# Presentation of Finite Dimensions 

VOLKER W. THÜREY<br>Bremen, Germany *

August 28, 2019


#### Abstract

We present subsets of Euclidian spaces $\mathbb{R}^{n}$ in the ordinary plane $\mathbb{R}^{2}$. Naturally some informations are lost. We provide examples.


Keywords and phrases: presentation, Euclidean space
MSC 2010 subject classification: 51

## 1 Introduction

It is trivial that one can picture objects of the space $\mathbb{R}^{n}$ only if $n$ is less than four. The best presentation is a picture in $\mathbb{R}^{2}$. Mathematicians often deal with objects in higher dimensional spaces, but since we live in a three dimensional space we have no real imagination of these objects. Here we show methods to represent something of the $\mathbb{R}^{n}$ in $\mathbb{R}^{2}$. The way is by dividing a vector of $\mathbb{R}^{n}$ into small parts consisting of some components. After this we take barycenters. The final point can be presented in a two dimensonal space.

## 2

First we give names. We have methods way ${ }_{2}$, way $_{3}$, way $_{4}, \ldots$. To use way ${ }_{2}$ we need points in $\mathbb{R}^{n}$ for $n \in\{4,8,16, \ldots\}$. To use way ${ }_{3}$ we need points in $\mathbb{R}^{n}$ for $n \in\{9,27,81, \ldots\}$. Generally if we use way ${ }_{k}$ we need points in $\mathbb{R}^{n}$ for $n \in\left\{k^{2}, k^{3}, k^{4}, \ldots\right\}$ for $k>1$. We calculate barycenters of $k$-polygons. Further we define method $_{k}$, which requires a vector from $\mathbb{R}^{k}$, and which is suitable for all integers $k>1$ and which does not need barycenters.
First we show method ${ }_{k}$. Let us take a vector $\vec{a}:=\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right)$ of $\mathbb{R}^{n}$. We define
$\operatorname{method}_{n}(\vec{a}):=\left\{\begin{array}{l}\left(a_{1}+a_{2}+\ldots+a_{\frac{n}{2}-1}+a_{\frac{n}{2}}, a_{\frac{n}{2}+1}+a_{\frac{n}{2}+2}+\ldots+a_{n-1}+a_{n}\right) \\ \text { if } n \text { is even, } n \text { larger than } 4 \\ \left(a_{1}+a_{2}+\ldots+a_{\frac{n-1}{2}-1}+a_{\frac{n-1}{2}}+\frac{1}{2} \cdot a_{\frac{n-1}{2}+1}, \frac{1}{2} \cdot a_{\frac{n-1}{2}+1}+a_{\frac{n-1}{2}+2}+\ldots+a_{n-1}+a_{n}\right) \\ \text { if } n \text { is odd, } n \text { larger than } 4\end{array}\right.$
We define method ${ }_{2}(a, b):=(a, b), \operatorname{method}_{3}(a, b, c):=\left(a+\frac{1}{2} \cdot b, \frac{1}{2} \cdot b+c\right), \operatorname{method}_{4}(a, b, c, d):=$ $(a+b, c+d)$.

[^0]Let us demonstrate way. If we have an element $(a, b, c, d) \in \mathbb{R}^{4}$ we take two vectors $(a, b),(c, d) \in \mathbb{R}^{2}$. Then we compute the barycenter and we get the image point

$$
\begin{equation*}
\operatorname{way}_{2}(a, b, c, d):=\left(\frac{1}{2} \cdot(a, b)+\frac{1}{2} \cdot(c, d)\right)=\left(\frac{1}{2} \cdot(a+c), \frac{1}{2} \cdot(b+d)\right) \tag{2.1}
\end{equation*}
$$

which can be drawn in $\mathbb{R}^{2}$. In the case of a vector $\vec{y}:=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right) \in \mathbb{R}^{8}$ we divide it in four parts $\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right),\left(a_{5}, a_{6}\right),\left(a_{7}, a_{8}\right) \in \mathbb{R}^{2}$. First we calculate two barycenters of the pairs $\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right)$ and $\left(a_{5}, a_{6}\right),\left(a_{7}, a_{8}\right)$, respectively. After this we take the barycenter of the two barycenters. We get

$$
\operatorname{way}_{2}(\vec{y}):=\left(\frac{1}{2} \cdot\left[\frac{1}{2} \cdot\left(a_{1}+a_{3}\right), \frac{1}{2} \cdot\left(a_{2}+a_{4}\right)\right]+\frac{1}{2} \cdot\left[\frac{1}{2} \cdot\left(a_{5}+a_{7}\right), \frac{1}{2} \cdot\left(a_{6}+a_{8}\right)\right]\right)
$$

hence

$$
\operatorname{way}_{2}(\vec{y})=\left(\frac{1}{4} \cdot\left(a_{1}+a_{3}+a_{5}+a_{7}\right), \frac{1}{4} \cdot\left(a_{2}+a_{4}+a_{6}+a_{8}\right)\right)
$$

which is a point in $\mathbb{R}^{2}$.
If we have a vector $\vec{u}:=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{14}, a_{15}, a_{16}\right) \in \mathbb{R}^{16}$ we can use also way ${ }_{2}$. We compute the barycenter of two barycenters of four barycenters of 8 points $\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right),\left(a_{5}, a_{6}\right)$, $\left(a_{7}, a_{8}\right),\left(a_{9}, a_{10}\right),\left(a_{11}, a_{12}\right),\left(a_{13}, a_{14}\right)$ and $\left(a_{15}, a_{16}\right)$. We get $\operatorname{way}_{2}(\vec{u})=$

$$
\begin{equation*}
\left(\frac{1}{8} \cdot\left(a_{1}+a_{3}+a_{5}+a_{7}+a_{9}+a_{11}+a_{13}+a_{15}\right), \frac{1}{8} \cdot\left(a_{2}+a_{4}+a_{6}+a_{8}+a_{10}+a_{12}+a_{14}+a_{16}\right)\right. \tag{2.2}
\end{equation*}
$$

To demonstrate way wor $\mathbb{R}^{9}$ we use a point $\vec{v}:=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right)$. First we take the barycenter of the triangle of three points $\left(a_{1}, a_{2}, a_{3}\right),\left(a_{4}, a_{5}, a_{6}\right),\left(a_{7}, a_{8}, a_{9}\right)$ of $\mathbb{R}^{3}$, then we use method 3 . We define

$$
\begin{equation*}
\operatorname{way}_{3}(\vec{v}):=\left(\frac{1}{3} \cdot\left(a_{1}+a_{4}+a_{7}\right)+\frac{1}{6} \cdot\left(a_{2}+a_{5}+a_{8}\right), \frac{1}{6} \cdot\left(a_{2}+a_{5}+a_{8}\right)+\frac{1}{3} \cdot\left(a_{3}+a_{6}+a_{9}\right)\right) \tag{2.3}
\end{equation*}
$$

In the case of a vector $\vec{w}:=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{26}, a_{27}\right)$ from $\mathbb{R}^{27}$ we use method ${ }_{3}$ for the barycenter of three barycenters of three triangles, which are generated by nine points $\left(a_{1}, a_{2}, a_{3}\right),\left(a_{4}, a_{5}, a_{6}\right)$, $\ldots,\left(a_{25}, a_{26}, a_{27}\right)$ of $\mathbb{R}^{3}$. This means

$$
\begin{equation*}
\operatorname{way}_{3}(\vec{w}):=\left(\frac{1}{9} \cdot a+\frac{1}{18} \cdot b, \frac{1}{18} \cdot b+\frac{1}{9} \cdot c\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
a & :=a_{1}+a_{4}+a_{7}+a_{10}+a_{13}+a_{16}+a_{19}+a_{22}+a_{25}  \tag{2.5}\\
b & :=a_{2}+a_{5}+a_{8}+a_{11}+a_{14}+a_{17}+a_{20}+a_{23}+a_{26}  \tag{2.6}\\
c & :=a_{3}+a_{6}+a_{9}+a_{12}+a_{15}+a_{18}+a_{21}+a_{24}+a_{27} \tag{2.7}
\end{align*}
$$

We omit to show a general formula of way ${ }_{k}$.

Remark 2.1. If $n<k$ it holds $\mathbb{R}^{n} \subset \mathbb{R}^{k}$. In place of the vector $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n-1}, a_{n}\right)$ of $\mathbb{R}^{n}$ we can use $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n-1}, a_{n}, 0,0,0, \ldots, 0,0\right) \in \mathbb{R}^{k}$.

Remark 2.2. To avoid fractions we may multiply $\operatorname{method}_{k}(\vec{v})$ or way ${ }_{k}(\vec{v})$ with a suitable factor to ensure an integer at the same position in $\vec{v}$ if $\vec{v}$ has an integer there.

## 3 Examples

As an example we take the four dimensional cube, which is the convex hull of four dimensional vectors $(a, b, c, d) \in \mathbb{R}^{4}$, where the variables $a, b, c, d$ either are 0 or 1 . Each such point is called a vertex of the cube. Hence a four dimensional cube has 16 vertices.

By method 4 we get 9 vertices $(x, y)$, where $x$ and $y$ is 0 or 1 or 2 .
We get the same result if we use way w $_{2}$ and Remark 2.2. By line (2.1) and Remark 2.2 the presentation in $\mathbb{R}^{2}$ has 9 vertices $(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)$.

We repeat the presentation by Remark 2.1 since $\mathbb{R}^{4} \subset \mathbb{R}^{5}$. Instead of points $(a, b, c, d)$ we use points $(a, b, c, d, 0)$ with variables $a, b, c, d$ either 0 or 1 . It holds $\operatorname{method}_{5}(a, b, c, d, 0)=$ $\left(a+b+\frac{1}{2} \cdot c, \frac{1}{2} \cdot c+d\right)$. By Remark 2.2 we multiply all points with 2 to avoid fractions. We get with method $_{5} 12$ points $(x, y)$, where $x$ is $0,1,2,3,4,5$, and $y$ is from the set $\{0,1,2,3\}$. Note that $c$ occurs both in $x$ and $y$.

With way $_{3}$ we repeat the presentation by Remark 2.1 , since $\mathbb{R}^{4} \subset \mathbb{R}^{9}$. Instead of points $(a, b, c, d) \in \mathbb{R}^{4}$ we take points $(a, b, c, d, 0,0,0,0,0) \in \mathbb{R}^{9}$. By Remark 2.2 we multiply the 12 resulting points with 6 . We get by line $(2.3):(0,0),(2,0),(4,0),(0,2),(2,2),(4,2),(1,1)$, $(3,1),(5,1),(1,3),(3,3),(5,3)$.

Acknowledgements: We thank Franziska Brown for a careful reading of the paper

Author: Dr. Volker Wilhelm Thürey Hegelstrasse 101 28201 Bremen, Germany<br>T: 49 (0) 421591777<br>E-Mail: volker@thuerey.de


[^0]:    *49 (0)421 591777, volker@thuerey.de

