Balayage of Measures and Their Potentials: Duality Theorems and Extended Poisson - Jensen Formula

Bulat N. Khabibullin*
Enzhe Menshikova

August 22, 2019

Contents

1 Definitions, notations and conventions 2
1.1 Sets, order, topology 2
1.2 Functions 3
1.3 Measures and charges 5
1.4 Topological concepts: inward-filled hull of set 6
2 Potentials of charges and measures 7
2.1 Duality Teorem for har (O)-balayage 10
2.2 Arens - Singer measures and their potentials 11
2.3 A generalization of Poisson - Jensen formula 13
2.4 Duality Theorem for $\operatorname{sbh}(O)$-balayage 14
2.5 Jensen measures and their potentials 14

Abstract

We investigate some properties of balayage of measures and their potentials on domains or open sets in finite-dimensional Euclidean space. Main results are Duality Theorems for potentials of balayage of measures, for Arens - Singer and Jensen measures and potentials, and also a new extended and generalized variant of Poisson-Jensen formula for balayage of measure and their potentials.

MSC 2010: 31B05, 31A05, 31C05, 31C15, 28A25
Keywords: balayage, sweeping out, measure, charge, potential, subharmonic function, harmonic function, polar set, harmonic measure, Green's function, Jensen measure, Arens-Singer measure

[^0]We have are considered in the survey [37] various general concepts of balayage. In this article we deal with a particular case of such balayage with respect to special classes of subharmonic functions. We use in this paper part of the results from the previous article [34]. But the main results on potentials from Sec. 2 in its main part are new, although studies on the of Jensen and Arens-Singer potentials and their special classes with applications were partially carried out in Gamelin's monograph [10, 3.1, 3.3], in articles [1], [46], [43], as well as the first of the authors together with various co-authors previously in articles [18]-[36], [5], [38], [39], [44], and also in [41, III,C], [6] etc.

1 Definitions, notations and conventions

The reader can skip this Section 1 and return to it only if necessary. We use definitions, notations and conventions from [34] with some additions.

1.1 Sets, order, topology

As usual, $\mathbb{N}:=\{1,2, \ldots\}, \mathbb{R}$ and \mathbb{C} are the sets of all natural, real and complex numbers, respectively; $\mathbb{N}_{0}:=\{0\} \cup \mathbb{N}$ is French natural series, and $\mathbb{Z}:=\mathbb{N}_{0} \cup \mathbb{N}_{0}$.

For $d \in \mathbb{N}$ we denote by \mathbb{R}^{d} the d-dimensional real Euclidean space with the standard Euclidean norm $|x|:=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$ for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and the distance function $\operatorname{dist}(\cdot, \cdot)$. For the real line $\mathbb{R}=\mathbb{R}^{1}$ with Euclidean norm-module $|\cdot|$,

$$
\mathbb{R}_{-\infty}:=\{-\infty\} \cup \mathbb{R}, \mathbb{R}_{+\infty}:=\mathbb{R} \cup\{+\infty\},| \pm \infty|:=+\infty ; \mathbb{R}_{ \pm \infty}:=\mathbb{R}_{-\infty} \cup \mathbb{R}_{+\infty}
$$

is extended real line in the end topology with two ends $\pm \infty$, with the order relation \leq on \mathbb{R} complemented by the inequalities $-\infty \leq x \leq+\infty$ for $x \in \mathbb{R}_{ \pm \infty}$, with the positive real axis

$$
\left.\begin{array}{rl}
\mathbb{R}^{+}:=\{x \in \mathbb{R}: x \geq 0\}, \mathbb{R}_{+\infty}^{+}:=\mathbb{R}^{+} \cup\{+\infty\}, & \left\{\begin{array}{ll}
x^{+}:=\max \{0, x\}, \\
x^{-}:=(-x)^{+},
\end{array} \text {for } x \in \mathbb{R}_{ \pm \infty},\right. \\
S^{+}:=\{x \geq 0: x \in S\}, \quad S_{*}:=S \backslash\{0\} & \text { for } S \subset \mathbb{R}_{ \pm \infty}, \quad \mathbb{R}_{*}^{+}:=\left(\mathbb{R}^{+}\right)_{*}, \\
x \cdot(\pm \infty):= \pm \infty=:(-x) \cdot(\mp \infty) & \text { for } x \in \mathbb{R}_{*}^{+} \cup(+\infty), \\
& \frac{x}{ \pm \infty}:=0 \quad \text { for } x \in \mathbb{R}, \tag{0}
\end{array}\right) \text { but } 0 \cdot(\pm \infty):=0, ~ l
$$

unless otherwise specified. An open connected (sub-)set of $\mathbb{R}_{ \pm \infty}$ is a (sub-)interval of $\mathbb{R}_{ \pm \infty}$. The Alexandroff one-point compactification of \mathbb{R}^{d} is denoted by $\mathbb{R}_{\infty}^{d}:=\mathbb{R}^{d} \cup\{\infty\}$.

The same symbol 0 is used, depending on the context, to denote the number zero, the origin, zero vector, zero function, zero measure, etc. The positiveness is everywhere
understood as ≥ 0 according to the context. Given $x \in \mathbb{R}^{d}$ and $^{1} r \stackrel{\left(1.1^{+}\right)}{\in} \mathbb{R}_{+\infty}^{+}$, we set

$$
\begin{align*}
B(x, r):=\left\{x^{\prime} \in \mathbb{R}^{d}:\left|x^{\prime}-x\right|<r\right\}, & \bar{B}(x, r):=\left\{x^{\prime} \in \mathbb{R}^{d}:\left|x^{\prime}-x\right| \leq r\right\}, \tag{1.2B}\\
B(\infty, r):=\left\{x \in \mathbb{R}_{\infty}^{d}:|x|>1 / r\right\}, & \bar{B}(\infty, r):=\left\{x \in \mathbb{R}_{\infty}^{d}:|x| \geq 1 / r\right\}, \\
B(r):=B(0, r), \quad \mathbb{B}:=B(0,1), & \bar{B}(r):=\bar{B}(0, r), \quad \overline{\mathbb{B}}:=\bar{B}(0,1) . \tag{1}\\
B_{\circ}(x, r):=B(x, r) \backslash\{x\}, & \bar{B} \circ(x, r):=\bar{B}(x, r) \backslash\{x\} . \tag{1.2。}
\end{align*}
$$

Thus, the basis of open (respectively closed) neighborhood of the point $x \in \mathbb{R}_{\infty}^{d}$ is open (respectively closed) balls $B(x, r)$ (respectively $\bar{B}(x, r)$) centered at x with radius $r>0$.

Given a subset S of \mathbb{R}_{∞}^{d}, the closure clos S, the interior int S and the boundary ∂S will always be taken relative \mathbb{R}_{∞}^{d}. For $S^{\prime} \subset S \subset \mathbb{R}_{\infty}^{d}$ we write $S^{\prime} \Subset S$ if $\operatorname{clos} S^{\prime} \subset$ int S. An open connected (sub-)set of \mathbb{R}_{∞}^{d} is a (sub-)domain of \mathbb{R}_{∞}^{d}.

1.2 Functions

Let X, Y are sets. We denote by Y^{X} the set of all functions $f: X \rightarrow Y$. The value $f(x) \in Y$ of an arbitrary function $f \in X^{Y}$ is not necessarily defined for all $x \in X$. The restriction of a function f to $S \subset X$ is denoted by $\left.f\right|_{S}$. If $F \subset Y^{X}$, then $\left.F\right|_{S}:=\left\{\left.f\right|_{S}: f \in F\right\}$. We set

$$
\begin{equation*}
\mathbb{R}_{-\infty}^{X} \quad \stackrel{(1: 1 \infty)}{:=}\left(\mathbb{R}_{-\infty}\right)^{X}, \quad \mathbb{R}_{+\infty}^{X} \stackrel{(1.1 \infty)}{=}\left(\mathbb{R}_{+\infty}\right)^{X}, \quad \mathbb{R}_{ \pm \infty}^{X} \quad \stackrel{(1.1 \infty)}{=}\left(\mathbb{R}_{ \pm \infty}\right)^{X} \tag{1.3}
\end{equation*}
$$

A function $f \in \mathbb{R}_{ \pm \infty}^{X}$ is said to be extended numerical. For extended numerical functions f, we set

$$
\begin{gather*}
\operatorname{Dom}_{-\infty}:=f^{-1}\left(\mathbb{R}_{-\infty}\right) \subset X, \quad \operatorname{Dom}_{+\infty} f:=f^{-1}\left(\mathbb{R}_{+\infty}\right) \subset X, \\
\operatorname{Dom} f:=f^{-1}\left(\mathbb{R}_{ \pm \infty}\right)=\operatorname{Dom}_{-\infty} f \bigcup \operatorname{Dom}_{+\infty} f \subset X, \\
\operatorname{dom} f:=f^{-1}(\mathbb{R})=\operatorname{Dom}_{-\infty} f \bigcap \operatorname{Dom}_{+\infty} f \subset X, \tag{1.4}
\end{gather*}
$$

For $f, g \in \mathbb{R}_{ \pm \infty}^{X}$ we write $f=g$ if $\operatorname{Dom} f=\operatorname{Dom} g=: D$ and $f(x)=g(x)$ for all $x \in D$, and we write $f \leq g$ if $f(x) \leq g(x)$ for all $x \in D$. For $f \in \mathbb{R}_{ \pm \infty}^{X}, g \in \mathbb{R}_{ \pm \infty}^{Y}$ and a set S, we write " $f=g$ on S " or " $f \leq g$ on S " if $\left.f\right|_{S \cap D}=\left.g\right|_{S \cap D}$ or $\left.f\right|_{S \cap D} \leq\left. g\right|_{S \cap D}$ respectively.

For $f \in F \subset \mathbb{R}_{ \pm \infty}^{X}$, we set $f^{+}: x \mapsto \max \{0, f(x)\}, x \in \operatorname{Dom} f, F^{+}:=\{f \geq 0: f \in F\}$. So, f is positive on X if $f=f^{+}$, and we write " $f \geq 0$ on X ". We will use the following construction of countable completion of F up:

$$
\begin{align*}
& F^{\uparrow}:=\left\{f \in \mathbb{R}_{ \pm \infty}^{X}: \text { there is an increasing sequence }\left(f_{j}\right)_{j \in \mathbb{N}}, f_{j} \in F,\right. \\
& \left.\left.\qquad \text { such that } f(x)=\lim _{j \rightarrow \infty} f_{j}(x) \text { for all } x \in X \text { (we write } f_{j} \underset{j \rightarrow \infty}{\nearrow} f\right)\right\} . \tag{1.5}
\end{align*}
$$

[^1]Proposition 1. Let $F \subset \mathbb{R}_{ \pm}^{X}$ be a subset closed relative to the maximum. Consider sequences $F \ni f_{k j} \underset{j \rightarrow \infty}{\nearrow} f_{k} \underset{k \rightarrow \infty}{\nearrow} f$. Then $F \ni \max \left\{f_{k j}: j \leq n, k \leq n\right\} \underset{n \rightarrow \infty}{\nearrow} f$. In particular, $\left(F^{\uparrow}\right)^{\uparrow}=F^{\uparrow}$.

The proof is obvious.
For topological space $X, C(X) \subset \mathbb{R}^{X}$ is the vector space over \mathbb{R} of all continuous functions.

We denote the function identically equal to resp. $-\infty$ or $+\infty$ on a set by the same bold symbols $-\infty$ or $+\infty$.

For an open set $O \subset \mathbb{R}_{\infty}^{d}$, we denote by $\operatorname{har}(O)$ and $\operatorname{sbh}(O)$ the classes of all harmonic (locally affine for $\mathrm{m}=1$) and subharmonic (locally convex for $m=1$) functions on O, respectively. The class $\operatorname{sbh}(O)$ contains the minus-infinity function $-\infty$;

$$
\begin{equation*}
\operatorname{sbh}_{*}(O):=\operatorname{sbh}(O) \backslash\{-\infty\}, \quad \operatorname{sbh}^{+}(O):=(\operatorname{sbh}(O))^{+} \tag{1.6}
\end{equation*}
$$

Denote by $\delta-\operatorname{sbh}(O):=\operatorname{sbh}(O)-\operatorname{sbh}(O)$ the class of all δ-subharmonic functions on O [2], [35, 3.1]. The class $\delta-\operatorname{sbh}(O)$ contains two trivial functions, $-\infty$ and $+\infty:=-(-\infty)$;

$$
\begin{equation*}
\delta-\operatorname{sbh}_{*}(O) \stackrel{(1.6)}{:=} \delta-\operatorname{sbh}(O) \backslash\{ \pm \infty\} . \tag{1.7}
\end{equation*}
$$

If $o \notin O \ni \infty$, then we can to use the inversion in the sphere $\partial B(o, 1)$ centered at $o \in \mathbb{R}^{d}$:

$$
\star_{o}: x \longmapsto x^{\star_{o}}:= \begin{cases}o & \text { for } x=\infty, \\ o+\frac{1}{|x-o|^{2}}(x-o) & \text { for } x \neq o, \infty, \quad \star:=\star_{0}=: \star_{\infty} \\ \infty & \text { for } x=o,\end{cases}
$$

together with the Kelvin transform [17, Ch. 2, 6; Ch. 9]

$$
\begin{gather*}
u^{\star_{o}}\left(x^{\star_{o}}\right)=|x-o|^{d-2} u(x), \quad x^{\star_{o}} \in O^{\star_{o}}:=\left\{x^{\star_{o}}: x \in O\right\}, \tag{1.8u}\\
(u \in \operatorname{sbh}(O)) \Longleftrightarrow\left(u^{\star_{o}} \in \operatorname{sbh}\left(O^{\star_{o}}\right)\right) . \tag{1.8s}
\end{gather*}
$$

For a subset $S \subset \mathbb{R}_{\infty}^{d}$, the classes $\operatorname{har}(S), \operatorname{sbh}(S), \delta-\operatorname{sbh}(S):=\operatorname{sbh}(S)-\operatorname{sbh}(S)$, and $C^{k}(S)$ with $k \in \mathbb{N} \cup\{\infty\}$ consist of the restrictions to S of harmonic, subharmonic, δ subharmonic,and k times continuously differentiable functions in some (in general, its own for each function) open set $O \subset \mathbb{R}_{\infty}^{d}$ containing S. Classes $\operatorname{sbh}_{*}(S), \delta-\operatorname{sbh}_{*}(S)$ are defined like previous classes (1.6), (1.7),

$$
\begin{equation*}
\operatorname{sbh}^{+}(S) \stackrel{(1.6)}{=}\{u \in \operatorname{sbh}(S): u \geq 0 \text { on } S\} . \tag{1.9}
\end{equation*}
$$

By const ${ }_{a_{1}, a_{2}, \ldots} \in \mathbb{R}$ we denote constants, and constant functions, in general, depend on a_{1}, a_{2}, \ldots and, unless otherwise specified, only on them, where the dependence on dimension d of \mathbb{R}_{∞}^{d} will be not specified and not discussed; const... ≥ 0.

1.3 Measures and charges

Let $\operatorname{Borel}(S)$ be the class of all Borel subsets in $S \in \operatorname{Borel}\left(\mathbb{R}_{\infty}^{d}\right)$. We denote by $\operatorname{Meas}(S)$ the class of all Borel signed measures, or, charges on $S \in \operatorname{Borel}\left(\mathbb{R}_{\infty}^{d}\right) ; \operatorname{Meas}_{c}(S)$ is the class of charges $\mu \in \operatorname{Meas}(S)$ with a compact support $\operatorname{supp} \mu \Subset S$;

$$
\begin{align*}
\operatorname{Meas}^{+}(S) & :=\{\mu \in \operatorname{Meas}(S): \mu \geq 0\}, \operatorname{Meas}_{\mathrm{c}}^{+}(S):=\operatorname{Meas}_{\mathrm{c}}(S) \cap \operatorname{Meas}^{+}(S) ; \tag{+}\\
\operatorname{Meas}^{1+}(S) & :=\left\{\mu \in \operatorname{Meas}^{+}(S): \mu(S)=1\right\}, \quad \text { probability measures. } \tag{1}
\end{align*}
$$

For a charge $\mu \in \operatorname{Meas}(S)$, we let $\mu^{+}, \mu^{-}:=(-\mu)^{+}$and $|\mu|:=\mu^{+}+\mu^{-}$respectively denote its upper, lower, and total variations. So, $\delta_{x} \in \operatorname{Meas}_{\mathrm{c}}^{1+}(S)$ is the Dirac measure at a point $x \in S$, i.e., $\operatorname{supp} \delta_{x}=\{x\}, \delta_{x}(\{x\})=1$. We denote by $\left.\mu\right|_{S^{\prime}}$ the restriction of μ to $S^{\prime} \in \operatorname{Borel}\left(\mathbb{R}_{\infty}^{d}\right)$.

If the Kelvin transform (1.8) translates the subharmonic function u into another function $u_{o}^{\star}(1.8 u)$, then its Riesz measure v is transformed common use image under its own mappinginversion of type 1 or 2 . These rules are described in detail in L. Schwartz's monograph [48, Vol. I,Ch.IV, § 6] and we do not dwell on them here, although here interesting questions arise, for example, for the Bernstein-Paley - Wiener-Mary Cartwright classes of entire functions [15], [41], [3], [38] etc.

Given $S \in \operatorname{Borel}\left(\mathbb{R}_{\infty}^{d}\right)$ and $\mu \in \operatorname{Meas}(S)$, the class $L_{\text {loc }}^{1}(S, \mu)$ consists of all extended numerical locally integrable functions with respect to the measure μ on $S ; L_{\mathrm{loc}}^{1}(S):=L_{\mathrm{loc}}^{1}\left(S, \lambda_{d}\right)$. For $L \subset L_{\mathrm{loc}}^{1}(S, \mu)$, we define a subclass

$$
\begin{equation*}
L \mathrm{~d} \mu:=\{\nu \in \operatorname{Meas}(S): \text { there exists } g \in L \text { such that } \mathrm{d} \nu=g \mathrm{~d} \mu\} \tag{1.11}
\end{equation*}
$$

of the class of all absolutely continuous charges with respect to μ. For $\mu \in \operatorname{Meas}(S)$, we set

$$
\begin{equation*}
\mu(x, r):=\mu(B(x, r)) \text { if } B(x, r) \stackrel{(1.2)}{\subset} S . \tag{1.12}
\end{equation*}
$$

Let \triangle be the the Laplace operator acting in the sense of the theory of distributions, Γ be the gamma function,

$$
\begin{equation*}
s_{d-1}:=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \tag{1.13}
\end{equation*}
$$

be the surface area of the $(d-1)$-dimensional unit sphere $\partial \mathbb{B}$ embedded in \mathbb{R}^{d}. For function $u \in \operatorname{sbh}_{*}(O)$, the Riesz measure of u is a Borel (or Radon [45, A.3]) positive measure

$$
\begin{equation*}
\Delta_{u}:=c_{d} \Delta u \in \operatorname{Meas}^{+}(O), \quad c_{d} \stackrel{(1.13)}{=} \frac{1}{s_{d-1}\left(1+(d-3)^{+}\right)}=\frac{\Gamma(d / 2)}{2 \pi^{d / 2} \max \{1, d-2\}} \tag{1.14}
\end{equation*}
$$

In particular, $\Delta_{u}(S)<+\infty$ for each subset $S \Subset O$. By definition, $\Delta_{-\infty}(S):=+\infty$ for all $S \subset O$.

We use different variants of outer Hausdorff p-measure \varkappa_{p} with $p \in \mathbb{N}_{0}$:

$$
\begin{align*}
\varkappa_{p}(S) & :=b_{p} \lim _{0<r \rightarrow 0} \inf \left\{\sum_{j \in \mathbb{N}} r_{j}^{p}: S \subset \bigcup_{j \in \mathbb{N}} B\left(x_{j}, r_{j}\right), 0 \leq r_{j}<r\right\} \tag{1.15H}\\
b_{p} & \stackrel{(1.14)}{=}\left\{\begin{array}{ll}
1 & \text { if } p=0, \\
2 & \text { if } p=1, \\
\frac{s_{p-1}}{p} & \text { if } p \in 1+\mathbb{N},
\end{array} \quad \text { is the volume of the unit ball } \mathbb{B} \text { in } \mathbb{R}^{p} .\right. \tag{1.15b}
\end{align*}
$$

Thus, for $p=0$, for any $S \subset \mathbb{R}^{d}$, its Hausdorff 0-measure $\varkappa_{0}(S)$ is to the cardinality $\# S$ of S, for $p=d$ we see that $\varkappa_{d} \stackrel{(1.15 \mathrm{H})}{=} \lambda_{d}$ is the Lebesgue measure to Borel proper subsets $S \subset \mathbb{R}_{\infty}^{d}$, where, if $\infty \in S$, we preliminary use the inversion(1.8u), and $\sigma_{d-1}:=\left.\varkappa_{d-1}\right|_{\partial \mathbb{B}}$ is the $(d-1)$-dimensional surface measure of area on the unit sphere $\partial \mathbb{B}$ in the usual sense.

1.4 Topological concepts: inward-filled hull of set

Let O be a topological space, $S \subset O, x \in O$.
We denote by $\operatorname{Conn}_{O} S$ and $\operatorname{conn}_{O}(S, x) \in \operatorname{Conn}_{O} S$ a set of all connected components of S and its connected component containing x, respectively. We write $\operatorname{clos}_{O} S$, $\operatorname{int}_{O} S$, and $\partial_{O} S$ for the closure, the interior, and the boundary of S in O. The set S is O-precompact if $\operatorname{clos}_{O} S$ is a compact subset of O, and we write $S \Subset O$.

Definition 1. An arbitrary O-precompact connected component of $O \backslash S$ is called a hole in S with respect to O. The union of a subset $K \subset O$ with all holes in it will be called an inward-filled hull of this set K with respect to O and is denoted further as

$$
\begin{equation*}
\text { hull-in } O K:=K \bigcup\left(\bigcup\left\{C \in \operatorname{Conn}_{O}(O \backslash K): C \Subset O\right\}\right) \tag{1.16}
\end{equation*}
$$

Denote by O_{∞} the Alexandroff one-point compactification of O with underlying set $O \sqcup\{\infty\}$, where \sqcup is the disjoint union of O with a single point $\infty \notin O$. If this space O is a topological subspace of some ambient topological space $T \supset O$, then this point ∞ can be identified with the boundary $\partial O \subset T$, considered as a single point $\{\partial O\}$.

Throughout this article, we use these topological concepts only in cases when O is an open non-empty proper Greenian open set $[17$, Ch.5, 2$]$ of $\mathbb{R}_{\infty}^{d}=: T$, i.e.,

$$
\begin{equation*}
\varnothing \neq O=\operatorname{int}_{\mathbb{R}_{\infty}^{d}} O=\bigsqcup_{j \in N_{O}} D_{j} \neq \mathbb{R}_{\infty}^{d}, \quad j \in N_{O} \subset \mathbb{N}, \quad D_{j}=\operatorname{conn}_{\mathbb{R}_{\infty}^{d}}\left(O, x_{j}\right) \tag{1.17O}
\end{equation*}
$$

where points x_{j} lie in different connected components D_{j} of $O \subset \mathbb{R}_{\infty}^{d}$;

$$
\begin{equation*}
\varnothing \neq D \neq \mathbb{R}_{\infty}^{d} \quad \text { is an open connected subset, i. e., a domain. } \tag{1.17D}
\end{equation*}
$$

The dependence on such an open set O or such domain D for constants const... will not be indicated in the subscripts and is not discussed. For an open set O from (1.17O), we often use statements that are proved in our references only for domains D from (1.17D). This is acceptable since all such cases concern only to individual domains-components D_{j}. So, if $S \Subset O$, then S meets only finite many components D_{j}. In addition, we give proofs of our statements only for cases $O, D \subset \mathbb{R}^{d}$. If we have $o \notin D_{j}=D \ni \infty$, then we can to use the inversion relative to the sphere $\partial B(o, 1)$ centered at $o \in \mathbb{R}^{d}$ as in (1.8).

Proposition 2 ([11, 6.3], [12]). Let K be a compact set in an open set $O \subset \mathbb{R}^{d}$. Then
(i) hull-in $\mathrm{in}_{O} K$ is a compact subset in O;
(ii) the set $O_{\infty} \backslash$ hull-in ${ }_{O} K$ is connected and locally connected subset in O_{∞};
(iii) the inward-filled hull of K with respect to O coincides with the complement in O_{∞} of connected component of $O_{\infty} \backslash K$ containing the point ∞, i. e.,

$$
\text { hull-in} O K=O_{\infty} \backslash \operatorname{conn}_{O_{\infty} \backslash K}(\infty) ;
$$

(iv) if $O^{\prime} \subset \mathbb{R}_{\infty}^{d}$ is an open subset and $O \subset O^{\prime}$ then hull-in ${ }_{O} K \subset$ hull-in $_{O^{\prime}} K$;
(v) $\mathbb{R}^{d} \backslash$ hull-in $\mathrm{in}_{O} K$ has only finitely many components, i.e.,

$$
\# \operatorname{Conn}_{\mathbb{R}_{\infty}^{d}}\left(\mathbb{R}^{d} \backslash \operatorname{hull-in}_{O} K\right)<\infty
$$

2 Potentials of charges and measures

Further everywhere we will assume for simplicity and brevity that

$$
\begin{equation*}
\left(O \subset \mathbb{R}^{d}\right) \Leftrightarrow(\infty \notin O), \quad\left(D \subset \mathbb{R}^{d}\right) \Leftrightarrow(\infty \notin D) \tag{2.1}
\end{equation*}
$$

in addition to (1.17). If $\infty \in O, o \in \mathbb{R}_{\infty}^{d} \backslash O$, we can always easily go to cases (2.1) using a inversion \star_{o}, and the Kelvin transforms (1.8).

Definition 2 ([34]). Let $\vartheta, \mu \in \operatorname{Meas}(S), S \subset \operatorname{Borel}\left(\mathbb{R}_{\infty}^{d}\right)$. Let $H \subset \mathbb{R}_{ \pm \infty}^{S}$ be a class of Borel-measurable functions on S. Let us assume that the integrals $\int h \mathrm{~d} \vartheta$ and $\int h \mathrm{~d} \mu$ are well defined with values in $\mathbb{R}_{ \pm \infty}$ for each function $h \in H$. We write $\vartheta \preceq_{H} \mu$ and say that the charge μ is a balayage, or, sweeping (out), of the charge ϑ for H, or, briefly, μ is a H-balayage of ϑ, if

$$
\begin{equation*}
\int h \mathrm{~d} \vartheta \leq \int h \mathrm{~d} \mu \quad \text { for all } h \in H . \tag{2.2}
\end{equation*}
$$

Definition 3 ([45], [16], [42]). For $q \in \mathbb{R}$, we set

$$
\begin{align*}
k_{q}(t) & :=\left\{\begin{array}{ll}
\log t & \text { if } q=0, \\
-\operatorname{sgn}(q) t^{-q} & \text { if } q \in \mathbb{R}_{*},
\end{array} \quad t \in \mathbb{R}_{*}^{+},\right.
\end{align*} \begin{array}{ll}
k_{d-2}(|x-y|) & \text { if } x \neq y, \tag{2.3k}\\
-\infty & \text { if } x=y \text { and } d \geq 2, \tag{2.3K}\\
K_{d-2}(x, y) & :=(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d} .
\end{array}
$$

Definition 4 ([45], [28, Definition 2], [35, 3.1, 3.2]). Let $\mu \in \operatorname{Meas}_{\mathrm{c}}\left(\mathbb{R}^{d}\right)$ be charge with compact support. Its potential is the function $\mathrm{pt}_{\mu} \in \delta-\mathrm{sbh}_{*}\left(\mathbb{R}^{d}\right)$ defined by

$$
\begin{equation*}
\mathrm{pt}_{\mu}(y) \stackrel{(2.3 \mathrm{~K})}{=} \int K_{d-2}(x, y) \mathrm{d} \mu(x), \tag{2.4p}
\end{equation*}
$$

where the kernel K_{d-2} is defined in Definition 3 by the function k_{q} from $(2.3 \mathrm{k})$. The values of potential $\mathrm{pt}_{\mu}(y) \in \mathbb{R}_{ \pm \infty}$ is well defined for all

$$
\begin{align*}
y \in \operatorname{Dom}_{-\infty} \mathrm{pt}_{\mu} & =\left\{y \in \mathbb{R}^{d}: \int_{0} \frac{\mu^{-}(y, t)}{t^{m-1}} \mathrm{~d} t<+\infty\right\} \tag{2.4~d-}\\
y \in \operatorname{Dom}_{+\infty} \mathrm{pt}_{\mu} & =\left\{y \in \mathbb{R}^{d}: \int_{0} \frac{\mu^{+}(y, t)}{t^{m-1}} \mathrm{~d} t<+\infty\right\} \tag{2.4d+}\\
y \in \operatorname{Dom}_{ \pm \infty} \mathrm{pt}_{\mu} & =\operatorname{Dom}_{-\infty} \mathrm{pt}_{\mu} \bigcup \operatorname{Dom}_{+\infty} \mathrm{pt}_{\mu} \\
y \in \operatorname{dompt}_{\mu} & =\operatorname{Dom}_{-\infty} \mathrm{pt}_{\mu} \bigcap \operatorname{Dom}_{+\infty} \mathrm{pt}_{\mu}, \tag{2.4d}
\end{align*}
$$

and their complements $\mathbb{R}^{d} \backslash \mathrm{Dom}_{-\infty} \mathrm{pt}_{\mu}$ and $\mathbb{R}^{d} \backslash \mathrm{Dom}_{+\infty} \mathrm{pt}_{\mu}$ are polar sets in \mathbb{R}^{d}.
If $\mu \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$ be a H-balayage of a measure $\vartheta \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$, then we consider the potential

$$
\begin{equation*}
\mathrm{pt}_{\mu-\vartheta} \stackrel{(2.4 \mathrm{p})}{=} \mathrm{pt}_{\mu}-\mathrm{pt}_{\vartheta} \in \delta-\operatorname{sbh}\left(\mathbb{R}^{d}\right) \tag{2.5}
\end{equation*}
$$

where under the conditions $d>1$ and $1 \in H$ it is natural to set $\mathrm{pt}_{\mu-\vartheta}(\infty):=0$. The latter is based on the following

Proposition 3. Let $\mu \in \operatorname{Meas}_{\mathrm{c}}\left(\mathbb{R}^{d}\right)$. Then

$$
\begin{equation*}
\operatorname{pt}_{\mu}(x) \stackrel{(2.3 \mathrm{k})}{=} \mu\left(\mathbb{R}^{d}\right) k_{d-2}(|x|)+O\left(1 /|x|^{d-1}\right), \quad x \rightarrow \infty \tag{2.6}
\end{equation*}
$$

Proof. For $d=1$, we have

$$
\left|\mathrm{pt}_{\mu}(x)-\mu(\mathbb{R})\right| x\left|\left|\leq \int\right|\right| x-y|-|x|| \mathrm{d}|\mu|(y) \leq \int|y| \mathrm{d}|\mu|(y)=O(1), \quad|x| \rightarrow+\infty
$$

See (2.6) for $d=2$ in [45, Theorem 3.1.2].
For $d>2$ and $|x| \geq 2 \sup \{|y|: y \in \operatorname{supp} \mu\}$, we have

$$
\begin{aligned}
& \left|\mathrm{pt}_{\mu}(x)-\mu\left(\mathbb{R}^{d}\right) k_{d-2}(|x|)\right|=\left|\int\left(\frac{1}{|x|^{d-2}}-\frac{1}{|x-y|^{d-2}}\right) \mathrm{d} \mu(y)\right| \\
& \left.\leq \int\left|\frac{1}{|x|^{d-2}}-\frac{1}{|x-y|^{d-2}}\right| \mathrm{d}|\mu|(y) \leq \frac{2^{d-2}}{|x|^{2 d-4}} \int| | x-\left.y\right|^{d-2}-|x|^{d-2}|\mathrm{~d}| \mu \right\rvert\,(y) \\
& \quad \leq \frac{2^{d-2}}{|x|^{2 d-4}} \int|y||x|^{d-3} \sum_{k=0}^{d-3}\left(\frac{3}{2}\right)^{k} \mathrm{~d}|\mu|(y) \leq 2 \frac{3^{d-2}}{|x|^{d-1}} \int|y| \mathrm{d}|\mu|(y)=O\left(\frac{1}{|x|^{d-1}}\right) .
\end{aligned}
$$

Proposition 4. If

$$
\begin{equation*}
\mu \in \operatorname{Meas}_{\mathrm{c}}^{+}\left(\mathbb{R}^{d}\right), \quad L \Subset \mathbb{R}^{d}, \quad o \in \mathbb{R}^{d} \backslash L, \tag{2.7}
\end{equation*}
$$

then

$$
\begin{align*}
& \quad \inf _{x \in L} \mathrm{pt}_{\mu}(x) \stackrel{(2.3 \mathrm{k})}{\geq} \mu\left(\mathbb{R}^{d}\right) k_{d-2}(\operatorname{dist}(L, \operatorname{supp} \mu)), \tag{2.8i}\\
& \inf _{x \in L} \operatorname{pt}_{\mu-\delta_{o}}(x) \stackrel{(2.4 \mathrm{p})}{\geq} \mu\left(\mathbb{R}^{d}\right) k_{d-2}(\operatorname{dist}(L, \operatorname{supp} \mu))-k_{d-2}\left(\sup _{x \in L}|x-o|\right) \tag{2.8o}
\end{align*}
$$

Proof. If $\operatorname{dist}(L, \operatorname{supp} \mu)=0$, then the right-hand sides in the inequalities (2.8) are equal to $-\infty$, and the inequalities (2.8) are true. Otherwise, by Definition 4, we obtain

$$
\begin{align*}
& \mathrm{pt}_{\mu}(x)=\int k_{d-2}(|x-y|) \mathrm{d} \mu(y) \geq \inf _{y \in \operatorname{supp} \mu} k_{d-2}(|x-y|) \mu\left(\mathbb{R}^{d}\right) \\
& \geq \inf _{y \in \operatorname{supp} \mu} k_{d-2}\left(\inf _{y \in \operatorname{supp} \mu}|x-y|\right) \mu\left(\mathbb{R}^{d}\right)=\mu\left(\mathbb{R}^{d}\right) k_{d-2}(\operatorname{dist}(x, \operatorname{supp} \mu)), \tag{2.9}
\end{align*}
$$

since the function k_{q} from (2.3k) is increasing, which implies the inequality (2.8i) after applying the operation $\inf _{x \in L}$ to both sides of inequality (2.9). Using (2.8i), we have

$$
\begin{aligned}
\inf _{x \in L} \mathrm{pt}_{\mu-\delta_{o}}(x) \stackrel{(2.4 \mathrm{p})}{=} \inf _{x \in L}\left(\mathrm{pt}_{\mu}(x)-k_{d-2}(|x-o|)\right) & \geq \inf _{x \in L} \mathrm{pt}_{\mu}(x)-\sup _{x \in L} k_{d-2}(|x-o|) \\
& \stackrel{(2.8 \mathrm{i})}{ } \mu\left(\mathbb{R}^{d}\right) k_{d-2}(\operatorname{dist}(L, \operatorname{supp} \mu))-k_{d-2}\left(\sup _{x \in L}|x-o|\right)
\end{aligned}
$$

which gives the inequality (2.80).

2.1 Duality Teorem for har((O)-balayage

Duality Theorem 1 (for har(O)-balayage). If a measure $\mu \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$ is a $\operatorname{har}(O)$-balayage of a measure $\vartheta \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$, then

$$
\begin{align*}
& \mathrm{pt}_{\mu} \in \operatorname{sbh}_{*}\left(\mathbb{R}^{d}\right) \cap \operatorname{har}\left(\mathbb{R}^{d} \backslash \operatorname{supp} \mu\right) \tag{2.10p}\\
& \mathrm{pt}_{\mu}=\mathrm{pt}_{\vartheta} \text { on } \mathbb{R}^{d} \backslash \operatorname{hull-\operatorname {in}_{O}(\operatorname {supp}\vartheta \cup \operatorname {supp}\mu \cup)} \tag{2.10=}
\end{align*}
$$

Conversely, suppose that there is a subset $S \Subset O$, and a function p such that

$$
\begin{align*}
& p \stackrel{(2.10 \mathrm{p})}{\in} \operatorname{sbh}(O) \cap \operatorname{har}(O \backslash S), \tag{2.11p}\\
& p \stackrel{(2.10=)}{=} \mathrm{pt}_{\vartheta} \quad \text { on } O \backslash S . \tag{2.11=}
\end{align*}
$$

Then the Riesz measure

$$
\begin{equation*}
\mu:=\Delta_{p} \stackrel{(1.14)}{=} c_{d} \Delta p \stackrel{(2.11)}{\in} \operatorname{Meas}^{+}(\operatorname{clos} S) \subset \operatorname{Meas}_{\mathrm{c}}^{+}(O) \tag{2.12}
\end{equation*}
$$

of this function p is a har (O)-balayage of ϑ.
Proof. The first property (2.10p) is evidently. For each $y \in \mathbb{R}^{d}$, the kernel $K_{d-2}(\cdot, y)$ is harmonic on $\mathbb{R}^{d} \backslash\{y\}$. By

Proposition 5 ([34]). Let $\mu \in \operatorname{Meas}_{\mathrm{c}}(O)$ be a balayage of $\vartheta \in \operatorname{Meas}_{\mathrm{c}}(O)$ for $\operatorname{har}(O)$. Then

$$
\begin{equation*}
\int h \mathrm{~d} \vartheta=\int h \mathrm{~d} \mu \quad \text { for any } h \in \operatorname{har}\left(\operatorname{hull}-\operatorname{in}_{O}(\operatorname{supp} \mu \cup \operatorname{supp} \vartheta)\right) \tag{2.13}
\end{equation*}
$$

(see Subsec. 1.4, Definition 1 of inward-filled hull of compact subset $\operatorname{supp} \mu \cup \operatorname{supp} \vartheta$ in O).
for $h:=K_{d-2}(\cdot, y)$ in (2.13), we have

$$
\begin{equation*}
\operatorname{pt}_{\vartheta}(y)=\int K_{d-2}(x, y) \mathrm{d} \vartheta(x) \stackrel{(2.13)}{=} \int K_{d-2}(x, y) \mathrm{d} \mu(x)=\mathrm{pt}_{\mu}(y) \tag{2.14}
\end{equation*}
$$

for all $y \in \operatorname{hull}-\mathrm{in}_{O}(\operatorname{supp} \mu \cup \operatorname{supp} \vartheta)$. This gives $(2.10=)$.
In the opposite direction, we can extend the function p to \mathbb{R}^{d} so that $p=\mathrm{pt}_{\vartheta}$ on $\mathbb{R}^{d} \backslash S$.

$$
\begin{equation*}
p(x)-\vartheta(O) k_{d-2}(|x|)=p(x)-\operatorname{pt}_{\vartheta}(x)+O\left(1 /|x|^{d-1}\right) \stackrel{(2.11=)}{=} O\left(1 /|x|^{d-1}\right), \quad x \rightarrow \infty . \tag{2.15}
\end{equation*}
$$

Hence the function p is a potential with the Riesz measure (2.12), and $\mu(O)=\vartheta(O)$, i. e., $p=\mathrm{pt}_{\mu}$. Further, we can use the following

Lemma 1 ([11, Lemma 1.8]). Let F be a compact subset of \mathbb{R}^{d}, let $h \in \operatorname{har}(F)$, and $\varepsilon>0$. Then there are points $y_{1}, y_{2}, \ldots, y_{k}$ in $\mathbb{R}^{d} \backslash F$ such that

$$
\begin{equation*}
\left|h(x)-\sum_{j=1}^{k} k_{d-2}\left(\left|x-y_{j}\right|\right)\right|<\varepsilon \quad \text { for all } x \in F \tag{2.16}
\end{equation*}
$$

Applying Lemma 1 to the compact set $F \stackrel{(2: 11 \mathrm{p})}{:=} \operatorname{clos} S \cup \operatorname{supp} \vartheta \Subset O$ and a function $h \in \operatorname{har}(O)$, we obtain

$$
\begin{aligned}
\left|\int_{F} h \mathrm{~d}(\mu-\vartheta)\right| \stackrel{(2.11=)}{=} & \left|\int_{F} h \mathrm{~d}(\mu-\vartheta)-\sum_{j=1}^{k}\left(\mathrm{pt}_{\mu}\left(y_{j}\right)-\mathrm{pt}_{\vartheta}\left(y_{j}\right)\right)\right| \\
& \leq \sup _{x \in F}\left|h(x)-\sum_{j=1}^{k} k_{d-2}\left(\left|x-y_{j}\right|\right)\right|(\mu(O)+\vartheta(O)) \leq \varepsilon(\mu(O)+\vartheta(O))
\end{aligned}
$$

for any $\varepsilon>0$. Hence the measure μ is a $\operatorname{har}(O)$-balayage of ϑ.
Corollary 1. Let $\vartheta, \mu \in \operatorname{Meas}_{\mathrm{c}}(O)$, $\operatorname{supp} \vartheta \cup \operatorname{supp} \mu \subset S \Subset O$. If μ is a balayage of ϑ for the class

$$
\begin{equation*}
H=\left\{ \pm k_{d-2}(|y-\cdot|): y \in \mathbb{R}^{d} \backslash \operatorname{clos} S\right\} \tag{2.17}
\end{equation*}
$$

then μ is a $\operatorname{har}(O)$-balayage of ϑ.
Proof. We have (2.14) for all $y \in \mathbb{R}^{d} \backslash \operatorname{clos} S$. By Duality Theorem $1, \vartheta \preceq_{\operatorname{har}(O)} \mu$.
Corollary 2. Let $\mu \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$ be a har (O)-balayage of measure $\vartheta \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$, and $\varsigma \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$ also be a har (O)-balayage of the same measure ϑ. If

$$
\begin{equation*}
{\operatorname{hull}-n_{O}(\operatorname{supp} \vartheta \cup \operatorname{supp} \varsigma) \subset \operatorname{hull}^{-\operatorname{in}_{O}}(\operatorname{supp} \vartheta \cup \operatorname{supp} \mu), ~}_{\text {sut }} \tag{2.18}
\end{equation*}
$$

then the measure μ is a $\operatorname{har}(O)$-balayage of the measure ς.

2.2 Arens-Singer measures and their potentials

Example 1 ([10], [28]). Let $x \in O$. If $\mu \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$ is a balayage of δ_{x} for har(O), then such measure μ is called a Arens-Singer measure for x. The class of such measures is denoted by $A S_{x}(O) \supset J_{x}(O)$. Arens - Singer measures are often referred to as representing measures.

By Example 1, if we choose $x \in O$ and $\vartheta:=\delta_{x} \preceq_{\operatorname{har}(O)} \mu \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$, i. e., μ is a Arens - Singer measure for $x \in O$, then potential

$$
\begin{equation*}
\mathrm{pt}_{\mu-\delta_{x}}(y)=\mathrm{pt}_{\mu}(y)-K_{d-2}(x, y), \quad y \in \mathbb{R}^{d} \backslash\{x\} \tag{2.19}
\end{equation*}
$$

satisfies conditions

$$
\begin{align*}
\mathrm{pt}_{\mu-\delta_{x}} & \in \operatorname{sbh}\left(\mathbb{R}_{\infty}^{d}\right), \quad \mathrm{pt}_{\mu-\delta_{x}}(\infty):=0, \\
\operatorname{pt}_{\mu-\delta_{x}} & \equiv 0 \quad \text { on } \mathbb{R}_{\infty}^{d} \backslash \operatorname{hull-in}_{O}(\{x\} \cup \operatorname{supp} \mu) \\
\operatorname{pt}_{\mu-\delta_{x}}(y) & \leq-K_{d-2}(x, y)+O(1) \quad \text { for } x \neq y \rightarrow x . \tag{2.20}
\end{align*}
$$

Remember, that the function $V \in \operatorname{sbh}_{*}\left(\mathbb{R}_{\infty}^{d} \backslash\{x\}\right)$ is called a Arens - Singer potential on O with pole at $x \in O$ [28], [30, Definition 6] (partially in [10, 3.3,3.4], [1], [46]), if this function V satisfies conditions

$$
\begin{align*}
V & \left.\equiv 0 \quad \text { on } \mathbb{R}_{\infty}^{d} \backslash S(V)\right) \text { for a subset } S(V) \Subset O \\
V(y) & \leq-K_{d-2}(x, y)+O(1) \quad \text { for } x \neq y \rightarrow x \tag{2.21}
\end{align*}
$$

The class of all Arens-Singer potential on O with pole at $x \in O$ denote by $P A S_{x}(O)$. In this class $P A S_{x}(O)$ we will consider a special subclass

$$
\begin{equation*}
P A S_{x}^{1}(O):=\left\{V \in P A S_{x}(O): V(y)=-K_{d-2}(x, y)+O(1) \text { for } x \neq y \rightarrow x\right\} \tag{2.22}
\end{equation*}
$$

By Duality Theorem 1, we have
Duality Theorem A ([28, Proposition 1.4, Duality Theorem]). The mapping

$$
\begin{equation*}
\mathcal{P}_{x}: \mu \longmapsto \mathrm{pt}_{\mu-\delta_{x}} \tag{2.23}
\end{equation*}
$$

is the affine bijection from $A S_{x}(O)$ onto $P A S_{x}(O)$ with inverse mapping

$$
\begin{equation*}
\mathcal{P}_{x}^{-1}:\left.V \stackrel{(1.14)}{\longmapsto} c_{d} \triangle V\right|_{\mathbb{R}^{d} \backslash\{x\}}+\left(1-\limsup _{x \neq y \rightarrow x} \frac{V(y)}{-K_{d-2}(x, y)}\right) \cdot \delta_{x} . \tag{2.24}
\end{equation*}
$$

Let $x \in \operatorname{int} Q=Q \Subset O$. The restriction of \mathcal{P}_{x} to the class

$$
\begin{equation*}
\left\{\mu \in A S_{x}(O): \operatorname{supp} \mu \cap Q=\varnothing\right\} \tag{2.25}
\end{equation*}
$$

define a bijection from class (2.25) onto class (see (2.22))

$$
\begin{equation*}
P A S_{x}^{1}(O) \bigcap \operatorname{har}(Q \backslash\{x\}) \tag{2.26}
\end{equation*}
$$

The restriction of \mathcal{P}_{x} to the class

$$
\begin{equation*}
\left\{\mu \in A S_{x}(O): \operatorname{supp} \mu \cap Q=\varnothing\right\} \bigcap\left(C^{\infty}(O) \mathrm{d} \lambda_{d}\right) \tag{2.27}
\end{equation*}
$$

define also a bijection from class (2.27) onto class

$$
\begin{equation*}
P A S_{x}^{1}(O) \bigcap \operatorname{har}(Q \backslash\{x\}) \bigcap C^{\infty}(O \backslash\{x\}) \tag{2.28}
\end{equation*}
$$

This transition from the main bijection \mathcal{P}_{x} to the bijection from (2.25) onto (2.26) or from (2.27) onto (2.28) by restriction of \mathcal{P}_{x} to (2.25) or (2.27) is quite obvious.

2.3 A generalization of Poisson - Jensen formula

Theorem 1 (extended Poisson-Jensen formula for har (O)-balayage). Let $\mu \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$ be a har(O)-balayage of $\vartheta \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$. If $u \in \operatorname{sbh}(O)$ is a function with the Riesz measure $\Delta_{u} \stackrel{(1.14)}{=} c_{d} \Delta u \in \operatorname{Meas}^{+}(O)$, then

$$
\begin{equation*}
\int u \mathrm{~d} \vartheta+\int_{K} \mathrm{pt}_{\mu} \mathrm{d} \Delta_{u}=\int_{K} \mathrm{pt}_{\vartheta} \mathrm{d} \Delta_{u}+\int u \mathrm{~d} \mu, \quad K:=\operatorname{hull}^{-\mathrm{in}_{O}}(\operatorname{supp} \vartheta \cup \operatorname{supp} \mu) . \tag{2.29}
\end{equation*}
$$

In particular, if

$$
\begin{equation*}
\int u \mathrm{~d} \vartheta>-\infty \tag{2.30}
\end{equation*}
$$

then (2.29) can be written as

$$
\begin{equation*}
\int u \mathrm{~d} \vartheta=\int u \mathrm{~d} \mu-\int_{K} \mathrm{pt}_{\mu-\vartheta} \mathrm{d} \Delta_{u} \tag{2.31}
\end{equation*}
$$

Proof. Consider first the case (2.30). Choose an open set O^{\prime} such that $K \Subset O^{\prime} \Subset O$. By the Riesz decomposition theorem $u=\mathrm{pt}_{\nu^{\prime}}+h$ on O^{\prime}, where $\nu^{\prime}:=\left.\Delta_{u}\right|_{O^{\prime}}$ and $h \in \operatorname{har}\left(O^{\prime}\right)$. Integrating this representation with respect to $\mathrm{d} \vartheta$ and $\mathrm{d} \mu$, we obtain

$$
\begin{align*}
& \int u \mathrm{~d} \mu=\int \mathrm{pt}_{\nu^{\prime}} \mathrm{d} \mu+\int h \mathrm{~d} \mu \\
& \int u \mathrm{~d} \vartheta=\int \mathrm{pt}_{\nu^{\prime}} \mathrm{d} \vartheta+\int h \mathrm{~d} \vartheta
\end{align*}
$$

where the three integrals in (2.32ϑ) are finite, although in the equality (2.32μ) the first two integrals can take simultaneously the value of $-\infty$, but the last integral in (2.32μ) is finite. Therefore, the difference $(2.32 \mu)-(2.32 \vartheta)$ of these two equalities is well defined:

$$
\begin{equation*}
\int u \mathrm{~d} \mu-\int u \mathrm{~d} \vartheta=\int \mathrm{pt}_{\nu^{\prime}} \mathrm{d} \mu-\int \mathrm{pt}_{\nu^{\prime}} \mathrm{d} \vartheta+\int h \mathrm{~d}(\mu-\vartheta) \tag{2.33}
\end{equation*}
$$

where the first and third integrals can simultaneously take the value of $-\infty$, and the remaining integrals are finite. By Proposition 5, the last integral in (2.33) vanishes. Using Fubini's theorem, in view of the symmetry property of kernel in (2.4p), we have

$$
\begin{align*}
& \int \mathrm{pt}_{\nu^{\prime}} \mathrm{d} \vartheta=\iint K_{d-2}(y, x) \mathrm{d} \nu^{\prime}(y) \mathrm{d} \vartheta(x) \\
&=\iint K_{d-2}(x, y) \mathrm{d} \vartheta(x) \mathrm{d} \nu^{\prime}(y)=\int_{O^{\prime}} \mathrm{pt}_{\vartheta} \mathrm{d} \Delta_{u} \tag{2.34}
\end{align*}
$$

and the same way

$$
\begin{align*}
& \int \mathrm{pt}_{\nu^{\prime}} \mathrm{d} \mu=\iint K_{d-2}(y, x) \mathrm{d} \nu^{\prime}(y) \mathrm{d} \mu(x) \\
&=\iint K_{d-2}(x, y) \mathrm{d} \mu(x) \mathrm{d} \nu^{\prime}(y)=\int_{O^{\prime}} \mathrm{pt}_{\mu} \mathrm{d} \Delta_{u} \tag{2.35}
\end{align*}
$$

even if the integral on the left side of equalities (2.35) takes the value $-\infty$ because the integrand $K_{d-2}(\cdot, \cdot)$ is bounded from above on the compact set $\operatorname{clos} O^{\prime} \times \operatorname{clos} O^{\prime}[16$, Theorem 3.5]. Hence equality (2.33) can be rewritten as

$$
\int u \mathrm{~d} \mu-\int u \mathrm{~d} \vartheta=\int_{O^{\prime}} \mathrm{pt}_{\mu} \mathrm{d} \Delta_{u}-\int_{O^{\prime}} \mathrm{pt}_{\vartheta} \mathrm{d} \Delta_{u}=\int_{K} \mathrm{pt}_{\mu} \mathrm{d} \Delta_{u}-\int_{K} \mathrm{pt}_{\vartheta} \mathrm{d} \Delta_{u}
$$

since $\mathrm{pt}_{\mu}=\mathrm{pt}_{\vartheta}$ on $O^{\prime} \backslash K$. This gives equality (2.29) in the case (2.30).
If condition(2.30) is not fulfilled, then from the representation (2.32v) it follows that the integral on the left-hand side of (2.34) also takes the value $-\infty$. The equalities (2.34) is still true [16, Theorem 3.5]. Hence, the first integral on the right side of the formula (2.29) also takes the value $-\infty$ and this formula (2.29) remains true.

Remark 1. If $\vartheta:=\delta_{x}$ and $\mu:=\omega_{D}(x, \cdot)$ for $x \in D \Subset O$, then the formula (2.31) is the classical Poisson - Jensen formula [16, Theorem 5.27]

$$
\begin{align*}
& u(x)=\int_{\partial D} u \mathrm{~d} \omega_{D}(x, \cdot)-\int_{\operatorname{clos} D} g_{D}(\cdot, x) \mathrm{d} \Delta_{u}, \quad x \in D \tag{2.36a}\\
& \delta_{x} \preceq_{\operatorname{sbh}(O)} \omega_{D}(x, \cdot), \quad \mathrm{pt}_{\omega_{D}(x, \cdot)}-\mathrm{pt}_{\delta_{x}}=\mathrm{pt}_{\omega_{D}(x, \cdot)-\delta_{x}}=g_{D}(\cdot, x) . \tag{2.36b}
\end{align*}
$$

2.4 Duality Theorem for $\operatorname{sbh}(O)$-balayage

Duality Theorem 2 (for $\operatorname{sbh}(O)$-balayage). If a measure $\mu \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$ is a $\operatorname{sbh}(O)$ balayage of a measure $\vartheta \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$, then we have (2.10), and

$$
\begin{equation*}
\mathrm{pt}_{\mu} \geq \mathrm{pt}_{\vartheta} \quad \text { on } \mathbb{R}^{d} \tag{2.37}
\end{equation*}
$$

Conversely, suppose that there is a subset $S \Subset O$, and a function p such that we have (2.11), $\overline{\text { and } p \geq \mathrm{pt}_{\vartheta}}$ on $\operatorname{clos} S$. Then the Riesz measure (2.12) of p is a $\operatorname{sbh}(O)$-balayage of ϑ.

Proof. If $\vartheta \preceq_{\operatorname{sbh}(O)} \mu$, then $\vartheta \preceq_{\operatorname{har}(O)} \mu$ and we have properties (2.10) by Duality Theorem 1 . For each $y \in \mathbb{R}^{d}$, the function $K_{d-2}(\cdot, y)$ is subharmonic on \mathbb{R}^{d} and (2.37) follows from Definitions 2 and 4. Conversely, if a function p is such as in (2.11), then, by Duality Theorem 1, this function is a potential $\mathrm{pt}_{\mu}=p$ with the Riesz measure (2.12), this measure $\mu \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$ is a $\operatorname{har}(O)$-balayage for ϑ, and $K:=\operatorname{hull}-\operatorname{in}(\operatorname{supp} \vartheta \cup \operatorname{supp} \mu) \subset \operatorname{clos} S$. Let $u \in \operatorname{sbh}_{*}(O)$. It follows from $\mathrm{pt}_{\mu} \geq \mathrm{pt}_{\vartheta}$ on K that $\int_{K} \mathrm{pt}_{\vartheta} \mathrm{d} \Delta_{u} \leq \int_{K} \mathrm{pt}_{\mu} \mathrm{d} \Delta_{u}$. Hence, by the extended Poisson - Jensen formula (2.29) from Theorem 1, we obtain $\int u \mathrm{~d} \vartheta \leq \int u \mathrm{~d} \mu$.

2.5 Jensen measures and their potentials

Example 2 ([10], [7], [8], [47]). Let $x \in O$. If a measure $\mu \in \operatorname{Meas~}_{\mathrm{c}}^{+}(O)$ is a balayage of the Dirac measure δ_{x} for $\operatorname{sbh}(O)$, then this measure μ is called a Jensen measure for x. The class of such measures is denoted by $J_{x}(O)$.

By Example 2, if we choose $x \in O$ and $\vartheta:=\delta_{x} \preceq_{\operatorname{sbh}(O)} \mu \in \operatorname{Meas}_{\mathrm{c}}^{+}(O)$, i. e., μ is a Jensen measure for $x \in O$, then potential

$$
\begin{equation*}
\mathrm{pt}_{\mu-\delta_{x}}(y)=\mathrm{pt}_{\mu}(y)-K_{d-2}(x, y), \quad y \in \mathbb{R}^{d} \backslash\{x\} \tag{2.38}
\end{equation*}
$$

satisfies conditions (2.20) and $\mathrm{pt}_{\mu-\delta_{x}} \geq 0$ on $\mathbb{R}_{\infty}^{d} \backslash\{x\}$. Remember, that a positive function $V \in \operatorname{sbh}^{+}\left(\mathbb{R}_{\infty}^{d} \backslash\{x\}\right)$ is called a Jensen potential on O with pole at $x \in O$ [28], [30, Definition 8], if this function V satisfies conditions (2.21) The class of all Jensen potential on O with pole at $x \in O$ denote by $P J_{x}(O) \subset A S_{x}(O)$. In this class $J_{x}(O)$ we will consider a special subclass

$$
\begin{equation*}
P J_{x}^{1}(O) \stackrel{(2.22)}{=} P J_{x}(O) \bigcap P A S_{x}^{1}(O) \subset P A S_{x}^{1}(O) \tag{2.39}
\end{equation*}
$$

By Duality Theorem 2, we have
Duality Theorem B ([28, Proposition 1.4, Duality Theorem]). The mapping (2.23) is the affine bijection from $J_{x}(O)$ onto $P J_{x}(O)$ with inverse mapping (2.24).

Let $x \in \operatorname{int} Q=Q \Subset O$. The restriction of \mathcal{P}_{x} to the class (cf. (2.25))

$$
\begin{equation*}
\left\{\mu \in J_{x}(O): \operatorname{supp} \mu \cap Q=\varnothing\right\} \tag{2.40}
\end{equation*}
$$

define a bijection from class (2.40) onto class (see (2.39), cf. (2.26))

$$
\begin{equation*}
P J_{x}^{1}(O) \bigcap \operatorname{har}(Q \backslash\{x\}) . \tag{2.41}
\end{equation*}
$$

Let $x \in \operatorname{int} Q=Q \Subset O$. The restriction of \mathcal{P}_{x} to the class (cf. (2.27))

$$
\begin{equation*}
\left\{\mu \in J_{x}(O): \operatorname{supp} \mu \cap Q=\varnothing\right\} \bigcap\left(C^{\infty}(O) \mathrm{d} \lambda_{d}\right) \tag{2.42}
\end{equation*}
$$

define a bijection from class (2.42) onto class (cf. (2.28))

$$
\begin{equation*}
P J_{x}^{1}(O) \bigcap \operatorname{har}(Q \backslash\{x\}) \bigcap C^{\infty}(O \backslash\{x\}) \tag{2.43}
\end{equation*}
$$

This transition from the main bijection \mathcal{P}_{x} to the bijection from (2.40) onto (2.41) or from (2.42) onto (2.43) by restriction of \mathcal{P}_{x} to (2.40) or to (2.42) is quite obvious.

References

[1] Anderson S. L. Green's Function, Jensen Measures, and Bounded Point Evaluations // J. Func. Analysis, 43 (1981), 360-367
[2] Arsove M. G. Functions representable as differences of subharmonic functions // Trans. Amer. Math. Soc. 75 (1953), 327-365.
[3] Bayguskarov T. Yu., Talipova G. R., Khabibullin B. N. Subsequences of zeros for classes of entire functions of exponential type, allocated by restrictions on their growth // Algebra i Analiz. 28:2 (2016), 1-33; English transl. in St. Petersburg Math. J. 28:2 (2017), 127-151.
[4] Nicolas Bourbaki. Intégration, Chapitre 5. Éléments de mathématique. Springer-Verlag, 1967-2007
[5] Bayguskarov T. Yu., Talipova G. R., Khabibullin B. N. Subsequences of zeros for classes of entire functions of exponential type, allocated by restrictions on their growth // St. Petersburg Math. J. 28:2 (2017), 127-151.
[6] Cherednikova L. Yu. Nonuniqueness Sequences for Weighted Algebras of Holomorphic Functions in the Unit Circle // Math. Notes, 77:5 (2005), 715-725.
[7] Cole B. J., Ransford Th. J. Subharmonicity without Upper Semicontinuity // J. Funct. Anal. 147 (1997), 420-442.
[8] Cole B. J., Ransford Th. J. Jensen measures and harmonic measures // J. reine angew. Math. 541 (2001), 29-53.
[9] Doob J. L. Classical Potential Theory and Its Probabilistic Counterpart. SpringerVerlag, 1984.
[10] Gamelin T. W. Uniform Algebras and Jensen Measures. Cambridge Univ. Press, 1978.
[11] Gardiner S. J. Harmonic Approximation. Cambridge Univ. Press, 1995.
[12] Gauthier P. M. Uniform approximation // In book: Complex Potential Theory. Netherlands: Kluwer Academic Publisher. 1994. 235-271.
[13] Gautier P. M. Subharmonic extensions and approximations // Can. Math. Bull. 37:5 (1994), 46-53.
[14] Ghergu M., Manolaki M., Netuka I., Render H. Potential theory and approximation: highlights from the scientific work of Stephen Gardiner // Analysis and Mathematical Physics. 9:2 (2019), 679-709.
[15] Havin V., Jöriicke B. The Uncertainty Principle in Harmonic Analysis. Springer-Verlag, 1994.
[16] Hayman W. K., Kennedy P. B. Subharmonic functions. 1, Acad. Press, London etc., 1976.
[17] Helms L. L. Introduction to Potential Theory, Wiley-Interscience, 1969.
[18] Khabibullin B. N. Sets of uniqueness in spaces of entire functions of a single variable // Izv. Akad. Nauk SSSR Ser. Mat., 55:5 (1991), 1101-1123; Math. USSR-Izv., 39:2 (1992), 1063-1084.
[19] Khabibullin B. N. The theorem on the least majorant and its applications. II. Entire and meromorphic functions of finite order // Russian Acad. Sci. Izv. Math., 42:3 (1994), 479-500.
[20] Khabibullin B. N. Nonconstructive proofs of the Beurling-Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions // Russian Acad. Sci. Izv. Math., 45:1 (1995), 125-149
[21] Khabibullin B. N. Zero sets for classes of entire functions and a representation of meromorphic functions // Math. Notes, 59:4 (1996), 440-444.
[22] Khabibullin B. N. Variant of a problem on the representation of a meromorphic function as a quotient of entire functions // Complex Variables and Elliptic Equations. 37:1 (1998), 371-384.
[23] Khabibullin B. N. Completeness of systems of entire functions in spaces of holomorphic functions // Math. Notes, 66:4 (1999), 495-506
[24] Khabibullin B. N., Dual approach to certain questions for weighted spaces of holomorphic functions // Entire functions in modern analysis (Tel-Aviv, December 14-19, 1997), Israel Math. Conf. Proc., 15, Bar-Ilan Univ., Ramat Gan, 2001, 207-219.
[25] Khabibullin B. N. On the Growth of Entire Functions of Exponential Type near a Straight Line // Math. Notes, 70:4 (2001), 560-573.
[26] Khabibullin B. N. Dual representation of superlinear functionals and its applications in function theory. II // Izv. Math., 65:5 (2001), 1017-1039.
[27] Khabibullin B. N. Growth of Entire Functions with Given Zeros and Representation of Meromorphic Functions // Math. Notes, 73:1 (2003), 110-124.
[28] Khabibullin B. N. Criteria for (sub-)harmonicity and continuation of (sub-)harmonic functions // Sibirsk. Mat. Zh. 2003, 44:4, 905-925; Siberian Math. J. 2003, 44:4, 713728.
[29] Khabibullin B. N. Zero subsets, representation of meromorphic functions, and Nevanlinna characteristics in a disc // Sb. Math., 197:2 (2006), 259-279.
[30] Khabibullin B. N. Zero sequences of holomorphic functions, representation of meromorphic functions, and harmonic minorants // Mat. Sb. 198:2 (2007), 121-160; Sb. Math. 198:2 (2007), 261-298.
[31] Khabibullin B. N. Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions // Mat. Sb. 200:2 (2009), 129-158; Sb. Math. 200:2 (2009), 283-312.
[32] Khabibullin B. N., Khabibullin F. B. On the Distribution of Zero Sets of Holomorphic Functions. III. Inversion Theorems // Funktsional. Anal. i Prilozhen., 53:2 (2019), 4258; Funct. Anal. Appl. 53:2 (2019), 110-123.
[33] B. N. Khabibullin, F. B. Khabibullin, L. Yu. Cherednikova, "Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness. I, II", St. Petersburg Math. J., 20:1 (2009), 101-162.
[34] Khabibullin B. N., Menshikova E. B. Classical Balayage of Charges and Measures // arXiv:1907.09608 [math.CV], https://arxiv.org/abs/1907.09608
[35] Khabibullin B. N., Rozit A. P. On the Distribution of Zero Sets of Holomorphic Functions // Funktsional. Anal. i Prilozhen., 52:1 (2018), 26-42; Funct. Anal. Appl., 52:1 (2018), 21-34.
[36] Khabibullin B. N., Talipova G. R., Khabibullin F. B., Zero subsequences for Bernstein's spaces and the completeness of exponential systems in spaces of functions on an interval // St. Petersburg Math. J., 26:2 (2015), 319-340.
[37] Khabibullin B. N., Rozit A. P., Khabibullina E. B. Order versions of the Hahn-Banach theorem and envelopes. II. Applications to the function theory, Complex Analysis. Mathematical Physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 162, VINITI, Moscow, 2019, 93-135; translated in English and are published by Springer in Journal of Mathematical Sciences., Itogi Nauki i Tekhniki. Seriya "Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, VINITI, Moscow, 2019, 40 pages (to appear)
[38] Khabibullin B. N., Talipova G. R., Khabibullin F. B. Zero subsequences for Bernstein's spaces and the completeness of exponential systems in spaces of functions on an interval // Algebra i Analiz. 26:2 (2014), 185-215; English transl. in St. Petersburg Math. J. 26:2 (2015), 319-340.
[39] Khabibullin B. N., Tamindarova N. R. Uniqueness Theorems for Subharmonic and Holomorphic Functions of Several Variables on a Domain // Azerbaijan Journal of Mathematics, 7:1 (2017), 70-79.
[40] Koosis P. The logarithmic integral. II. Cambridge Univ. Press, 1992.
[41] Koosis P. Leçons sur le théorème Beurling et Malliavin. Montréal: Les Publications CRM, 1996.
[42] Landkoff N. S. Foundations of modern potential theory. Springer-Verlag, 1972.
[43] Matsaev V., Ostrovskii I., Sodin M. Variations on the theme of Marcinkiewicz' inequality // J. Anal. Math. 86:1 (2002), 289-317.
[44] Menshikova E. B., Khabibullin B. N. On the Distribution of Zero Sets of Holomorphic Functions. II // Funktsional. Anal. i Prilozhen. 53:1 (2019), 84-87; Funct. Anal. Appl. 53:1 (2019), 65-68.
[45] Ransford Th. Potential Theory in the Complex Plane. Cambridge University Press, 1995.
[46] Sarason D. Representing Measures for $\mathrm{R}(\mathrm{X})$ and Their Green's Functions // J. Func. Analysis, 7 (1971), 359-385.
[47] Bu S., Schachermayer W. Approximation of Jensen measures by image measures under holomorphic functions and applications // Trans. Amer. Math. Soc. $331: 2$ (1992), 585608.
[48] Schwartz L. Analyse Mathématique. Hermann, 1967.

[^0]: *This study was financially supported by the Russian Science Foundation (projects No. 18-11-00002.)

[^1]: ${ }^{1}$ A reference mark over a symbol of (in)equality, inclusion, or more general binary relation, etc. means that this relation is somehow related to this reference.

