Determination of a Triangle from Symmedian Point and Two Vertexes

Todor Zaharinov

May 17, 2019

Abstract

Given three noncollinear points P, B and C, we investigate the construction of the triangle $D B C$ with symmedian point P.

1 Introduction

The problem of constructing a triangle $A B C$ given two vertices A, B and the symmedian point K is solved of Michel Bataille in [1].
In this paper we give another construction.

2 Preliminaries

We shall work with homogeneous barycentric coordinates. We consider a nondegenerate triangle $A B C$ as the reference triangle, and set up a coordinate system for points in the plane of the triangle $(a=|B C|, b=|C A|, c=|A B|)$.

$$
A=(1: 0: 0), \quad B=(0: 1: 0), \quad C=(0: 0: 1)
$$

We shall make use of John H. Conway's notations [5, §3.4.1]. Let S denote twice the area of triangle $A B C$. For a real number θ, denote $S_{\theta}=S \cot \theta$. In particular,

$$
\begin{array}{r}
S_{A}=\frac{b^{2}+c^{2}-a^{2}}{2}, \quad S_{B}=\frac{c^{2}+a^{2}-b^{2}}{2}, \quad S_{C}=\frac{a^{2}+b^{2}-c^{2}}{2} \\
S_{B}+S_{C}=a^{2}, \quad S_{C}+S_{A}=b^{2}, \quad S_{A}+S_{B}=c^{2} \\
S_{A B}=S_{A} S_{B}, \quad S_{B C}=S_{B} S_{C}, \quad S_{C A}=S_{C} S_{A} \\
S^{2}=S_{A B}+S_{B C}+S_{C A}=\frac{1}{4}\left(2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}\right)
\end{array}
$$

Definition 1. The symmedian point K of the triangle $A B C$ (Lemoine point, Grebe point, point $\mathrm{X}(6)$ in ETC, $[4)$ is the isogonal conjugate of the centroid G. The symmedian point K has homogeneous barycentric coordinates ($a^{2}: b^{2}: c^{2}$).

Theorem 1. [5, §4.6.2], [2, §118]
The symmedian point is the only point which is the centroid of its own pedal triangle.

Theorem 2. [2, §125]
The symmedian point is the point of intersection of lines joining the midpoints of the sides of $A B C$ to the midpoints of corresponding perpendiculars.

Definition 2. [5, §7.1] The distance formula in homogeneous barycen-

 tric coordinatesIf $P=(x: y: z)$ and $Q=(u: v: w)$, the square distance between P and Q is given by:

$$
|P Q|^{2}=\frac{1}{(u+v+w)^{2}(x+y+z)^{2}} \sum_{\text {cyclic }} S_{A}((v+w) x-u(y+z))^{2}
$$

3 The point D

Given three noncollinear points P, B and C, to be construct a triangle $D B C$ with symmedian point P.

Let the point $P=(u: v: w), u \neq 0$ with respect to triangle $A B C$. Let the point $D=(x: y: z)$.
The symmedian point K_{D} of the triangle $D B C$ has homogeneous barycentric coordinates with respect to triangle $D B C: \quad K_{D}=\left(|B C|^{2}:|C D|^{2}:|D B|^{2}\right)$.
The square distances between D, B and C are (see Definition 2):

$$
\begin{align*}
& |B C|^{2}=a^{2} \\
& |C D|^{2}=\frac{b^{2} x^{2}+a^{2} y^{2}+\left(a^{2}+b^{2}-c^{2}\right) x y}{(x+y+z)^{2}} \tag{1}\\
& |D B|^{2}=\frac{c^{2} x^{2}+a^{2} z^{2}+\left(a^{2}-b^{2}+c^{2}\right) x z}{(x+y+z)^{2}}
\end{align*}
$$

With respect to triangle $A B C$, the symmedian point of triangle $D B C$ has homogeneous barycentric coordinates:

$$
\begin{align*}
K_{D} & =|B C|^{2} D+|C D|^{2} B+|D B|^{2} C \\
& =a^{2}(x: y: z)+|C D|^{2}(0: 1: 0)+|D B|^{2}(0: 0: 1) \\
& =\left(a^{2} x(x+y+z): b^{2} x(x+y)+y\left(-c^{2} x+a^{2}(2 x+2 y+z)\right): c^{2} x(x+z)+z\left(-b^{2} x+a^{2}(2 x+y+2 z)\right)\right) \tag{2}
\end{align*}
$$

The point $P=(u: v: w)$ is the symmedian point of the triangle $D B C$ if and only if

$$
K_{D}=P=\frac{u}{u+v+w} A+\frac{v}{u+v+w} B+\frac{w}{u+v+w} C
$$

Solving these equations we obtain two solutions (may be not real) for point D :

$$
\begin{align*}
D_{1} & =\left(-4 u\left(a^{2} \sqrt{f}+2 a^{4} u(u+v+w)\right)\right. \\
& :\left(b^{2}-c^{2}\right) u\left(\sqrt{f}+3\left(b^{2}-c^{2}\right) u^{2}\right)+a^{4} u\left(8 u^{2}-3 v^{2}+2 v w+w^{2}+2 u(v+3 w)\right) \\
& +a^{2}\left(\sqrt{f}(2 u-v+w)-2 u^{2}\left(b^{2}(3 u-2 w)+c^{2}(5 u+2 w)\right)\right) \\
& :\left(-b^{2}+c^{2}\right) \sqrt{f} u+3\left(b^{2}-c^{2}\right)^{2} u^{3}+a^{2}\left(-2 u^{2}\left(c^{2}(3 u-2 v)+b^{2}(5 u+2 v)\right)\right. \\
& \left.+\sqrt{f}(2 u+v-w))+a^{4} u\left(8 u^{2}+v^{2}+2 v w-3 w^{2}+2 u(3 v+w)\right)\right) \\
D_{2} & =\left(4 u\left(a^{2} \sqrt{f}-2 a^{4} u(u+v+w)\right)\right. \tag{3}\\
& :\left(-b^{2}+c^{2}\right) \sqrt{f} u+3\left(b^{2}-c^{2}\right)^{2} u^{3}+a^{4} u\left(8 u^{2}-3 v^{2}+2 v w+w^{2}+2 u(v+3 w)\right) \\
& -a^{2}\left(\sqrt{f}(2 u-v+w)+2 u^{2}\left(b^{2}(3 u-2 w)+c^{2}(5 u+2 w)\right)\right) \\
& :\left(b^{2}-c^{2}\right) u\left(\sqrt{f}+3\left(b^{2}-c^{2}\right) u^{2}\right)-a^{2}\left(2 u^{2}\left(c^{2}(3 u-2 v)+b^{2}(5 u+2 v)\right)\right. \\
& \left.+\sqrt{f}(2 u+v-w))+a^{4} u\left(8 u^{2}+v^{2}+2 v w-3 w^{2}+2 u(3 v+w)\right)\right) \\
f & =u^{2}\left(\left(16 a^{4}-24 a^{2} b^{2}+9 b^{4}-24 a^{2} c^{2}-18 b^{2} c^{2}+9 c^{4}\right) u^{2}+a^{4} v^{2}+a^{4} w^{2}\right. \\
& \left.+2 a^{2}\left(4 a^{2}-3 b^{2}+3 c^{2}\right) u v+14 a^{4} v w+2 a^{2}\left(4 a^{2}+3 b^{2}-3 c^{2}\right) w u\right)
\end{align*}
$$

The points $D_{1,2}$ are real if and only if $f \geqslant 0$. This is equal to be the points D lie inside or on the conic χ :

$$
\begin{align*}
\chi & :\left(16 a^{4}-24 a^{2} b^{2}+9 b^{4}-24 a^{2} c^{2}-18 b^{2} c^{2}+9 c^{4}\right) x^{2}+a^{4} y^{2}+a^{4} z^{2} \\
& +2 a^{2}\left(4 a^{2}-3 b^{2}+3 c^{2}\right) x y+14 a^{4} y z+2 a^{2}\left(4 a^{2}+3 b^{2}-3 c^{2}\right) z x=0 \tag{4}
\end{align*}
$$

Figure 1: Triangle $D B C$ and conic χ

The type of the conic is depending on its discriminant for the infinity point $(x: y: z), x+y+z=0$, see [5, §10.7.1]. The conic χ has discriminant $-576 a^{2} S^{2}<0$ and χ is a ellipse.

4 Ellipse χ

The center of the ellipse χ is the midpoint O of the segment $B C$, and focuses are the points B and C, see Figure 1, conf. [1, §3]. The vertices are the points

$$
V_{1}=(0: 1:-7-4 \sqrt{3}), \quad V_{2}=(0: 1:-7+4 \sqrt{3})
$$

The ellipse is independent of the position of point A.

If we choose $A=P$, i.e. $u=1, v=w=0$, the condition $P=A=(1: 0: 0) \in \chi$ (see $\sqrt{4}$) is $\delta=0$ where:

$$
\begin{align*}
& \delta=16 a^{4}-24 a^{2} b^{2}+9 b^{4}-24 a^{2} c^{2}-18 b^{2} c^{2}+9 c^{4} \tag{5}\\
\text { really } \delta= & \left(4 a^{2}-3 b^{2}+6 b c-3 c^{2}\right)\left(4 a^{2}-3 b^{2}-6 b c-3 c^{2}\right) \\
= & (2 a+\sqrt{3}(b-c))(2 a-\sqrt{3}(b-c))(2 a+\sqrt{3}(b+c))(2 a-\sqrt{3}(b+c)) ; \\
& 2 a+\sqrt{3}(b+c)>0 ; \\
& 2 a+\sqrt{3}(b-c)=\sqrt{3}(a+b-c)+(2-\sqrt{3}) a>0 ; \\
& 2 a-\sqrt{3}(b-c)=\sqrt{3}(a-b+c)+(2-\sqrt{3}) a>0
\end{align*}
$$

Condition point A be on the ellipse with focuses B, C and vertexes V_{1}, V_{2} is

$$
c+b=|A B|+|A C|=\left|V_{1} B\right|+\left|V_{1} C\right|=\left|V_{1} V_{2}\right|=\frac{2 a}{\sqrt{3}}
$$

i. e. $2 a-\sqrt{3}(b+c)=0$, or

$$
\delta \begin{cases}>0, & 2 a-\sqrt{3}(b+c)>0, A \text { inside } \chi \tag{6}\\ =0, & 2 a-\sqrt{3}(b+c)=0, A \text { on } \chi \\ <0, & 2 a-\sqrt{3}(b+c)<0, A \text { outside } \chi\end{cases}
$$

Theorem 3. Let P lies on the ellipse χ (4). Let \mathcal{C} is a circle with center O and diameter $V_{1} V_{2}$. Construct pedal P_{\perp} of the perpendicular of point P to line $B C$, and point P^{\prime} - the reflection of P_{\perp} in P. When P traverses the ellipse χ, the locus of P^{\prime} is the circle \mathcal{C} (Figure 2).

Proof. The circle \mathcal{C} has center $O=(0: 1: 1)$ — midpoint of the segment $B C$ and radius $\frac{1}{2}\left|V_{1} V_{2}\right|=\frac{a}{\sqrt{3}}$. The equation of the circle (see [5] page 91]) is:
$c^{2} x y+b^{2} x z+a^{2} y z-(x+y+z)\left(\left(-\frac{a^{2}}{3}+\frac{1}{4}\left(-a^{2}+2 b^{2}+2 c^{2}\right)\right) x-\frac{a^{2} y}{12}-\frac{a^{2} z}{12}\right)=0$
This can be rewritten as

$$
\begin{equation*}
\mathcal{C}: \quad c^{2} x y+b^{2} x z+a^{2} y z-(x+y+z)\left(S_{A} x-\frac{a^{2}(x+y+z)}{12}\right)=0 \tag{7}
\end{equation*}
$$

Let $P=(u, v, w)$. The infinity point of line $B C$ is $(0:-1: 1)$. The infinity point of lines perpendicular to it is $\left(-S_{B}-S_{C}, S_{C}, S_{B}\right)$. The perpendicular from P

Figure 2: The circle \mathcal{C}
to $B C$ is the line $\left(S_{B} v-S_{C} w\right) x-\left(S_{C} w+S_{B}(u+w)\right) y+\left(S_{B} v+S_{C}(u+v)\right) z=0$ and the intersection with $B C$ is the point $P_{\perp}=\left(0: S_{B} v+S_{C}(u+v): S_{C} w+\right.$ $\left.S_{B}(u+w)\right)$.

$$
\begin{align*}
\overrightarrow{P P^{\prime}} & =\overrightarrow{P_{\perp} P} \\
P^{\prime}-P & =P-P_{\perp} \\
P^{\prime}=2 P-P_{\perp} & =\left(2\left(S_{B}+S_{C}\right) u: S_{B} v+S_{C}(-u+v): S_{C} w+S_{B}(-u+w)\right) \tag{8}
\end{align*}
$$

The point P^{\prime}, (8) lies on $\mathcal{C},(7)$ if

$$
\begin{aligned}
& \frac{1}{3} a^{2}\left(16 a^{4} u^{2}-24 a^{2} b^{2} u^{2}+9 b^{4} u^{2}-24 a^{2} c^{2} u^{2}-18 b^{2} c^{2} u^{2}+9 c^{4} u^{2}+8 a^{4} u v\right. \\
& \left.-6 a^{2} b^{2} u v+6 a^{2} c^{2} u v+a^{4} v^{2}+8 a^{4} u w+6 a^{2} b^{2} u w-6 a^{2} c^{2} u w+14 a^{4} v w+a^{4} w^{2}\right)=0
\end{aligned}
$$

But this is satisfied because condition to be point P lies on ellipse $\chi,(4)$ is

$$
\begin{aligned}
& \left(16 a^{4} u^{2}-24 a^{2} b^{2} u^{2}+9 b^{4} u^{2}-24 a^{2} c^{2} u^{2}-18 b^{2} c^{2} u^{2}+9 c^{4} u^{2}+8 a^{4} u v\right. \\
& \left.-6 a^{2} b^{2} u v+6 a^{2} c^{2} u v+a^{4} v^{2}+8 a^{4} u w+6 a^{2} b^{2} u w-6 a^{2} c^{2} u w+14 a^{4} v w+a^{4} w^{2}\right)=0
\end{aligned}
$$

Theorem 4. Let P be point of the ellipse χ. Let $(B P),(C P)$ are circles with diameters $B P$ and $C P$ respectively. The circles $(B P),(C P)$ tangent to the circle \mathcal{C} with diameter $V_{1} V_{2}$ inwardly in points T_{b}, T_{c} respectively. The points P, T_{b}, T_{c} are collinear (Figure 3).

Proof. The ellipse χ is independent of the position of point A. We choose $A=P$, i.e. $u=1, v=w=0$.

The circles $(B P)=(B A)$ with center midpoint of $B A$ and radius $c / 2$ (see [6, $\S 9.6 .1])$ and $(C P)=(C A)$ with center midpoint of $C A$ and radius $b / 2$, have

Figure 3: T_{b}, T_{c}
equations:

$$
\begin{array}{ll}
(B A): & a^{2} y z+b^{2} z x+c^{2} x y-S_{c} z(x+y+z)=0 \\
(C A): & a^{2} y z+b^{2} z x+c^{2} x y-S_{b} y(x+y+z)=0 \tag{9}
\end{array}
$$

The intersect points of circles \mathcal{C} and $(B A)$ are

$$
\begin{aligned}
& \left(4 a^{8}-3\left(b^{2}-c^{2}\right)^{3}\left(b^{2}+c^{2}\right)-3 a^{6}\left(3 b^{2}+5 c^{2}\right)+a^{4}\left(3 b^{4}+8 b^{2} c^{2}+21 c^{4}\right)\right. \\
& +a^{2}\left(5 b^{6}+b^{4} c^{2}+7 b^{2} c^{4}-13 c^{6}\right) \pm 8 S_{A C} S \sqrt{-\delta} \\
& :-2 b^{2}\left(-3\left(a^{6}-3 a^{4}\left(b^{2}+c^{2}\right)-\left(b^{2}-c^{2}\right)^{2}\left(b^{2}+c^{2}\right)+a^{2}\left(3 b^{4}+2 b^{2} c^{2}+3 c^{4}\right)\right) \pm 4 S_{A} S \sqrt{-\delta}\right) \\
& \left.: 2 S_{A}\left(4 a^{6}-11 a^{4}\left(b^{2}+c^{2}\right)-3\left(b^{2}-c^{2}\right)^{2}\left(b^{2}+c^{2}\right)+2 a^{2}\left(5 b^{4}+2 b^{2} c^{2}+5 c^{4}\right) \pm 4 S_{A} S \sqrt{-\delta}\right)\right)
\end{aligned}
$$

If $\delta<0$ there are two intersect points. If $\delta=0$ there is only one tangent point:
$T_{b}=\left(4 a^{2}+3 b^{2}-3 c^{2}: 6 b^{2}:-4 a^{2}+3\left(b^{2}+c^{2}\right)\right)=\left(a^{2}+6 S_{C}: 6 b^{2}:-a^{2}+6 S_{A}\right)$
similarly:
$T_{c}=\left(4 a^{2}-3 b^{2}+3 c^{2}:-4 a^{2}+3\left(b^{2}+c^{2}\right): 6 c^{2}\right)=\left(a^{2}+6 S_{B}:-a^{2}+6 S_{A}: 6 c^{2}\right)$

$$
\left|\begin{array}{c}
T_{b} \\
P \\
T_{c}
\end{array}\right|=\left|\begin{array}{c}
T_{b} \\
A \\
T_{c}
\end{array}\right|=\left|\begin{array}{ccc}
a^{2}+6 S_{C} & 6 b^{2} & -a^{2}+6 S_{A} \\
1 & 0 & 0 \\
a^{2}+6 S_{B} & -a^{2}+6 S_{A} & 6 c^{2}
\end{array}\right|=\delta=0
$$

It follows that the points T_{b}, P, T_{c} are collinear.
Theorem 5. Let P be point of the ellipse χ. Let $(B P),(C P)$ are circles with diameters BP and CP respectively. Construct pedal P_{\perp} of the perpendicular of point P to line $B C$, and point P^{\prime} - the reflection of P_{\perp} in P. Let $P^{\prime \prime}$ be midpoint of segment $P P^{\prime}$. Let τ is perpendicular of point $P^{\prime \prime}$ to line $O P^{\prime}, O$ is midpoint of $B C$ (Figure 4). Then τ is the common tangent of the circles $(B P)$ and (CP).

Figure 4: The line τ

Proof. The ellipse χ is independent of the position of point A. We choose $A=P=(1: 0: 0)$. Then $P_{\perp}=\left(0: S_{C}: S_{B}\right)$ and $P^{\prime}=\left(2 a^{2}:-S_{C}:-S_{B}\right)$, see Theorem 3 and 8. The equation of the line joining points $O=(0: 1: 1)$ and P^{\prime}, is:

$$
O P^{\prime}:\left(b^{2}-c^{2}\right) x+2 a^{2} y-2 a^{2} z=0
$$

The infinite point of line $O P^{\prime}$ has homogeneous coordinates $\left(4 a^{2}:-2 a^{2}-b^{2}+c^{2}\right.$: $-2 a^{2}+b^{2}-c^{2}$). The infinite point of the lines perpendicular to $O P^{\prime}$, see [5, §4.5], has homogeneous coordinates $\left(2 a^{2}\left(b^{2}-c^{2}\right): 2 a^{4}+\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(5 b^{2}+3 c^{2}\right)\right.$: $\left.-2 a^{4}-\left(b^{2}-c^{2}\right)^{2}+a^{2}\left(3 b^{2}+5 c^{2}\right)\right)$. The midpoint of segment $P P^{\prime}$ is point $P^{\prime \prime}=\left(6 a^{2}:-a^{2}-b^{2}+c^{2}:-a^{2}+b^{2}-c^{2}\right)$.
The perpendicular from $P^{\prime \prime}$ to $O P^{\prime}$ is the line τ, which has equation

$$
\left.\left\lvert\, \begin{array}{cc}
6 a^{2} & -a^{2}-b^{2}+c^{2} \\
2 a^{2}\left(b^{2}-c^{2}\right) & 2 a^{4}+\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(5 b^{2}+3 c^{2}\right) \\
x & y
\end{array}\right.\right)-2 a^{4}-\left(b^{2}-c^{2}+b^{2}-c^{2}+c^{2}\left(3 b^{2}+5 c^{2}\right) \mid=0\right.
$$

this is

$$
\begin{equation*}
-4 S^{2} x+\left(3 a^{4}+2\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(5 b^{2}+7 c^{2}\right)\right) y+\left(3 a^{4}+2\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(7 b^{2}+5 c^{2}\right)\right) z=0 \tag{11}
\end{equation*}
$$

The intersect points of line τ 11) and circle $(B A)$ (9) are $T_{b 1}^{\prime}, T_{b 2}^{\prime}$:

$$
\begin{aligned}
& 2 a^{2}\left(12 a^{4}+9\left(b^{2}-c^{2}\right)^{2}-2 a^{2}\left(11 b^{2}+13 c^{2}\right)\right) \pm 2 a^{2}\left(b^{2}-c^{2}\right) \sqrt{\delta} \\
& :-\left(b^{2}-c^{2}\right)\left(6 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(7 b^{2}+9 c^{2}\right)\right) \pm\left(2 a^{4}+\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(5 b^{2}+3 c^{2}\right)\right) \sqrt{\delta} \\
& :-8 a^{6}+3\left(b^{2}-c^{2}\right)^{3}+2 a^{4}\left(9 b^{2}+7 c^{2}\right)+a^{2}\left(-13 b^{4}+10 b^{2} c^{2}+3 c^{4}\right) \\
& \left.\mp\left(2 a^{4}+\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(3 b^{2}+5 c^{2}\right)\right) \sqrt{\delta}\right)
\end{aligned}
$$

where δ is given in (5) above.
If A inside χ (6), $\delta>0$, there are two intersect points $T_{b 1}^{\prime}, T_{b 2}^{\prime}$. If A lies on χ, $\delta=0$, there is only one tangent point:

$$
\begin{align*}
T_{b}^{\prime} & =\left(2 a^{2}\left(12 a^{4}+9\left(b^{2}-c^{2}\right)^{2}-2 a^{2}\left(11 b^{2}+13 c^{2}\right)\right):-\left(b^{2}-c^{2}\right)\left(6 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(7 b^{2}+9 c^{2}\right)\right)\right. \\
& \left.:-8 a^{6}+3\left(b^{2}-c^{2}\right)^{3}+2 a^{4}\left(9 b^{2}+7 c^{2}\right)+a^{2}\left(-13 b^{4}+10 b^{2} c^{2}+3 c^{4}\right)\right) \tag{12}
\end{align*}
$$

Similarly the intersect points of line τ (11) and circle (CA) (9) are $T_{c 1}^{\prime}, T_{c 2}^{\prime}$:

$$
\begin{aligned}
& \left(2 a^{2}\left(12 a^{4}+9\left(b^{2}-c^{2}\right)^{2}-2 a^{2}\left(13 b^{2}+11 c^{2}\right)\right) \pm 2 a^{2}\left(-b^{2}+c^{2}\right) \sqrt{\delta}\right. \\
& :-8 a^{6}-3\left(b^{2}-c^{2}\right)^{3}+2 a^{4}\left(7 b^{2}+9 c^{2}\right)+a^{2}\left(3 b^{4}+10 b^{2} c^{2}-13 c^{4}\right) \\
& \mp\left(2 a^{4}+\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(5 b^{2}+3 c^{2}\right)\right) \sqrt{\delta} \\
& \left.:\left(b^{2}-c^{2}\right)\left(6 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(9 b^{2}+7 c^{2}\right)\right) \pm\left(2 a^{4}+\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(3 b^{2}+5 c^{2}\right)\right) \sqrt{\delta}\right)
\end{aligned}
$$

The tangent point of $\tau 11$ and (CA) 91, $\delta=0$, is:

$$
\begin{aligned}
T_{c}^{\prime} & =\left(2 a^{2}\left(12 a^{4}+9\left(b^{2}-c^{2}\right)^{2}-2 a^{2}\left(13 b^{2}+11 c^{2}\right)\right):-8 a^{6}-3\left(b^{2}-c^{2}\right)^{3}+2 a^{4}\left(7 b^{2}+9 c^{2}\right)\right. \\
& \left.+a^{2}\left(3 b^{4}+10 b^{2} c^{2}-13 c^{4}\right):\left(b^{2}-c^{2}\right)\left(6 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(9 b^{2}+7 c^{2}\right)\right)\right)
\end{aligned}
$$

Theorem 6. The point $P^{\prime \prime}$ is midpoint of $T_{b}^{\prime} T_{c}^{\prime}$. (See Theorem 5 and Figure (4).

Proof. The condition the point $P^{\prime \prime}$ be midpoint of $T_{b}^{\prime} T_{c}^{\prime}$ is $T_{b}^{\prime}+T_{c}^{\prime}=2 P^{\prime \prime}$ (in absolute barycentric coordinates). The sum of the coordinates of the points are:

$$
\begin{aligned}
& T_{b}^{\prime} ; T_{c}^{\prime} \rightarrow 4 a^{2}\left(4 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-8 a^{2}\left(b^{2}+c^{2}\right)\right) \\
& P^{\prime \prime} \rightarrow 4 a^{2} \\
& T_{b}^{\prime}+T_{c}^{\prime}= \frac{12 a^{4}+9\left(b^{2}-c^{2}\right)^{2}-2 a^{2}\left(11 b^{2}+13 c^{2}\right)}{2\left(4 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-8 a^{2}\left(b^{2}+c^{2}\right)\right)} A-\frac{\left(b^{2}-c^{2}\right)\left(6 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(7 b^{2}+9 c^{2}\right)\right)}{4 a^{2}\left(4 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-8 a^{2}\left(b^{2}+c^{2}\right)\right)} B \\
&+\frac{-8 a^{6}+3\left(b^{2}-c^{2}\right)^{3}+2 a^{4}\left(9 b^{2}+7 c^{2}\right)+a^{2}\left(-13 b^{4}+10 b^{2} c^{2}+3 c^{4}\right)}{4 a^{2}\left(4 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-8 a^{2}\left(b^{2}+c^{2}\right)\right)} C \\
&+\frac{12 a^{4}+9\left(b^{2}-c^{2}\right)^{2}-2 a^{2}\left(13 b^{2}+11 c^{2}\right)}{2\left(4 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-8 a^{2}\left(b^{2}+c^{2}\right)\right)} A+\frac{\left(b^{2}-c^{2}\right)\left(6 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-a^{2}\left(9 b^{2}+7 c^{2}\right)\right)}{4 a^{2}\left(4 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-8 a^{2}\left(b^{2}+c^{2}\right)\right)} C \\
&+\frac{-8 a^{6}-3\left(b^{2}-c^{2}\right)^{3}+2 a^{4}\left(7 b^{2}+9 c^{2}\right)+a^{2}\left(3 b^{4}+10 b^{2} c^{2}-13 c^{4}\right)}{4 a^{2}\left(4 a^{4}+3\left(b^{2}-c^{2}\right)^{2}-8 a^{2}\left(b^{2}+c^{2}\right)\right)} B \\
&= 3 A-\frac{a^{2}+b^{2}-c^{2}}{2 a^{2}} B-\frac{a^{2}-b^{2}+c^{2}}{2 a^{2}} C=2 P^{\prime \prime}
\end{aligned}
$$

Remark. Similarly we prove that the point $P^{\prime \prime}$ is midpoint of $T_{b i}^{\prime} T_{c i}^{\prime}, i=1,2$. (See Theorem 5).

Theorem 7. The lines $O P^{\prime}, B T_{b i}^{\prime}, C T_{c i}^{\prime}, i=1,2$, see Theorem 5, are concurrent.
Proof. The equations of the lines are:

$$
\begin{aligned}
O P^{\prime} & :\left(b^{2}-c^{2}\right) x+2 a^{2} y-2 a^{2} z=0 ; \\
B T_{b 1,2}^{\prime} & :\left(-8 a^{6}-2 a^{4}\left(-9 b^{2}-7 c^{2} \pm \sqrt{\delta}\right)-\left(b^{2}-c^{2}\right)^{2}\left(-3 b^{2}+3 c^{2} \pm \sqrt{\delta}\right)\right. \\
& \left.+a^{2}\left(-13 b^{4}+3 c^{4} \pm 5 c^{2} \sqrt{\delta}+b^{2}\left(10 c^{2} \pm 3 \sqrt{\delta}\right)\right)\right) x \\
& +\left(-24 a^{6}+a^{4}\left(44 b^{2}+52 c^{2}\right)-2 a^{2}\left(b^{2}-c^{2}\right)\left(9 b^{2}-9 c^{2} \pm \sqrt{\delta}\right)\right) z=0 \\
C T_{c 1,2}^{\prime}: & \left(8 a^{6}+2 a^{4}\left(-7 b^{2}-9 c^{2} \pm \sqrt{\delta}\right)+\left(b^{2}-c^{2}\right)^{2}\left(3 b^{2}-3 c^{2} \pm \sqrt{\delta}\right)\right. \\
& \left.-a^{2}\left(3 b^{4}-13 c^{4} \pm 3 c^{2} \sqrt{\delta}+5 b^{2}\left(2 c^{2} \pm \sqrt{\delta}\right)\right)\right) x \\
& +\left(24 a^{6}-4 a^{4}\left(13 b^{2}+11 c^{2}\right)-2 a^{2}\left(b^{2}-c^{2}\right)\left(-9 b^{2}+9 c^{2} \pm \sqrt{\delta}\right)\right) y=0
\end{aligned}
$$

Three lines $p_{i} x+q_{i} y+r_{i} z=0, i=1,2,3$, are concurrent if and only if (see 5, §4.3], [3])

$$
\left|\begin{array}{lll}
p_{1} & q_{1} & r_{1} \\
p_{2} & q_{2} & r_{2} \\
p_{3} & q_{3} & r_{3}
\end{array}\right|=0
$$

For the lines $O P^{\prime}, B T_{b i}^{\prime}, C T_{c i}^{\prime}, i=1,2$ this is true.

5 Construction

Construct a triangle $D B C$ given the side $B C$ and symmedian point P, not on the line $B C$.

Construction. (See Figure 5.)

1. The given noncollinear points P, B and C
2. Midpoint O of $B C$
3. Perpendicular of P to $B C$, which intersect $B C$ in point P_{\perp}
4. Point P^{\prime} - the reflection of P_{\perp} in P.
5. The midpoint $P^{\prime \prime}$ of $P P^{\prime}$
6. Circles $(B P),(C P)$ with diameters $B P$ and $C P$
7. Perpendicular line τ from $P^{\prime \prime}$ to $O P^{\prime}$
8. Intersections $T_{b 1}^{\prime}$ and $T_{b 2}^{\prime}$ of the line τ and circle (BP)
9. $D_{1}=B T_{b 1}^{\prime} \cap O P^{\prime}$ and $D_{2}=B T_{b 2}^{\prime} \cap O P^{\prime}$
10. Triangles $D_{1} B C$ and $D_{2} B C$.

Proof. Let D_{1} be a point constructed by method given above, see Figure 6 Likewise is proof for point D_{2}.
By construction, $D_{1}=B T_{b 1}^{\prime} \cap O P^{\prime}$. By Theorem 7, $D_{1} \in C T_{c 1}^{\prime}$.
By construction, $P P_{\perp} \perp B C$. From triangle $B P T_{b 1}^{\prime}$, inscribed in circle $(B P)$, $\varangle P T_{b 1}^{\prime} B=90^{\circ}$. Similarly from triangle $C P T_{c 1}^{\prime}$ follow $\varangle P T_{c 1}^{\prime} C=90^{\circ}$. Hence the triangle $P_{\perp} T_{c 1}^{\prime} T_{b 1}^{\prime}$ is pedal triangle of point P with respect to the triangle $D_{1} B C$.

By the remark after Theorem 6 point $P^{\prime \prime}$ is midpoint of $T_{b 1}^{\prime} T_{c 1}^{\prime}$ i.e. $P_{\perp} P^{\prime \prime}$ is median in triangle $P_{\perp} T_{c 1}^{\prime} T_{b 1}^{\prime}$. By construction, point P divides the median $P_{\perp} P^{\prime \prime}$ in the ratio $P_{\perp} P: P P^{\prime \prime}=2: 1$. Hence P is centroid of triangle $P_{\perp} T_{c 1}^{\prime} T_{b 1}^{\prime}$. By Theorem 1, P is the symmedian point of triangle $D_{1} B C$.

Figure 5: Construction

Figure 6: Existence of D

Existence of D. (See Figure 6.)

1. If the point P lies on the ellipse χ, (4), $\delta=0$, see (6), the line τ tangent to circles $(B P),(C P)$ and exist a unique point D, such as P is symmedian point of triangle $D B C$;
2. If the point P is inside χ, not on the line $B C, \delta>0$, the line τ intersect each of circles $(B P),(C P)$ in two points. Then exist two points D_{1}, D_{2}, such as P is symmedian point of triangles $D_{1} B C$ and $D_{2} B C$;
3. If the point P is outside $\chi, \delta<0$, the line τ not intersect circles $(B P),(C P)$ (Theorem 5), and point D not exist.

References

[1] M. Bataille, Constructing a Triangle from Two Vertices and the Symmedian Point, Forum Geometricorum Volume 18 (2018) 129 - 133.
[2] W. Gallatly, The Modern Geometry of the Triangle, second edition, Fr. Hodgson, London.
[3] S. Grozdev and D. Dekov, Barycentric Coordinates: Formula Sheet, 2016, IJCDM, Vol. 1, No. 2, pp. 75-82.
[4] C. Kimberling, Encyclopedia of Triangle Centers, ETC, http://faculty. evansville.edu/ck6/encyclopedia/ETC.html.
[5] P. Yiu, Introduction to the Geometry of the Triangle, 2001 - 2013, Version 13.0411, Department of Mathematics Florida Atlantic University.
[6] P. Yiu, Geometry of the Triangle, 2016, Department of Mathematics Florida Atlantic University.

Todor Zaharinov
Sofia, Bulgaria
e-mail: zatrat@abv.bg

