
MSC 2010: 31A05, 30C15 ÓÄÊ: 517.574, 517.547

A�ne Balayage of Measures in Domains of the Complex Plane

with Applications to Holomorphic Functions

B.N. Khabibullin, E.B. Menshikova

1) Khabib-Bulat@mail.ru; Bashkir State University

2) algeom@bsu.bashedu.ru; Bashkir State University

Abstract

Let u 6≡ −∞ and M 6≡ −∞ are two subharmonic functions in a domain D in

the complex plane C. We investigate two related but di�erent problems. The �rst

is to �nd the conditions on the Riesz measures υu and µM of functions u and M
respectively under which there exists a subharmonic function h 6≡ −∞ on D such

that u+h ≤M . The second is the same question, but for a harmonic function h on

D. The answers to these questions are given in terms of the special a�ne balayage

of measures introduced in our recent previous works. Applications of this technique

concern the description of distribution of zeros for holomorphic functions f on the

domain D satisfying the restriction |f | ≤ expM .
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We have are considered in the survey [5] general concepts of a�ne balayage. In this
article we deal with a particular case of such balayage with respect to special classes of
test subharmonic functions. Here we give some results from [4], [6], [3] as well as their
generalizations.

As usual, N := {1, 2, . . . }, R and C are the sets of all natural, real and complex
numbers, respectively. For the real line R with Euclidean norm-module | · |,

R−∞ := {−∞} ∪ R, R+∞ := R ∪ {+∞}, | ±∞| := +∞; R±∞ := R−∞ ∪ R+∞

is extended real line in the end topology with two ends ±∞, with the order relation ≤ on
R complemented by the inequalities −∞ ≤ x ≤ +∞ for x ∈ R±∞, with the positive real
axis

R+ := {x ∈ R : x ≥ 0}, x+ := max{0, x}, x− := (−x)+, for x ∈ R±∞,
S+ := {x ≥ 0: x ∈ S}, S∗ := S \ {0} for S ⊂ R±∞, R+

∗ := (R+)∗,

x · (±∞) := ±∞ =:(−x) · (∓∞) for x ∈ R+
∗ ∪ (+∞),

x

±∞
:= 0 for x ∈ R, but 0 · (±∞) := 0
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unless otherwise speci�ed. An open connected (sub-)set of R±∞ is a (sub-)interval of
R±∞. The Alexandro� one-point compacti�cation of C is denoted by C∞ := C∪{∞} [7].

The same symbol 0 is used, depending on the context, to denote the number zero, the
origin, zero vector, zero function, zero measure, etc. Given z ∈ C and r ∈ R+∞, we set

D(z, r) := {z′ ∈ C : |z′ − z| < r}, D(z, r) := {z′ ∈ C : |z′ − z| ≤ r},
D(∞, r) := {z ∈ C∞ : |z| > 1/r}, D(∞, r) := {z ∈ C∞ : |z| ≥ 1/r},
D(r) := D(0, r), D := D(0, 1), D(r) := D(0, r), D := D(0, 1).

Thus, the basis of open (respectively closed) neighborhood of the point z ∈ C∞ is open
(respectively closed) disks D(z, r) (respectively D(z, r)) centered at z with radius r > 0.

Given a subset S of C∞, the closure closS, the interior intS and the boundary ∂S
will always be taken relative C∞. For S ′ ⊂ S ⊂ C∞ we write S ′ b S if closS ′ ⊂ intS.
An open connected (sub-)set of C∞ is a (sub-)domain of C∞. By dist (·, ·) denote the
Euclidean distance function in C∞. So, dist (S,∞) := +∞ for S b C.

For a subset S ⊂ C, har(S), sbh(S), Hol(S) and Ck(S) with k ∈ N ∪ {∞} are
the restrictions to S of harmonic, subharmonic, and k times continuously di�erentiable
functions in some (in general, its own for each function) open set O ⊂ C containing S,
respectively. But C(S) is the class of all continuous functions on S. The class sbh(S)
contains the minus-in�nity function −∞ : z 7→ −∞ identically equal to −∞; sbh∗(S) :=
sbh(S) \ {−∞}, Hol∗(S) := Hol(S) \ {0}, sbh+(S) := {u ∈ sbh(S) : u ≥ 0 on S}.

Let Borel(S) be the class of all Borel subsets in S ∈ Borel(C∞). We denote
by Meas(S) the class of all Borel signed measures, or, charges on S ∈ Borel(C∞);
Measc(S) is the class of charges µ ∈ Meas(S) with a compact support suppµ b S;
Meas+(S) := {µ ∈ Meas(S) : µ ≥ 0}, Meas+c (S) := Measc(S) ∩Meas+(S); Meas1+(S) :=
{µ ∈ Meas+(S) : µ(S) = 1}, probability measures. We denote by δz ∈ Meas1+c (S) the
Dirac measure at a point z ∈ S, i.e., with the support supp δz = {z}, δz({z}) = 1. We
denote by µ

∣∣
S′ the restriction of µ to S ′ ∈ Borel(C∞).

De�nition (of a�ne balayage). Let O ⊂ C be an open subset, and S0 b O. Let V be
a class of Borel-measurable functions on O \ S0. We say that a measure µ ∈ Meas+(O)
is an a�ne balayage of a measure ν ∈ Meas+(O) outside S0 for the class V and write
υ 2S0,V µ if there exists a constant C ∈ R such that∫

O\S0

v dν ≤
∫
O\S0

v dµ+ C for all v ∈ V.

provided that all integrals are well de�ned by values from the extended real line R±∞.

Reminder, that a domain D ⊂ C have non-polar boundary ∂D if, in particular, ∂D ⊂
C∞ contains a non-isolated point, or ∂D ⊂ C∞ has a non-zero Hausdor� dimension [1,
5.4.1]. A domain with non-polar boundary necessarily possesses the Green function gD
[1], [2].
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Theorem 1 ([3, Theorem 1]) Let D 6= ∅ be a domain in C with non-polar boundary
∂D, M ∈ sbh (D) ∩ C(D) be a function with the Riesz measure µM ∈ Meas+(D), and
u ∈ sbh∗(D) with the Riesz measure υu ∈ Meas+(D). Then the following three statements
are equivalent:
[s1] There is a subharmonic function h ∈ sbh∗(D) such that

u+ h ≤M on D. (1)

[s2] For any non-empty subset S0 b D and a constant b ∈ R+
∗ , the measure µM is an

a�ne balayage of the measure υu outside S0 b D for the class

sbh+0 (D \ S0;≤ b) :=
{
v ∈ sbh0(D \ S0) : v ≥ 0 on D \ S0, sup

D\S0

v ≤ b
}

of subharmonic positive test functions, where

sbh0(D \ S0) :=
{
v ∈ sbh(D \ S0) : lim

D3z′→z
v(z′) = 0 for all z ∈ ∂D

}
.

[s3] There are a non-empty subset S0 b D and a number b ∈ R+
∗ such that the measure

µM is an a�ne balayage of the measure υu outside S0 for the class

sbh00(D \ S0)
⋂

sbh+0 (D \ S0;≤ b)
⋂

C∞(D \ S0)

of subharmonic positive �nite in�nitely di�erentiable test functions, where

sbh00(D \ S0) :=
{
v ∈ sbh(D \ S0) : there is Sv b D such that v ≡ 0 on D \ Sv

}
.

An application of Theorem 1 to study the distribution of subsequences of roots for
holomorphic functions from weight classes can be found in [3].

�Subharmonic� Theorem 1 has a similar �harmonic� counterpart. Consider some more
complicated classes of test functions. Given S ⊂ C and r ∈ R+, a set

S∪r := S
⋃⋃

z∈S

D(z, r).

is called a outer r-parallel set [8, Ch. I,� 4] for S.
For v ∈ L1

(
∂D(z, r)

)
, we de�ne the averaging value of v at the point z as

v◦r(z) :=
1

2π

∫ 2π

0

v(z + reis)ds.

Let ∅ 6= intS0 ⊂ S0 b D be a connected subset of domain D, and

0 < r <
1

3
dist (S0, ∂D), −∞ < b− < b+ < +∞ (2)

are constants. A function v ∈ sbh0(D \ S0) is called a subharmonic signed test function
from a class sbh±0 (D \ S0, r; b±), if this function satis�es the following three conditions:
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[t1] sup
{
v(z) : z ∈ ∂S0

}
≤ b+;

[t2] inf
{
v◦r(z) : z ∈ S∪(3r)0 \ S∪r0

}
≥ b−;

[t3] there is a subset Sv b D such that v ≥ 0 on D \ Sv.

We will use a substantially narrower class sbh±00(D \S0, r; b±) of subharmonic signed �nite

test function v satisfying condition [t1], but the condition inf{v(z) : z ∈ S∪(3r)0 \ S0} ≥ b−
instead of weaker condition [t2], and also a �niteness condition
[t0] there is a subset Sv b S such that v ≡ 0 on D \ Sv
instead of weaker condition [t3].

Theorem 2 (a special case announced in [6, Theorem 2]) Let the conditions of Theo-
rem 1 be ful�lled. Then the following three statements are equivalent:
[h1] There exists a function h ∈ har(D) such that u+ h ≤M as in (1).
[h2] For any non-empty connected subset S0 b D and constants from (2), the measure µM
is an a�ne balayage of the measure υu outside S0 b D for the class sbh±0 (D \ S0, r; b±).
[h3] There are a non-empty connected subset S0 b D and constants as in (2) such that
the measure µM is an a�ne balayage of the measure υu outside S0 for the class

sbh±00(D \ S0, r; b±)
⋂

C∞(D \ S0).

Let ∅ 6= D ⊂ C be a domain, and M ∈ sbh (D) ∩ C(D),

Hol(D,M) :=
{
f ∈ Hol(D) : |f | ≤ expM on D

}
.

Theorem 2 gives a criterion for a zero set for holomorphic functions Hol(M), which was
partially announced but not proved in [6, Theorem 2].

Corollary. Let Z := {z}k=1,2,... ⊂ D be a sequence without limit point in a simple
connected domain D with two di�erent points in ∂D or in a �nitely connected domain D
with closD 6= C∞, and with counting measure

nZ :=
∑
k

δzk ,

where δz is the Dirac measure at z. The following three statement are equivalent:
[z1] This sequence Z is exact zero set Zerof taking into account multiplicity for a function
f ∈ Hol (D,M), i.e., in terms of counting measures nZ = nZerof .
[z2] For any connected subset ∅ 6= S0 b D and constants (2), there is a constant C such
that ∑

k

v(zk) ≤
∫
D\S0

v dµM + C for all v ∈ sbh±0 (D \ S0, r; b±).
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[z3] There are a connected subset ∅ 6= S0 b D, constants as in (2), and a constant C
such that∑

k

v(zk) ≤
∫
D\S0

v dµM + C for all v ∈ sbh±00(D \ S0, r; b±)
⋂

C∞(D \ S0).
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