented by the inequalities −∞ ≤ x ≤ +∞ for x ∈ R±∞, with the positive real axis

R+ := {x ∈ R : x ≥ 0}, R+
+∞ := R+ ∪ {+∞},

{
x+ := max{0, x},
x− := (−x)+,

for x ∈ R±∞, (1.1+)

S+ := {x ≥ 0: x ∈ S}, S∗ := S \ {0} for S ⊂ R±∞, R+
∗ := (R+)∗, (1.1+∗ )

x · (±∞) := ±∞ =: (−x) · (∓∞) for x ∈ R+
∗ ∪ (+∞), (1.1±)

x

±∞
:= 0 for x ∈ R, but 0 · (±∞) := 0 (1.10)

unless otherwise speci�ed. An open connected (sub-)set of R±∞ is a (sub-)interval of R±∞.
The Alexandro� one-point compacti�cation of Rd is denoted by Rd

∞ := Rd ∪ {∞}.
The same symbol 0 is used, depending on the context, to denote the number zero,

the origin, zero vector, zero function, zero measure, etc. The positiveness is everywhere
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understood as ≥ 0 according to the context. Given x ∈ Rd and1 r
(1.1+)
∈ R+

+∞, we set

B(x, r) := {x′ ∈ Rd : |x′ − x| < r}, B(x, r) := {x′ ∈ Rd : |x′ − x| ≤ r}, (1.2B)

B(∞, r) := {x ∈ Rd
∞ : |x| > 1/r}, B(∞, r) := {x ∈ Rd

∞ : |x| ≥ 1/r}, (1.2∞)

B(r) := B(0, r), B := B(0, 1), B(r) := B(0, r), B := B(0, 1). (1.21)

B◦(x, r) := B(x, r) \ {x}, B◦(x, r) := B(x, r) \ {x}. (1.2◦)

Thus, the basis of open (respectively closed) neighborhood of the point x ∈ Rd
∞ is open

(respectively closed) balls B(x, r) (respectively B(x, r)) centered at x with radius r > 0.
Given a subset S of Rd

∞, the closure closS, the interior intS and the boundary ∂S will
always be taken relative Rd

∞. For S
′ ⊂ S ⊂ Rd

∞ we write S ′ b S if closS ′ ⊂ intS. An open
connected (sub-)set of Rd

∞ is a (sub-)domain of Rd
∞.

1.2 Functions

Let X, Y are sets. We denote by Y X the set of all functions f : X → Y . The value f(x) ∈ Y
of an arbitrary function f ∈ XY is not necessarily de�ned for all x ∈ X. The restriction of
a function f to S ⊂ X is denoted by f

∣∣
S
. If F ⊂ Y X , then F

∣∣
S
:= {f

∣∣
S

: f ∈ F}. We set

RX
−∞

(1.1∞)
:= (R−∞)X , RX

+∞
(1.1∞)
:= (R+∞)X , RX

±∞
(1.1∞)
:= (R±∞)X . (1.3)

A function f ∈ RX
±∞ is said to be extended numerical. For extended numerical functions f ,

we set

Dom−∞ := f−1(R−∞) ⊂ X, Dom+∞ f := f−1(R+∞) ⊂ X,

Dom f := f−1(R±∞) = Dom−∞ f
⋃

Dom+∞ f ⊂ X,

dom f := f−1(R) = Dom−∞ f
⋂

Dom+∞ f ⊂ X, (1.4)

For f, g ∈ RX
±∞ we write f = g if Dom f = Dom g =: D and f(x) = g(x) for all x ∈ D, and

we write f ≤ g if f(x) ≤ g(x) for all x ∈ D. For f ∈ RX
±∞, g ∈ RY

±∞ and a set S, we write
�f = g on S � or �f ≤ g on S � if f

∣∣
S∩D= g

∣∣
S∩D or f

∣∣
S∩D≤ g

∣∣
S∩D respectively.

For f ∈ F ⊂ RX
±∞, we set f

+ : x 7→ max{0, f(x)}, x ∈ Dom f , F+ := {f ≥ 0: f ∈ F}.
So, f is positive on X if f = f+, and we write �f ≥ 0 on X�.We will use the following
construction of countable completion of F up:

F ↑ :=
{
f ∈ RX

±∞ : there is an increasing sequence (fj)j∈N, fj ∈ F ,
such that f(x) = lim

j→∞
fj(x) for all x ∈ X (we write fj ↗

j→∞
f)
}
. (1.5)

1A reference mark over a symbol of (in)equality, inclusion, or more general binary relation, etc. means
that this relation is somehow related to this reference.
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Proposition 1. Let F ⊂ RX
± be a subset closed relative to the maximum. Consider sequences

F 3 fkj ↗
j→∞

fk ↗
k→∞

f . Then F 3 max{fkj : j ≤ n, k ≤ n} ↗
n→∞

f . In particular,

(F ↑)↑ = F ↑.

The proof is obvious.
For topological space X, C(X) ⊂ RX is the vector space over R of all continuous

functions.
We denote the function identically equal to resp. −∞ or +∞ on a set by the same bold

symbols −∞ or +∞.
For an open set O ⊂ Rd

∞, we denote by har(O) and sbh(O) the classes of all harmonic
(locally a�ne for m = 1) and subharmonic (locally convex for m = 1) functions on O,
respectively. The class sbh(O) contains the minus-in�nity function −∞;

sbh∗(O) := sbh (O) \ {−∞}, sbh+(O) := (sbh(O))+. (1.6)

Denote by δ-sbh(O) := sbh(O) − sbh(O) the class of all δ-subharmonic functions on O [2],
[35, 3.1]. The class δ-sbh(O) contains two trivial functions, −∞ and +∞ := −(−∞);

δ-sbh∗(O)
(1.6)
:= δ-sbh(O) \ {±∞}. (1.7)

If o /∈ O 3 ∞, then we can to use the inversion in the sphere ∂B(o, 1) centered at o ∈ Rd:

?o : x 7−→ x?o :=


o for x =∞,
o+ 1

|x−o|2 (x− o) for x 6= o,∞,
∞ for x = o,

? := ?0 =: ?∞ (1.8?)

together with the Kelvin transform [17, Ch. 2, 6; Ch. 9]

u?o(x?o) = |x− o|d−2u(x), x?o ∈ O?o := {x?o : x ∈ O}, (1.8u)(
u ∈ sbh(O)

)
⇐⇒

(
u?o ∈ sbh(O?o)

)
. (1.8s)

For a subset S ⊂ Rd
∞, the classes har(S), sbh(S), δ-sbh(S) := sbh(S) − sbh(S), and

Ck(S) with k ∈ N ∪ {∞} consist of the restrictions to S of harmonic, subharmonic, δ-
subharmonic,and k times continuously di�erentiable functions in some (in general, its own
for each function) open set O ⊂ Rd

∞ containing S. Classes sbh∗(S), δ-sbh∗(S) are de�ned
like previous classes (1.6), (1.7),

sbh+(S)
(1.6)
:=
{
u ∈ sbh(S) : u ≥ 0 on S

}
. (1.9)

By consta1,a2,... ∈ R we denote constants, and constant functions, in general, depend on
a1, a2, . . . and, unless otherwise speci�ed, only on them, where the dependence on dimension
d of Rd

∞ will be not speci�ed and not discussed; const+... ≥ 0.
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1.3 Measures and charges

Let Borel(S) be the class of all Borel subsets in S ∈ Borel(Rd
∞). We denote by Meas(S) the

class of all Borel signed measures, or, charges on S ∈ Borel(Rd
∞); Measc(S) is the class of

charges µ ∈ Meas(S) with a compact support suppµ b S;

Meas+(S) := {µ ∈ Meas(S) : µ ≥ 0}, Meas+c (S) := Measc(S) ∩Meas+(S); (1.10+)

Meas1+(S) := {µ ∈ Meas+(S) : µ(S) = 1}, probability measures. (1.101)

For a charge µ ∈ Meas(S), we let µ+, µ− := (−µ)+ and |µ| := µ++µ− respectively denote its
upper, lower, and total variations. So, δx ∈ Meas1+c (S) is the Dirac measure at a point x ∈ S,
i.e., supp δx = {x}, δx({x}) = 1. We denote by µ

∣∣
S′ the restriction of µ to S ′ ∈ Borel(Rd

∞).
If the Kelvin transform (1.8) translates the subharmonic function u into another function

u?o (1.8u), then its Riesz measure υ is transformed common use image under its own mapping-
inversion of type 1 or 2. These rules are described in detail in L. Schwartz's monograph [48,
Vol. I,Ch.IV, � 6] and we do not dwell on them here, although here interesting questions arise,
for example, for the Bernstein �Paley �Wiener �Mary Cartwright classes of entire functions
[15], [41], [3], [38] etc.

Given S ∈ Borel(Rd
∞) and µ ∈ Meas(S), the class L1

loc(S, µ) consists of all extended nu-
merical locally integrable functions with respect to the measure µ on S; L1

loc(S) := L1
loc(S, λd).

For L ⊂ L1
loc(S, µ), we de�ne a subclass

L dµ :=
{
ν ∈ Meas(S) : there exists g ∈ L such that dν = g dµ

}
(1.11)

of the class of all absolutely continuous charges with respect to µ. For µ ∈ Meas(S), we set

µ(x, r) := µ
(
B(x, r)

)
if B(x, r)

(1.2)
⊂ S. (1.12)

Let 4 be the the Laplace operator acting in the sense of the theory of distributions, Γ be
the gamma function,

sd−1 :=
2πd/2

Γ(d/2)
(1.13)

be the surface area of the (d− 1)-dimensional unit sphere ∂B embedded in Rd. For function
u ∈ sbh∗(O), the Riesz measure of u is a Borel (or Radon [45, A.3]) positive measure

∆u := cd4u ∈ Meas+(O), cd
(1.13)
:=

1

sd−1(1 + (d− 3)+)
=

Γ(d/2)

2πd/2 max{1, d− 2
} . (1.14)

In particular, ∆u(S) < +∞ for each subset S b O. By de�nition, ∆−∞(S) := +∞ for all
S ⊂ O.

5



We use di�erent variants of outer Hausdor� p-measure κp with p ∈ N0:

κp(S) := bp lim
0<r→0

inf

{∑
j∈N

rpj : S ⊂
⋃
j∈N

B(xj, rj), 0 ≤ rj < r

}
, (1.15H)

bp
(1.14)
:=


1 if p = 0,

2 if p = 1,
sp−1
p

if p ∈ 1 + N,
is the volume of the unit ball B in Rp. (1.15b)

Thus, for p = 0, for any S ⊂ Rd, its Hausdor� 0-measure κ0(S) is to the cardinality #S

of S, for p = d we see that κd
(1.15H)

=: λd is the Lebesgue measure to Borel proper subsets
S ⊂ Rd

∞, where, if ∞ ∈ S, we preliminary use the inversion(1.8u), and σd−1 := κd−1
∣∣
∂B is

the (d− 1)-dimensional surface measure of area on the unit sphere ∂B in the usual sense.

1.4 Topological concepts: inward-�lled hull of set

Let O be a topological space, S ⊂ O, x ∈ O.
We denote by ConnO S and connO(S, x) ∈ ConnO S a set of all connected components

of S and its connected component containing x, respectively. We write closO S, intO S, and
∂OS for the closure, the interior, and the boundary of S in O. The set S is O-precompact if
closO S is a compact subset of O, and we write S b O.

De�nition 1. An arbitrary O-precompact connected component of O \ S is called a hole
in S with respect to O. The union of a subset K ⊂ O with all holes in it will be called an
inward-�lled hull of this set K with respect to O and is denoted further as

hull-inOK := K
⋃(⋃

{C ∈ ConnO(O \K) : C b O}
)
. (1.16)

Denote by O∞ the Alexandro� one-point compacti�cation of O with underlying set Ot{∞},
where t is the disjoint union of O with a single point∞ /∈ O. If this space O is a topological
subspace of some ambient topological space T ⊃ O, then this point∞ can be identi�ed with
the boundary ∂O ⊂ T , considered as a single point {∂O}.

Throughout this article, we use these topological concepts only in cases when O is an
open non-empty proper Greenian open set [17, Ch.5, 2] of Rd

∞ =: T , i. e.,

∅ 6= O = intRd
∞
O =

⊔
j∈NO

Dj 6= Rd
∞, j ∈ NO ⊂ N, Dj = connRd

∞
(O, xj), (1.17O)

where points xj lie in di�erent connected components Dj of O ⊂ Rd
∞;

∅ 6= D 6= Rd
∞ is an open connected subset, i. e., a domain. (1.17D)
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The dependence on such an open set O or such domain D for constants const... will not be
indicated in the subscripts and is not discussed. For an open set O from (1.17O), we often
use statements that are proved in our references only for domains D from (1.17D). This is
acceptable since all such cases concern only to individual domains-components Dj. So, if
S b O, then S meets only �nite many components Dj. In addition, we give proofs of our
statements only for cases O,D ⊂ Rd. If we have o /∈ Dj = D 3 ∞, then we can to use the
inversion relative to the sphere ∂B(o, 1) centered at o ∈ Rd as in (1.8).

Proposition 2 ([11, 6.3], [12]). Let K be a compact set in an open set O ⊂ Rd. Then

(i) hull-inOK is a compact subset in O;

(ii) the set O∞ \ hull-inOK is connected and locally connected subset in O∞;

(iii) the inward-�lled hull of K with respect to O coincides with the complement in O∞ of
connected component of O∞ \K containing the point ∞, i. e.,

hull-inOK = O∞ \ connO∞\K(∞);

(iv) if O′ ⊂ Rd
∞ is an open subset and O ⊂ O′ then hull-inOK ⊂ hull-inO′ K;

(v) Rd \ hull-inOK has only �nitely many components, i. e.,

# ConnRd
∞

(Rd \ hull-inOK) <∞.

2 Potentials of charges and measures

Further everywhere we will assume for simplicity and brevity that

(O ⊂ Rd)⇔ (∞ /∈ O), (D ⊂ Rd)⇔ (∞ /∈ D) (2.1)

in addition to (1.17). If ∞ ∈ O, o ∈ Rd
∞ \ O, we can always easily go to cases (2.1) using a

inversion ?o, and the Kelvin transforms (1.8).

De�nition 2 ([34]). Let ϑ, µ ∈ Meas(S), S ⊂ Borel(Rd
∞). Let H ⊂ RS

±∞ be a class of
Borel-measurable functions on S. Let us assume that the integrals

∫
h dϑ and

∫
h dµ are

well de�ned with values in R±∞ for each function h ∈ H. We write ϑ �H µ and say that
the charge µ is a balayage, or, sweeping (out), of the charge ϑ for H, or, brie�y, µ is a
H-balayage of ϑ, if ∫

h dϑ ≤
∫
h dµ for all h ∈ H. (2.2)
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De�nition 3 ([45], [16], [42]). For q ∈ R, we set

kq(t) :=

{
log t if q = 0,

− sgn(q)t−q if q ∈ R∗,
t ∈ R+

∗ , (2.3k)

Kd−2(x, y) :=


kd−2

(
|x− y|

)
if x 6= y,

−∞ if x = y and d ≥ 2,

0 if x = y and d = 1,

(x, y) ∈ Rd × Rd. (2.3K)

De�nition 4 ([45], [28, De�nition 2], [35, 3.1, 3.2]). Let µ ∈ Measc(Rd) be charge with
compact support. Its potential is the function ptµ ∈ δ-sbh∗(Rd) de�ned by

ptµ(y)
(2.3K)
:=

∫
Kd−2(x, y) dµ(x), (2.4p)

where the kernel Kd−2 is de�ned in De�nition 3 by the function kq from (2.3k). The values
of potential ptµ(y) ∈ R±∞ is well de�ned for all

y ∈ Dom−∞ ptµ =

{
y ∈ Rd :

∫
0

µ−(y, t)

tm−1
dt < +∞

}
(2.4d−)

y ∈ Dom+∞ ptµ =

{
y ∈ Rd :

∫
0

µ+(y, t)

tm−1
dt < +∞

}
(2.4d+)

y ∈ Dom±∞ ptµ = Dom−∞ ptµ
⋃

Dom+∞ ptµ (2.4d±)

y ∈ dom ptµ = Dom−∞ ptµ
⋂

Dom+∞ ptµ, (2.4d)

and their complements Rd \Dom−∞ ptµ and Rd \Dom+∞ ptµ are polar sets in Rd.
If µ ∈ Meas+c (O) be a H-balayage of a measure ϑ ∈ Meas+c (O), then we consider the

potential

ptµ−ϑ
(2.4p)
:= ptµ − ptϑ ∈ δ-sbh(Rd) (2.5)

where under the conditions d > 1 and 1 ∈ H it is natural to set ptµ−ϑ(∞) := 0. The latter
is based on the following

Proposition 3. Let µ ∈ Measc(Rd). Then

ptµ(x)
(2.3k)
= µ(Rd)kd−2

(
|x|
)

+O
(
1/|x|d−1

)
, x→∞. (2.6)

Proof. For d = 1, we have∣∣ptµ(x)− µ(R)|x|
∣∣ ≤ ∫ ∣∣|x− y| − |x|∣∣ d|µ|(y) ≤

∫
|y| d|µ|(y) = O(1), |x| → +∞.
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See (2.6) for d = 2 in [45, Theorem 3.1.2].
For d > 2 and |x| ≥ 2 sup

{
|y| : y ∈ suppµ

}
, we have

∣∣ptµ(x)− µ(Rd)kd−2
(
|x|
)∣∣ =

∣∣∣∣∫ ( 1

|x|d−2
− 1

|x− y|d−2

)
dµ(y)

∣∣∣∣
≤
∫ ∣∣∣∣ 1

|x|d−2
− 1

|x− y|d−2

∣∣∣∣ d|µ|(y) ≤ 2d−2

|x|2d−4

∫ ∣∣|x− y|d−2 − |x|d−2∣∣ d|µ|(y)

≤ 2d−2

|x|2d−4

∫
|y||x|d−3

d−3∑
k=0

(3

2

)k
d|µ|(y) ≤ 2

3d−2

|x|d−1

∫
|y| d|µ|(y) = O

( 1

|x|d−1
)
.

Proposition 4. If

µ ∈ Meas+c (Rd), L b Rd, o ∈ Rd \ L, (2.7)

then

inf
x∈L

ptµ(x)
(2.3k)

≥ µ(Rd)kd−2
(
dist(L, suppµ)

)
, (2.8i)

inf
x∈L

ptµ−δo(x)
(2.4p)

≥ µ(Rd)kd−2
(
dist(L, suppµ)

)
− kd−2

(
sup
x∈L
|x− o|

)
(2.8o)

Proof. If dist(L, suppµ) = 0, then the right-hand sides in the inequalities (2.8) are equal to
−∞, and the inequalities (2.8) are true. Otherwise, by De�nition 4, we obtain

ptµ(x) =

∫
kd−2

(
|x− y|

)
dµ(y) ≥ inf

y∈suppµ
kd−2

(
|x− y|

)
µ(Rd)

≥ inf
y∈suppµ

kd−2

(
inf

y∈suppµ
|x− y|

)
µ(Rd) = µ(Rd)kd−2

(
dist(x, suppµ)

)
, (2.9)

since the function kq from (2.3k) is increasing, which implies the inequality (2.8i) after
applying the operation infx∈L to both sides of inequality (2.9). Using (2.8i), we have

inf
x∈L

ptµ−δo(x)
(2.4p)
= inf

x∈L

(
ptµ(x)− kd−2

(
|x− o|

))
≥ inf

x∈L
ptµ(x)− sup

x∈L
kd−2

(
|x− o|

)
(2.8i)

≥ µ(Rd)kd−2
(
dist(L, suppµ)

)
− kd−2

(
sup
x∈L
|x− o|

)
which gives the inequality (2.8o).
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2.1 Duality Teorem for har(O)-balayage

Duality Theorem 1 (for har(O)-balayage). If a measure µ ∈ Meas+c (O) is a har(O)-bala-
yage of a measure ϑ ∈ Meas+c (O), then

ptµ ∈ sbh∗(Rd) ∩ har(Rd \ suppµ), (2.10p)

ptµ = ptϑ on Rd \ hull-inO(suppϑ ∪ suppµ∪). (2.10=)

Conversely, suppose that there is a subset S b O, and a function p such that

p
(2.10p)
∈ sbh(O) ∩ har(O \ S), (2.11p)

p
(2.10=)

= ptϑ on O \ S. (2.11=)

Then the Riesz measure

µ := ∆p

(1.14)
:= cd4 p

(2.11)
∈ Meas+(closS) ⊂ Meas+c (O) (2.12)

of this function p is a har(O)-balayage of ϑ.

Proof. The �rst property (2.10p) is evidently. For each y ∈ Rd, the kernel Kd−2(·, y) is
harmonic on Rd \ {y}. By

Proposition 5 ([34]). Let µ ∈ Measc(O) be a balayage of ϑ ∈ Measc(O) for har(O). Then∫
h dϑ =

∫
h dµ for any h ∈ har

(
hull-inO(suppµ ∪ suppϑ)

)
(2.13)

(see Subsec. 1.4, De�nition 1 of inward-�lled hull of compact subset suppµ ∪ suppϑ in O).

for h := Kd−2(·, y) in (2.13), we have

ptϑ(y) =

∫
Kd−2(x, y) dϑ(x)

(2.13)
=

∫
Kd−2(x, y) dµ(x) = ptµ(y) (2.14)

for all y ∈ hull-inO(suppµ ∪ suppϑ). This gives (2.10=).
In the opposite direction, we can extend the function p to Rd so that p = ptϑ on Rd \S.

In view of (2.37), we have p ∈ sbh(Rd) ∩ har(Rd \ S), and

p(x)− ϑ(O)kd−2(|x|) = p(x)− ptϑ(x) +O
(
1/|x|d−1

) (2.11=)
= O

(
1/|x|d−1

)
, x→∞. (2.15)

Hence the function p is a potential with the Riesz measure (2.12), and µ(O) = ϑ(O), i. e.,
p = ptµ. Further, we can use the following
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Lemma 1 ([11, Lemma 1.8]). Let F be a compact subset of Rd, let h ∈ har(F ), and ε > 0.
Then there are points y1, y2, . . . , yk in Rd \ F such that

∣∣∣h(x)−
k∑
j=1

kd−2
(
|x− yj|

)∣∣∣ < ε for all x ∈ F . (2.16)

Applying Lemma 1 to the compact set F
(2.11p)

:= closS ∪ suppϑ b O and a function
h ∈ har(O), we obtain

∣∣∣∫
F

h d(µ− ϑ)
∣∣∣(2.11=)

=
∣∣∣∫
F

h d(µ− ϑ)−
k∑
j=1

(
ptµ(yj)− ptϑ(yj)

)∣∣∣
≤ sup

x∈F

∣∣∣h(x)−
k∑
j=1

kd−2
(
|x− yj|

)∣∣∣(µ(O) + ϑ(O)
)
≤ ε
(
µ(O) + ϑ(O)

)
for any ε > 0. Hence the measure µ is a har(O)-balayage of ϑ.

Corollary 1. Let ϑ, µ ∈ Measc(O), suppϑ ∪ suppµ ⊂ S b O. If µ is a balayage of ϑ for
the class

H =
{
±kd−2

(
|y − ·|

)
: y ∈ Rd \ closS

}
, (2.17)

then µ is a har(O)-balayage of ϑ.

Proof. We have (2.14) for all y ∈ Rd \ closS. By Duality Theorem 1, ϑ �har(O) µ.

Corollary 2. Let µ ∈ Meas+c (O) be a har(O)-balayage of measure ϑ ∈ Meas+c (O), and
ς ∈ Meas+c (O) also be a har(O)-balayage of the same measure ϑ. If

hull-inO(suppϑ ∪ supp ς) ⊂ hull-inO(suppϑ ∪ suppµ), (2.18)

then the measure µ is a har(O)-balayage of the measure ς.

2.2 Arens � Singer measures and their potentials

Example 1 ([10], [28]). Let x ∈ O. If µ ∈ Meas+c (O) is a balayage of δx for har(O), then
such measure µ is called a Arens � Singer measure for x. The class of such measures is
denoted by ASx(O) ⊃ Jx(O). Arens � Singer measures are often referred to as representing
measures.

By Example 1, if we choose x ∈ O and ϑ := δx �har(O) µ ∈ Meas+c (O), i. e., µ is a
Arens � Singer measure for x ∈ O, then potential

ptµ−δx(y) = ptµ(y)−Kd−2(x, y), y ∈ Rd \ {x} (2.19)
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satis�es conditions

ptµ−δx ∈ sbh(Rd
∞), ptµ−δx(∞) := 0,

ptµ−δx ≡ 0 on Rd
∞ \ hull-inO

(
{x} ∪ suppµ

)
ptµ−δx(y) ≤ −Kd−2(x, y) +O(1) for x 6= y → x. (2.20)

Remember, that the function V ∈ sbh∗
(
Rd
∞ \ {x}

)
is called a Arens � Singer potential on O

with pole at x ∈ O [28], [30, De�nition 6] (partially in [10, 3.3,3.4], [1], [46]), if this function
V satis�es conditions

V ≡ 0 on Rd
∞ \ S(V )) for a subset S(V ) b O

V (y) ≤ −Kd−2(x, y) +O(1) for x 6= y → x. (2.21)

The class of all Arens � Singer potential on O with pole at x ∈ O denote by PASx(O). In
this class PASx(O) we will consider a special subclass

PAS1
x(O) :=

{
V ∈ PASx(O) : V (y) = −Kd−2(x, y) +O(1) for x 6= y → x

}
(2.22)

By Duality Theorem 1, we have

Duality Theorem A ([28, Proposition 1.4, Duality Theorem]). The mapping

Px : µ 7−→ ptµ−δx (2.23)

is the a�ne bijection from ASx(O) onto PASx(O) with inverse mapping

P−1x : V
(1.14)7−→ cd4V

∣∣
Rd\{x} +

(
1− lim sup

x 6=y→x

V (y)

−Kd−2(x, y)

)
· δx. (2.24)

Let x ∈ intQ = Q b O. The restriction of Px to the class{
µ ∈ ASx(O) : suppµ ∩Q = ∅

}
(2.25)

de�ne a bijection from class (2.25) onto class (see (2.22))

PAS1
x(O)

⋂
har
(
Q \ {x}

)
. (2.26)

The restriction of Px to the class{
µ ∈ ASx(O) : suppµ ∩Q = ∅

}⋂(
C∞(O) dλd

)
(2.27)

de�ne also a bijection from class (2.27) onto class

PAS1
x(O)

⋂
har
(
Q \ {x}

)⋂
C∞
(
O \ {x}

)
. (2.28)

This transition from the main bijection Px to the bijection from (2.25) onto (2.26) or
from (2.27) onto (2.28) by restriction of Px to (2.25) or (2.27) is quite obvious.
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2.3 A generalization of Poisson � Jensen formula

Theorem 1 (extended Poisson � Jensen formula for har(O)-balayage). Let µ ∈ Meas+c (O)
be a har(O)-balayage of ϑ ∈ Meas+c (O). If u ∈ sbh(O) is a function with the Riesz measure

∆u

(1.14)
:= cd4 u ∈ Meas+(O), then∫
u dϑ+

∫
K

ptµ d∆u =

∫
K

ptϑ d∆u +

∫
u dµ, K := hull-inO(suppϑ ∪ suppµ). (2.29)

In particular, if ∫
u dϑ > −∞, (2.30)

then (2.29) can be written as∫
u dϑ =

∫
u dµ−

∫
K

ptµ−ϑ d∆u. (2.31)

Proof. Consider �rst the case (2.30). Choose an open set O′ such that K b O′ b O. By
the Riesz decomposition theorem u = ptν′ + h on O′, where ν ′ := ∆u

∣∣
O′ and h ∈ har(O′).

Integrating this representation with respect to dϑ and dµ, we obtain∫
u dµ =

∫
ptν′ dµ+

∫
h dµ, (2.32µ)∫

u dϑ =

∫
ptν′ dϑ+

∫
h dϑ, (2.32ϑ)

where the three integrals in (2.32ϑ) are �nite, although in the equality (2.32µ) the �rst two
integrals can take simultaneously the value of −∞, but the last integral in (2.32µ) is �nite.
Therefore, the di�erence (2.32µ)−(2.32ϑ) of these two equalities is well de�ned:∫

u dµ−
∫
u dϑ =

∫
ptν′ dµ−

∫
ptν′ dϑ+

∫
h d(µ− ϑ), (2.33)

where the �rst and third integrals can simultaneously take the value of −∞, and the remain-
ing integrals are �nite. By Proposition 5, the last integral in (2.33) vanishes. Using Fubini's
theorem, in view of the symmetry property of kernel in (2.4p), we have∫

ptν′ dϑ =

∫ ∫
Kd−2(y, x) dν ′(y) dϑ(x)

=

∫ ∫
Kd−2(x, y) dϑ(x) dν ′(y) =

∫
O′

ptϑ d∆u. (2.34)

and the same way∫
ptν′ dµ =

∫ ∫
Kd−2(y, x) dν ′(y) dµ(x)

=

∫ ∫
Kd−2(x, y) dµ(x) dν ′(y) =

∫
O′

ptµ d∆u (2.35)
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even if the integral on the left side of equalities (2.35) takes the value −∞ because the
integrand Kd−2(·, ·) is bounded from above on the compact set closO′×closO′ [16, Theorem
3.5]. Hence equality (2.33) can be rewritten as∫

u dµ−
∫
u dϑ =

∫
O′

ptµ d∆u −
∫
O′

ptϑ d∆u =

∫
K

ptµ d∆u −
∫
K

ptϑ d∆u

since ptµ = ptϑ on O′ \K. This gives equality (2.29) in the case (2.30).
If condition(2.30) is not ful�lled, then from the representation (2.32ϑ) it follows that

the integral on the left-hand side of (2.34) also takes the value −∞. The equalities (2.34) is
still true [16, Theorem 3.5]. Hence, the �rst integral on the right side of the formula (2.29)
also takes the value −∞ and this formula (2.29) remains true.

Remark 1. If ϑ := δx and µ := ωD(x, ·) for x ∈ D b O, then the formula (2.31) is the
classical Poisson � Jensen formula [16, Theorem 5.27]

u(x) =

∫
∂D

u dωD(x, ·)−
∫
closD

gD(·, x) d∆u, x ∈ D, (2.36a)

δx �sbh(O) ωD(x, ·), ptωD(x,·) − ptδx = ptωD(x,·)−δx = gD(·, x). (2.36b)

2.4 Duality Theorem for sbh(O)-balayage

Duality Theorem 2 (for sbh(O)-balayage). If a measure µ ∈ Meas+c (O) is a sbh(O)-
balayage of a measure ϑ ∈ Meas+c (O), then we have (2.10), and

ptµ ≥ ptϑ on Rd. (2.37)

Conversely, suppose that there is a subset S b O, and a function p such that we have (2.11),
and p ≥ ptϑ on closS. Then the Riesz measure (2.12) of p is a sbh(O)-balayage of ϑ.

Proof. If ϑ �sbh(O) µ, then ϑ �har(O) µ and we have properties (2.10) by Duality Theorem 1.
For each y ∈ Rd, the function Kd−2(·, y) is subharmonic on Rd and (2.37) follows from
De�nitions 2 and 4. Conversely, if a function p is such as in (2.11), then, by Duality
Theorem 1, this function is a potential ptµ = p with the Riesz measure (2.12), this measure
µ ∈ Meas+c (O) is a har(O)-balayage for ϑ, and K := hull-in(suppϑ ∪ suppµ) ⊂ closS. Let
u ∈ sbh∗(O). It follows from ptµ ≥ ptϑ on K that

∫
K

ptϑ d∆u ≤
∫
K

ptµ d∆u. Hence, by the
extended Poisson � Jensen formula (2.29) from Theorem 1, we obtain

∫
u dϑ ≤

∫
u dµ.

2.5 Jensen measures and their potentials

Example 2 ([10], [7], [8], [47]). Let x ∈ O. If a measure µ ∈ Meas+c (O) is a balayage of
the Dirac measure δx for sbh(O), then this measure µ is called a Jensen measure for x. The
class of such measures is denoted by Jx(O).
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By Example 2, if we choose x ∈ O and ϑ := δx �sbh(O) µ ∈ Meas+c (O), i. e., µ is a Jensen
measure for x ∈ O, then potential

ptµ−δx(y) = ptµ(y)−Kd−2(x, y), y ∈ Rd \ {x} (2.38)

satis�es conditions (2.20) and ptµ−δx ≥ 0 on Rd
∞ \ {x}. Remember, that a positive function

V ∈ sbh+
(
Rd
∞\{x}

)
is called a Jensen potential on O with pole at x ∈ O [28], [30, De�nition

8], if this function V satis�es conditions (2.21) The class of all Jensen potential on O with
pole at x ∈ O denote by PJx(O) ⊂ ASx(O). In this class Jx(O) we will consider a special
subclass

PJ1
x(O)

(2.22)
:= PJx(O)

⋂
PAS1

x(O) ⊂ PAS1
x(O). (2.39)

By Duality Theorem 2, we have

Duality Theorem B ([28, Proposition 1.4, Duality Theorem]). The mapping (2.23) is the
a�ne bijection from Jx(O) onto PJx(O) with inverse mapping (2.24).

Let x ∈ intQ = Q b O. The restriction of Px to the class (cf. (2.25)){
µ ∈ Jx(O) : suppµ ∩Q = ∅

}
(2.40)

de�ne a bijection from class (2.40) onto class (see (2.39), cf. (2.26))

PJ1
x(O)

⋂
har
(
Q \ {x}

)
. (2.41)

Let x ∈ intQ = Q b O. The restriction of Px to the class (cf. (2.27)){
µ ∈ Jx(O) : suppµ ∩Q = ∅

}⋂(
C∞(O) dλd

)
(2.42)

de�ne a bijection from class (2.42) onto class (cf. (2.28))

PJ1
x(O)

⋂
har
(
Q \ {x}

)⋂
C∞
(
O \ {x}

)
. (2.43)

This transition from the main bijection Px to the bijection from (2.40) onto (2.41) or
from (2.42) onto (2.43) by restriction of Px to (2.40) or to (2.42) is quite obvious.
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